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Let QF be an n-dimensional Boolean hypercube. We consider a
splitting of Q7 into m-dimensional axis-aligned planes or m-faces. If
m = 1 then such splitting is equivalent to a perfect matching in
Boolean hypercube. Two m-faces are called parallel if they have the
same directions.

A splitting of Boolean hypercube is called an antipodal k-splitting if
it consists of exactly 2X (n — k)-faces and it does not contain
parallel non-antipodal faces.



The set of faces of QJ is in one-to-one correspondence with
n-tuples over alphabet {0, 1, *} and each m-face corresponds to a
word containing m symbols *.

For example, the set (0,0, x,1,%) = {(0,0,x,1,y) | x,y € {0,1}}
is a 2-face of Q3.

|
An A(n,2,w, t) design (A-design) is a collection of (n — t)-faces of
Q5 that perfectly covers all (n — w)-faces. If w = n then A-design
is a splitting of hypercube into (n — t)-faces.

SEE
The set {(0,0,0,x),(1,1,1,%),(1,0,%,0),(0,1,x*,1),

(0,%,1,0),(1,%,0,1),(x*,1,0,0),(*,0,1,1)}
is an A(4,2,4,3) design.




Proposition

If there exist an antipodal k;-splitting of Q,)* and an antipodal
ko-splitting of Q32 then there exists an antipodal (k; k2)-splitting of
lenz-

Proof. Let A be an antipodal k;-splitting of QJ* and B = By U By
be an antipodal ko-splitting of ng' where sets By and B; do not
contain parallel (n» — ko)-faces. Consider (a1, ..., an,) € A. For all
a;, if a; = 0 we replace a; by arbitrary b € By; if a; = 1 then we
replace a; by arbitrary b € By; if a; = * then we replace a; by
(*,...,%). The resulting set is an antipodal (kjk2)-splitting of
~——

na
le n2

Example

(0,1,%,1) = (000x, 011, %%, 111x); (000, 01 1, %%k, 01 % 1);
.. (10 % 0,01 % 1, % s sk, 0L % 1); (10 % 0, 111, % s, 01 % 1); ...




Let G be a r-uniform hypergraph on n vertices. For each e € E(G)
we consider two antipodal 2-colorings . : e — {0,1} and

Pe = ve ® 1. Let ® be a collection of e, e € E(G).

We say that a 2-coloring f : V(G) — {0, 1} avoids ® if f|. # e
and f|. # @, for each e € E(G).

A hypergraph G is called proper 2-colorable if there exists
2-coloring f avoiding ®q, where ®g consist of constant maps.

|
A hypergraph G is called 2-DP-colorable if for every collection ¢
there exists a 2-coloring f avoiding ®.
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A 2-coloring f of r-uniform hypergraph on n vertices is on-to-one
correspond to n-tuple over alphabet {0,1} (f € QF). Each
r-hyperedge corresponds to (n — r)-faces of QJ of some direction.
For example, r-hyperedge consisting of iith,...,i.th vertices
corresponds to faces (, ..., %, iy, .oy ¥,y % .eny iy ko, %),
A 2-coloring f avoids we = (*,...,1,0,...,%) iff f € pe. A
2-coloring f avoids @ if f & . Up, for all ¢, € ®.

Proposition

A non-2-DP-colorable r-uniform hypergraph with e edges and n
vertices is equivalent to a covering of QF by e pairs of antipodal
(n — r)-faces.

Corollary

Any k-uniform hypergraph with e < 2¥~1 edges is 2-DP-colorable.



Corollary

There exists a non-2-DP-colorable k-uniform hypergraph with 2k—1

edges if and only if there exists an antipodal k-splitting of QJ.

Corollary

There exist non-2-DP-colorable k-uniform hypergraphs with 2k—1

vertices where k = 3¢,



Consider a tetrahedron as a 3-uniform hypergraph. There exists a
proper 2-coloring of tetrahedron.

But tetrahedron is not 2-DP-colorable because there exists a
3-antipodal splitting of Q3.

¢ ={(0,0,0,%),(1,1,1,%),(1,0,%,0),(0,1,%,1),
(0,%,1,0),(1,%,0,1),(x,1,0,0),(x,0,1,1)}



There are no antipodal 5-splittings of QJ.

Corollary

Every 5-uniform hypergraph with 16 (or less) edges is
2-DP-colorable.




Definitions

A pair { Ty, T1} of disjoint collections of k-subsets (blocks) of a set
V, |V| = n, is called a bitrade (more specifically, a (k — 1) — (n, k)
bitrade) if every (k — 1)-subset of V is contained in the same
number of blocks of Ty and T;. Bitrades correspond to possible
difference between two Steiner designs. A collection U of k-subsets
(blocks) of a set V of cardinality n is called a k-unitrade if every
(k — 1)-subset of V is contained in each block of U even times. It is
easy to see that if {Tp, T1} is a bitrade then ToU T; is a unitrade.

Examples of unitrades

Ws = {{1,2,3,4,5},{2,3,4,5,6},{1,3,4,5,6},
{1,2,4,5,6},{1,2,3,5,6},{1,2,3,4,6}}

Rs =

{{2’ 37 47 5’ 6}’ {17 37 4’ 57 6}7 {17 27 4’ 57 6}7 {17 2’ 37 57 6}’ {17 27 37 4’ 6})
{2,3,4,5,7},{1,3,4,5,7},{1,2,4,5,7},{1,2,3,5,7},{1,2,3,4,7}}




An antipodal k-splitting of QJ corresponds to a k-unitrade with
cardinality 2¥~1 on n-element set.

Example of unitrade

{(0,0,0,%),(1,1,1,%),(1,0,%,0),(0,1,%,1),
(0,%,1,0),(1,%,0,1),(%,1,0,0),(*,0,1,1)}

=

{"'7’ }’{7’ ’}{7*’ v'}’{ ) "v'}

=

{1,2,3},{1,2,4},{1,3,4},{2,3,4}



characterization of 5-unitrades of cardinality 16

Theorem

Up to equivalence, all 5-unitrades of cardinality 16 are exhausted by
the following list:

1) disjoint unions of Ws and Rs;

2) E={{1,2,3,4,5},{2,3,4,5,6},{1,3,4,5,7},{1,2,4,5,7},
{1,2,3,5,8},{1,2,3,4,8},{2,3,5,7,8},{1,3,5,7,8},
{1,2,5,7,8},{2,3,4,7,8},{1,3,4,7,8},{1,2,4,7,8},
{3,4,5,6,7},{2,4,5,6,7},{2,3,5,6,7},{2,3,4,6,7}};

3) [F = {{1, 2,3,5, 7}, {l, 2,4, 5,7}, {1, 3,4,5, 7}, {2, 3,4,5,7},
{1,2,3,6,7},{1,2,4,6,7},{1,3,4,6,7},{2,3,4,6,7},
{1,2,3,6,8},{1,2,4,6,8},{1,3,4,6,8},{2,3,4,6,8},
{1,2,3,5,8},{1,2,4,5,8},{1,3,4,5,8},{2,3,4,5,8}}.

But no 5-unitrade corresponds to an antipodal 5-splitting.






