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Definitions

Let G be a finite abelian group. Consider a vector space V (G )
consisting of functions f : G → C with inner product

(f , g) =
∑
x∈G

f (x)g(x).

A function f : G → C\{0} is called a character of G if it is a
homomorphism from G to C, i.e. φ(x + y) = φ(x)φ(y) for each
x , y ∈ G .
The set of characters of an abelian group is an orthogonal basis of
V (G ). If G = Z n

q then φz(x) = ξ〈x ,z〉, where ξ = e2πi/q and
〈x , y〉 = x1y1 + · · · + xnyn mod q for each z ∈ Z n

q .

Define the Fourier transform of a f ∈ V (G ) by the formula
f̂ (z) = (f , φz)/|G |1/2,
f̂ (z) is the coefficients of the expansion of f in the basis.



Definitions

A function f : Z n
q → Zq is called a q-ary bent function iff

ξ̂f · ξ̂f = I , where I is equal to 1 everywhere.

Define the convolution of f ∈ V (G ) and g ∈ V (G ) by equation
f ∗ g(z) =

∑
x∈G

f (x)g(z − x). It is well known that

f̂ ∗ g = |G |1/2 f̂ · ĝ .

The definition of bent function is equivalent to the equation
ξf ∗ ξf = |G |χ{0}. Then the matrix B = (bz,y ), where
bz,y = ξf (z+y), is a generalized Hadamard matrix.

There χS is the characteristic function of the set S .



Definitions

A bent function b is called regular iff there exists a function
b′ : Z n

q → Zq such that ξb′
= ξ̂b. Then b′ is a bent function as

well. If q is a prime power and n is even, then each bent function is
regular.

If q is a prime power and n is even, then each bent function is
regular.
We assume below that p is a prime number and n is even.



Results

The Hamming distance between two functions f and g is the
cardinality of the support {x ∈ G | f (x) 6= g(x)} of their difference.

Proposition 1

The Hamming distance between two bent function on Z n
p is not

less than pn/2. If it is equal to pn/2, then the difference between
these functions is equal to cχΓ, where c ∈ Zp and Γ is an
n/2-dimensional affine subspace.



Results

Proposition 2

If a bent function b : Z n
p → Zp is an affine function on an affine

subspace Γ, then dimΓ ≤ n/2.

Proposition 3

If a bent function b : Z n
p → Zp is an affine function on an

n/2-dimensional affine subspace, then there exist p − 1 bent
function which differ from b only on this subspace.



Results

Consider quadratic form

Q0(v1, . . . , vd , u1, . . . ud ) = v1u1 + · · · + vdud .

It is well known that Q0 is a bent function from
Maiorana–McFarland class.

Proposition 4

If p is a prime number and p > 2, then there are
pd (pd−1 + 1) · · · (p + 1)(p − 1) p-ary bent functions at the
distance pd from Q0.



In the binary case the analogous statement was proved in [1] and
[2].
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