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Definitions

Let Qn
2 be an n-dimensional Boolean hypercube. We consider a

splitting of Qn
2 into m-dimensional axis-aligned planes or m-faces. If

m = 1 then such splitting is equivalent to a perfect matching in
Boolean hypercube. Two m-faces are called parallel if they have the
same directions.
A splitting of Boolean hypercube is called an antipodal k-splitting if
it consists of exactly 2k (n − k)-faces and it does not contain
parallel non-antipodal faces.



Definitions

The set of faces of Qn
2 is in one-to-one correspondence with

n-tuples over alphabet {0, 1, ∗} and each m-face corresponds to a
word containing m symbols ∗.

For example, the set (0, 0, ∗, 1, ∗) = {(0, 0, x , 1, y) | x , y ∈ {0, 1}}
is a 2-face of Q5

2 .

An A(n, 2, w , t) design (A-design) is a collection of (n − t)-faces of
Qn

2 that perfectly covers all (n − w)-faces. If w = n then A-design
is a splitting of hypercube into (n − t)-faces.

Example

The set {(0, 0, 0, ∗), (1, 1, 1, ∗), (1, 0, ∗, 0), (0, 1, ∗, 1),
(0, ∗, 1, 0), (1, ∗, 0, 1), (∗, 1, 0, 0), (∗, 0, 1, 1)}
is an A(4, 2, 4, 3) design.



Proposition

If there exist an antipodal k1-splitting of Qn1
2 and an antipodal

k2-splitting of Qn2
2 then there exists an antipodal (k1k2)-splitting of

Qn1n2
2 .

Proof. Let A be an antipodal k1-splitting of Qn1
2 and B = B0 ∪ B1

be an antipodal k2-splitting of Qn2
2 , where sets B0 and B1 do not

contain parallel (n2 − k2)-faces. Consider (a1, . . . , an1) ∈ A. For all
ai , if ai = 0 we replace ai by arbitrary b ∈ B0; if ai = 1 then we
replace ai by arbitrary b ∈ B1; if ai = ∗ then we replace ai by
(∗, . . . , ∗)︸ ︷︷ ︸

n2

. The resulting set is an antipodal (k1k2)-splitting of

Qn1n2
2 .

Example

(0, 1, ∗, 1) ⇒ (000∗, 01∗1, ∗∗∗∗, 111∗); (000∗, 01∗1, ∗∗∗∗, 01∗1);
. . . (10 ∗ 0, 01 ∗ 1, ∗ ∗ ∗∗, 01 ∗ 1); (10 ∗ 0, 111∗, ∗ ∗ ∗∗, 01 ∗ 1); . . .



Definitions

Let G be a r -uniform hypergraph on n vertices. For each e ∈ E (G )
we consider two antipodal 2-colorings ϕe : e → {0, 1} and
ϕe = ϕe ⊕ 1. Let Φ be a collection of ϕe , e ∈ E (G ).
We say that a 2-coloring f : V (G ) → {0, 1} avoids Φ if f |e 6= ϕe
and f |e 6= ϕe for each e ∈ E (G ).
A hypergraph G is called proper 2-colorable if there exists
2-coloring f avoiding Φ0, where Φ0 consist of constant maps.

A hypergraph G is called 2-DP-colorable if for every collection Φ
there exists a 2-coloring f avoiding Φ.

• Dvorak Z. and Postle L. Correspondence coloring and its application to
list-coloring planar graphs without cycles of lengths 4 to 8, Journal of
Combinatorial Theory. Series B, 2018, V. 129, P. 38–54
• Bernshteyn A. and Kostochka A. DP-colorings of hypergraphs,
European Journal of Combinatorics, 2019, V. 78, P. 134–146.



A 2-coloring f of r -uniform hypergraph on n vertices is on-to-one
correspond to n-tuple over alphabet {0, 1} (f ∈ Qn

2 ). Each
r -hyperedge corresponds to (n − r)-faces of Qn

2 of some direction.
For example, r -hyperedge consisting of i1th,...,ir th vertices
corresponds to faces (∗, . . . , ∗, ·i1 , ∗, . . . , ∗, ·i2 , ∗, . . . , ·ir , ∗ . . . , ∗).
A 2-coloring f avoids ϕe = (∗, . . . , 1, 0, . . . , ∗) iff f 6∈ ϕe . A
2-coloring f avoids Φ if f 6∈ ϕe ∪ ϕe for all ϕe ∈ Φ.

Proposition

A non-2-DP-colorable r -uniform hypergraph with e edges and n
vertices is equivalent to a covering of Qn

2 by e pairs of antipodal
(n − r)-faces.

Corollary

Any k-uniform hypergraph with e < 2k−1 edges is 2-DP-colorable.



Corollary

There exists a non-2-DP-colorable k-uniform hypergraph with 2k−1

edges if and only if there exists an antipodal k-splitting of Qn
2 .

Corollary

There exist non-2-DP-colorable k-uniform hypergraphs with 2k−1

vertices where k = 3t .



