Splitting of hypercube into *k*-faces and DP-colorings of hypergraphs

Vladimir N. Potapov

Sobolev Institute of Mathematics, Novosibirsk, Russia

Conference on graphs, networks, and their applications, Moscow, May 13 - 18, 2019

Definitions

Let Q_2^n be an *n*-dimensional Boolean hypercube. We consider a splitting of Q_2^n into *m*-dimensional axis-aligned planes or *m*-faces. If m = 1 then such splitting is equivalent to a perfect matching in Boolean hypercube. Two *m*-faces are called parallel if they have the same directions.

A splitting of Boolean hypercube is called an antipodal k-splitting if it consists of exactly 2^k (n - k)-faces and it does not contain parallel non-antipodal faces.

The set of faces of Q_2^n is in one-to-one correspondence with *n*-tuples over alphabet $\{0, 1, *\}$ and each *m*-face corresponds to a word containing *m* symbols *.

For example, the set $(0, 0, *, 1, *) = \{(0, 0, x, 1, y) \mid x, y \in \{0, 1\}\}$ is a 2-face of Q_2^5 .

An A(n, 2, w, t) design (A-design) is a collection of (n - t)-faces of Q_2^n that perfectly covers all (n - w)-faces. If w = n then A-design is a splitting of hypercube into (n - t)-faces.

Example

The set
$$\{(0,0,0,*), (1,1,1,*), (1,0,*,0), (0,1,*,1), (0,*,1,0), (1,*,0,1), (*,1,0,0), (*,0,1,1)\}$$

is an $A(4,2,4,3)$ design.

Proposition

If there exist an antipodal k_1 -splitting of $Q_2^{n_1}$ and an antipodal k_2 -splitting of $Q_2^{n_2}$ then there exists an antipodal (k_1k_2) -splitting of $Q_2^{n_1n_2}$.

Proof. Let A be an antipodal k_1 -splitting of $Q_2^{n_1}$ and $B = B_0 \cup B_1$ be an antipodal k_2 -splitting of $Q_2^{n_2}$, where sets B_0 and B_1 do not contain parallel $(n_2 - k_2)$ -faces. Consider $(a_1, \ldots, a_{n_1}) \in A$. For all a_i , if $a_i = 0$ we replace a_i by arbitrary $b \in B_0$; if $a_i = 1$ then we replace a_i by arbitrary $b \in B_1$; if $a_i = *$ then we replace a_i by $(*, \ldots, *)$. The resulting set is an antipodal (k_1k_2) -splitting of $Q_2^{n_1n_2}$.

Example

 $\begin{array}{l} (0,1,*,1) \Rightarrow (000*,01*1,****,111*); (000*,01*1,****,01*1); \\ \dots (10*0,01*1,****,01*1); (10*0,111*,****,01*1); \dots \end{array}$

Definitions

Let G be a r-uniform hypergraph on n vertices. For each $e \in E(G)$ we consider two antipodal 2-colorings $\varphi_e : e \to \{0, 1\}$ and $\overline{\varphi_e} = \varphi_e \oplus 1$. Let Φ be a collection of φ_e , $e \in E(G)$. We say that a 2-coloring $f : V(G) \to \{0, 1\}$ avoids Φ if $f|_e \neq \varphi_e$ and $f|_e \neq \overline{\varphi_e}$ for each $e \in E(G)$. A hypergraph G is called proper 2-colorable if there exists

2-coloring f avoiding Φ_0 , where Φ_0 consist of constant maps.

A hypergraph G is called 2-DP-colorable if for every collection Φ there exists a 2-coloring f avoiding Φ .

 \bullet Dvorak Z. and Postle L. Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, Journal of Combinatorial Theory. Series B, 2018, V. 129, P. 38–54

• Bernshteyn A. and Kostochka A. DP-colorings of hypergraphs, European Journal of Combinatorics, 2019, V. 78, P. 134–146.

A 2-coloring f of r-uniform hypergraph on n vertices is on-to-one correspond to n-tuple over alphabet $\{0,1\}$ ($f \in Q_2^n$). Each r-hyperedge corresponds to (n-r)-faces of Q_2^n of some direction. For example, r-hyperedge consisting of i_1 th,..., i_r th vertices corresponds to faces $(*, \ldots, *, \cdot_{i_1}, *, \ldots, *, \cdot_{i_2}, *, \ldots, \cdot_{i_r}, * \ldots, *)$. A 2-coloring f avoids $\varphi_e = (*, \ldots, 1, 0, \ldots, *)$ iff $f \notin \varphi_e$. A 2-coloring f avoids Φ if $f \notin \varphi_e \cup \overline{\varphi}_e$ for all $\varphi_e \in \Phi$.

Proposition

A non-2-DP-colorable *r*-uniform hypergraph with *e* edges and *n* vertices is equivalent to a covering of Q_2^n by *e* pairs of antipodal (n - r)-faces.

Corollary

Any k-uniform hypergraph with $e < 2^{k-1}$ edges is 2-DP-colorable.

Corollary

There exists a non-2-DP-colorable k-uniform hypergraph with 2^{k-1} edges if and only if there exists an antipodal k-splitting of Q_2^n .

Corollary

There exist non-2-DP-colorable k-uniform hypergraphs with 2^{k-1} vertices where $k = 3^t$.

Consider a tetrahedron as a 3-uniform hypergraph. There exists a proper 2-coloring of tetrahedron.

