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Definitions

A set Qn
q = {0, 1, . . . , q − 1}n with Hamming metric is called an

n-dimensional hypercube. A hypercube is called Boolean if q = 2. A
subset of Qn

q consisting of n-tuples with fixed values in fixed
(n −m) coordinates is called m-dimensional face (m-face).

A function f : Qn
q → {0, 1} is called correlation immune of order r

if it takes the value 1 the same number of times for each
(n − r)-face of the hypercube. A correlation immune function is
called balanced (a resilient function) if it takes values 0 and 1 the
same number of times.



Examples
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N(n, k) is the number of resilient n-variable Boolean functions of
order k = const.

N(n, k) ∼ 22n+Q−k(2n−1π)−(M−1)/2,

where M =
k∑

j=0
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)
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j=0

j
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)
.

Y. Tarannikov,“On the structure and numbers of higher order
correlation-immune functions,” Proceedings of IEEE International
Symposium on Information Theory. 2000.



Main results

The lower bound 22n/2
follows from a simple construction. Suppose

that n = 2m. Consider an arbitrary Boolean function f : Qm
2 → Q2.

Define a function F : Q2m
2 → Q2 by the equation

F (x , y) = f (x)⊕ |y |, where |y | is the parity of the Hamming weight
of y . It is clear that F takes values 0 and 1 the same number of
times in each face with unfixed coordinate yi , i = 1, . . . , m.

Theorem

There exist at least n2(n/2)−1(1+o(1)) different resilient n-variable
Boolean functions of order n

2 − 1.

N(n,
n
2
) ≥ n2(n/2)−2(1+o(1)).



Lemma 1

The number of splittings of Qn
2 into pairwise nonintersecting faces

is equal to n2n−1(1+o(1)).



Lemma 2

Different splittings of Qn
2 correspond to different resilient functions

f : Qn
4 → Q2 of order n − 1.





Theorem

There exist at least n2n−1(1+o(1)) different resilient 2n-variable
Boolean functions of order n − 1.

Proof

Define an arbitrary bijection ϕ : Q2
2 → Q4. Suppose f : Qn

4 → Q2 is
a resilient function of order n− 1. Define function F : Q2n

2 → Q2 by
equation F (x , y) = f (ϕ(x1, y1), . . . , ϕ(xn, yn)). Consider an
arbitrary (n + 1)-dimensional face Γ. There exists i ∈ {1, . . . , n}
such that the pair of coordinates (xi , yi ) is not fixed in Γ. Since f
takes each of the values 0 and 1 two times in any 1-dimensional
face of Qn

4 , F takes each of the values 0 and 1 the same number of
times in Γ.