Consider a tetrahedron as a 3-uniform hypergraph. There exists a
proper 2-coloring of tetrahedron.

But tetrahedron is not 2-DP-colorable because there exists a
3-antipodal splitting of Q4

2 .
Φ = {(0, 0, 0, ∗), (1, 1, 1, ∗), (1, 0, ∗, 0), (0, 1, ∗, 1),
(0, ∗, 1, 0), (1, ∗, 0, 1), (∗, 1, 0, 0), (∗, 0, 1, 1)}



Theorem

There are no antipodal 5-splittings of Qn
2 .

Corollary

Every 5-uniform hypergraph with 16 (or less) edges is
2-DP-colorable.



Definitions

A pair {T0, T1} of disjoint collections of k-subsets (blocks) of a set
V , |V | = n, is called a bitrade (more specifically, a (k − 1)− (n, k)
bitrade) if every (k − 1)-subset of V is contained in the same
number of blocks of T0 and T1. Bitrades correspond to possible
difference between two Steiner designs. A collection U of k-subsets
(blocks) of a set V of cardinality n is called a k-unitrade if every
(k − 1)-subset of V is contained in each block of U even times. It is
easy to see that if {T0, T1} is a bitrade then T0 ∪T1 is a unitrade.

Examples of unitrades

W5 = {{1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {1, 3, 4, 5, 6},
{1, 2, 4, 5, 6}, {1, 2, 3, 5, 6}, {1, 2, 3, 4, 6}}
R5 =
{{2, 3, 4, 5, 6}, {1, 3, 4, 5, 6}, {1, 2, 4, 5, 6}, {1, 2, 3, 5, 6}, {1, 2, 3, 4, 6},
{2, 3, 4, 5, 7}, {1, 3, 4, 5, 7}, {1, 2, 4, 5, 7}, {1, 2, 3, 5, 7}, {1, 2, 3, 4, 7}}



Proposition

An antipodal k-splitting of Qn
2 corresponds to a k-unitrade with

cardinality 2k−1 on n-element set.

Example of unitrade

{(0, 0, 0, ∗), (1, 1, 1, ∗), (1, 0, ∗, 0), (0, 1, ∗, 1),
(0, ∗, 1, 0), (1, ∗, 0, 1), (∗, 1, 0, 0), (∗, 0, 1, 1)}

⇒

{·, ·, ·, ∗}, {·, ·, ∗, ·}, {·, ∗, ·, ·}, {∗, ·, ·, ·}

⇒

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}



characterization of 5-unitrades of cardinality 16

Theorem

Up to equivalence, all 5-unitrades of cardinality 16 are exhausted by
the following list:
1) disjoint unions of W5 and R5;
2) E = {{1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {1, 3, 4, 5, 7}, {1, 2, 4, 5, 7},
{1, 2, 3, 5, 8}, {1, 2, 3, 4, 8}, {2, 3, 5, 7, 8}, {1, 3, 5, 7, 8},
{1, 2, 5, 7, 8}, {2, 3, 4, 7, 8}, {1, 3, 4, 7, 8}, {1, 2, 4, 7, 8},
{3, 4, 5, 6, 7}, {2, 4, 5, 6, 7}, {2, 3, 5, 6, 7}, {2, 3, 4, 6, 7}};
3) F = {{1, 2, 3, 5, 7}, {1, 2, 4, 5, 7}, {1, 3, 4, 5, 7}, {2, 3, 4, 5, 7},
{1, 2, 3, 6, 7}, {1, 2, 4, 6, 7}, {1, 3, 4, 6, 7}, {2, 3, 4, 6, 7},
{1, 2, 3, 6, 8}, {1, 2, 4, 6, 8}, {1, 3, 4, 6, 8}, {2, 3, 4, 6, 8},
{1, 2, 3, 5, 8}, {1, 2, 4, 5, 8}, {1, 3, 4, 5, 8}, {2, 3, 4, 5, 8}}.

But no 5-unitrade corresponds to an antipodal 5-splitting.



F =
(·, ·, ·, ∗, ·, ∗, ·, ∗) (·, ·, ·, ∗, ∗, ·, ·, ∗) (·, ·, ·, ∗, ∗, ·, ∗, ·) (·, ·, ·, ∗, ·, ∗, ∗, ·)
(·, ·, ∗, ·, ·, ∗, ·, ∗) (·, ·, ∗, ·, ∗, ·, ·, ∗) (·, ·, ∗, ·, ∗, ·, ∗, ·) (·, ·, ∗, ·, ·, ∗, ∗, ·)
(·, ∗, ·, ·, ·, ∗, ·, ∗) (·, ∗, ·, ·, ∗, ·, ·, ∗) (·, ∗, ·, ·, ∗, ·, ∗, ·) (·, ∗, ·, ·, ·, ∗, ∗, ·)
(∗, ·, ·, ·, ·, ∗, ·, ∗) (∗, ·, ·, ·, ∗, ·, ·, ∗) (∗, ·, ·, ·, ∗, ·, ∗, ·) (∗, ·, ·, ·, ·, ∗, ∗, ·)