But tetrahedron is not 2-DP-colorable because there exists a 3-antipodal splitting of Q_2^4 . $\Phi = \{(0, 0, 0, *), (1, 1, 1, *), (1, 0, *, 0), (0, 1, *, 1), (0, *, 1, 0), (1, *, 0, 1), (*, 1, 0, 0), (*, 0, 1, 1)\}$

Theorem

There are no antipodal 5-splittings of Q_2^n .

Corollary

Every 5-uniform hypergraph with 16 (or less) edges is 2-DP-colorable.

Definitions

A pair $\{T_0, T_1\}$ of disjoint collections of k-subsets (blocks) of a set V, |V| = n, is called a bitrade (more specifically, a (k - 1) - (n, k) bitrade) if every (k - 1)-subset of V is contained in the same number of blocks of T_0 and T_1 . Bitrades correspond to possible difference between two Steiner designs. A collection U of k-subsets (blocks) of a set V of cardinality n is called a k-unitrade if every (k - 1)-subset of V is contained in each block of U even times. It is easy to see that if $\{T_0, T_1\}$ is a bitrade then $T_0 \cup T_1$ is a unitrade.

Examples of unitrades

$$\begin{split} \mathcal{W}_5 &= \{\{1,2,3,4,5\},\{2,3,4,5,6\},\{1,3,4,5,6\},\\ \{1,2,4,5,6\},\{1,2,3,5,6\},\{1,2,3,4,6\}\}\\ \mathcal{R}_5 &= \\ \{\{2,3,4,5,6\},\{1,3,4,5,6\},\{1,2,4,5,6\},\{1,2,3,5,6\},\{1,2,3,4,6\},\\ \{2,3,4,5,7\},\{1,3,4,5,7\},\{1,2,4,5,7\},\{1,2,3,5,7\},\{1,2,3,4,7\}\} \end{split}$$

Proposition

An antipodal k-splitting of Q_2^n corresponds to a k-unitrade with cardinality 2^{k-1} on *n*-element set.

Example of unitrade

$$\{(0,0,0,*),(1,1,1,*),(1,0,*,0),(0,1,*,1),\\(0,*,1,0),(1,*,0,1),(*,1,0,0),(*,0,1,1)\}$$

 \Rightarrow

 $\{\cdot,\cdot,\cdot,*\},\{\cdot,\cdot,*,\cdot\},\{\cdot,*,\cdot,\cdot\},\{*,\cdot,\cdot,\cdot\}$

 \Rightarrow

 $\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}$

Theorem

Up to equivalence, all 5-unitrades of cardinality 16 are exhausted by the following list:

1) disjoint unions of W_5 and R_5 ;

2) $E = \{\{1, 2, 3, 4, 5\}, \{2, 3, 4, 5, 6\}, \{1, 3, 4, 5, 7\}, \{1, 2, 4, 5, 7\}, \{1, 2, 3, 5, 8\}, \{1, 2, 3, 4, 8\}, \{2, 3, 5, 7, 8\}, \{1, 3, 5, 7, 8\}, \{1, 2, 5, 7, 8\}, \{2, 3, 4, 7, 8\}, \{1, 3, 4, 7, 8\}, \{1, 2, 4, 7, 8\}, \{3, 4, 5, 6, 7\}, \{2, 3, 4, 7, 8\}, \{1, 3, 4, 7, 8\}, \{1, 2, 4, 5, 6, 7\}, \{2, 3, 5, 6, 7\}, \{2, 3, 4, 6, 7\}\};$ 3) $F = \{\{1, 2, 3, 5, 7\}, \{1, 2, 4, 5, 7\}, \{1, 3, 4, 5, 7\}, \{2, 3, 4, 6, 7\}, \{1, 2, 3, 6, 7\}, \{1, 2, 4, 6, 7\}, \{1, 3, 4, 6, 7\}, \{2, 3, 4, 6, 7\}, \{1, 2, 3, 5, 8\}, \{1, 2, 4, 6, 8\}, \{1, 3, 4, 6, 8\}, \{2, 3, 4, 6, 8\}, \{1, 2, 3, 5, 8\}, \{1, 2, 4, 5, 8\}, \{1, 3, 4, 5, 8\}, \{2, 3, 4, 5, 8\}\}.$

But no 5-unitrade corresponds to an antipodal 5-splitting.

$$\begin{split} F &= \\ (\cdot, \cdot, \cdot, *, \cdot, *, \cdot, *) & (\cdot, \cdot, \cdot, *, *, \cdot, \cdot, *) & (\cdot, \cdot, \cdot, *, *, \cdot, *, \cdot) & (\cdot, \cdot, \cdot, *, \cdot, *, \cdot, *) \\ (\cdot, \cdot, *, \cdot, \cdot, *, \cdot, *) & (\cdot, \cdot, *, \cdot, *, \cdot, *) & (\cdot, \cdot, *, \cdot, *, \cdot, *) & (\cdot, \cdot, *, \cdot, *, \cdot, *) \\ (\cdot, *, \cdot, \cdot, *, \cdot, *) & (\cdot, *, \cdot, *, \cdot, *) & (\cdot, *, \cdot, *, *, \cdot) & (\cdot, *, \cdot, \cdot, *, *, \cdot) \\ (*, \cdot, \cdot, \cdot, *, \cdot, *) & (*, \cdot, \cdot, *, \cdot, *) & (*, \cdot, \cdot, *, *, \cdot) & (*, \cdot, \cdot, \cdot, *, *, \cdot) \\ (*, \cdot, \cdot, \cdot, *, \cdot, *) & (*, \cdot, \cdot, *, \cdot, *) & (*, \cdot, \cdot, *, \cdot, *, \cdot) & (*, \cdot, \cdot, \cdot, *, *, \cdot) \end{split}$$