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1. Correlation Immunity and Dual Codes



Functions and Codes

Fq is a finite field, where q = pn, p is prime.

A function f : Fn
2 → F2 is called a Boolean function.

A set C ⊂ Fn
2 is called a binary code.

There is a one-to-one correspondence between Boolean functions
and binary codes: f −1(1) = C or f = 1C .

If q > 2 then functions f : Fn
q → Fq correspond to partitions

{f −1(a) : a ∈ Fq} of Fn
q into codes.



Correlation Immunity

An order of correlation immunity of f : Fn
q → Fq is equal to

maximum k = cor(f ) such that for every a ∈ Fq the cardinalities
|L ∩ f −1(a)| are the same for all (n − k)-dimensional face L of Fn

q.

cor(f ) = 1 cor(f ) = 2



Hamming Distance

The Hamming distance dH(x , y) between x = (x1, . . . , xn) and
y = (y1, . . . , yn) is the number of coordinates i where xi 6= yi . The
code distance d(C ) of code C ⊂ Fn

q is the minimum distance
between codewords d(C ) = min

x ,y∈C
dH(x , y).

Code C can correct up to d(C)−1
2 errors, and it can detect up to

d(C )− 1 errors.

d(C ) = 3 d(C ) = 2



Dual Code

For C ⊂ Fn
q the dual code is

C⊥ = {x ∈ Fn
q : x1y1 + · · ·+ xnyn = 0 ∀y ∈ C}. If C is a linear

code then (C⊥)⊥ = C .

C C⊥

Theorem If C is a linear code then d(C⊥) = cor(1C ) + 1 and
d(C ) = cor(1C⊥) + 1.



2. Sets of Functions as Codes



Set of Functions as a Code

Let F = {f : Fn
q → Fq} be a set of functions. Consider f as an

element of Fqn

q . Then F is a code in Fqn

q .

(1, 0, 0, 0, 0, 0, 1) (1, 0, 0, 1, 0, 1, 1, 0)



Algebraic Normal Form

Every Boolean function can be represented in the algebraic normal
form (ANF)

f (x1, . . . , xn) =
⊕
y∈Fn

2

Mf (y)xy1
1 · · · xyn

n ,

where x0 = 1, x1 = x , Mf : Fn
2 → F2 is the Möbius transform of f .

The weight wt(y) of y ∈ Fn
2 is the number of nonzero coordinates

of y . The algebraic degree of f is the maximum degree of the
monomials in ANF, i. e., deg(f ) = max

Mf (y)=1
wt(y).



Binary Reed–Muller Code

f1(x1, x2, x3) = 1 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3

f2(x1, x2, x3) = 1 + x1 + x2 + x3

RM(r , n) = {f : Fn
2 → F2 : deg(f ) ≤ r}.

Parameters (length, cardinality, code distance)= (2n, 2k , 2n−r ),

where k =
r∑

i=0

(n
i

)
is the number of monomials.



Kerdock Code

n is even.
F(n) is a set consisting of n-variable quadratic nondegenerate
forms f such that f1 + f2 is also nondegenerate for any
f1, f2 ∈ F(n).
K (n) = RM(1, n) + F(n) ⊂ RM(2, n).
A2(n) = RM(1, n) is the set of binary affine functions.

Parameters of K (n) are (2n, 22n, 2n−1 − 2
n
2
−1).

Example: f1(x) = x1x2 + x3x4 + x2x3, f2 = x1x3 + x1x4 + x2x4, f1,
f2 and f1 + f2 are nondegenerate quadratic forms.



Bent Functions

f : Fn
p → Fp is called a balanced function if |f −1(a)| = pn−1 for all

a ∈ Fp.
f : Fn

p → Fp is called a p-ary bent function if
Daf (x) = f (x + a)− f (x) is balanced for any a ∈ Fn

p\{0̄}.
A function f : Fn

p → Fp is called maximum nonlinear if
dH(f ,Ap(n)) = min

h∈Ap(n)
dH(f , h) is maximal.

Theorem(Rothaus(1975), V.Ryabov(2021)) For even n
1) every maximum nonlinear p-ary function is a bent function.
2) every binary bent function is maximum nonlinear.

Proposition Nondegenerate p-ary quadratic forms are bent
functions if n is even.



Planar and Alltop Functions

The function F : Fq → Fq is called planar if for any b ∈ Fq\{0}
the derivative DbF (x) = F (x + b)− F (x) is bijective on Fq.

A function F : Fq → Fq is called an Alltop function over Fq if, for
any a ∈ Fq\{0}, the derivative DaF (x) = F (x + a)− F (x) is a
planar function. Equivalently, for any a, b ∈ Fq\{0}, the expression

DbDaf (x) = f (x + a + b)− f (x + a)− f (x + b) + f (x)

is bijective on Fq.

Examples: f (x) = x2 is a planar function if q 6= 2t ;
f (x) = x3 is an Alltop function if q 6= 2t and q 6= 3t .

f : Fn
p → Fp is called p-ary Alltop function if the derivative

Daf (x) = f (x + a)− f (x) is a p-ary bent for any a ∈ Fn
p\{0̄}, i.e.,

for any a, b ∈ Fn
p\{0̄}, the second-order derivative DbDaf (x) is

balanced.

Proposition Let q = pn. Every coordinate function of Alltop
function over Fq is an p-ary Alltop function.



Generalized Kerdock Codes

A set of bent functions K = {f : Fn
p → Fp} is called the Kerdock

set if for any f1, f2 ∈ K the difference f1 − f2 is a bent function.

Theorem (Özbudak and P. (2025+)) If f is a p-ary Alltop
function then Kf = {Daf : a ∈ Fn

p, } is a Kerdock set.

Theorem (Özbudak and Pelen (2020)) Let f : Fn
p → Fp be a bent

function. Then the Hamming distance between f and any affine
function is not less than
(p − 1)(pn−1 − pn/2−1) if n is even;
(p − 1)pn−1 − p(n−1)/2 if n is odd.

Consider a set DK = K +Ap(n), where K is a Kerdock set.

Theorem (Özbudak and P. (2025+)) DK is a generalized p-ary
Kerdock code with parameters (pn, p2n+1, (p − 1)(pn−1 − p

n
2
−1))

for even n and (pn, p2n+1, (p − 1)pn−1 − p
n−1

2 ) for odd n.



3. Almost Perfect Nonlinear Functions and Linear
Codes



Parity-check Matrix

Consider a linear code CH = {x ∈ Fn
2 : Hx = 0̄} parity-check

matrix H of size k × n over Fn
2.

Rows of H belong to C⊥H .

Proposition If the sum of any s, 0 ≤ s < S , columns of H is not
equal to zero-vector then d(C ) ≥ S .

If H consists of 2k − 1 different nonzero binary columns with
length k then CH is the Hamming code with parameters
(n = 2k − 1, 2n−k , 3).

H =

(
0 1 1
1 0 1

)



Almost Perfect Nonlinear Functions

A function F : Fk
2 → Fk

2 is called an almost perfect nonlinear
(APN) if for any a ∈ Fk

2\{0̄} and b ∈ Fk
2 the equations

F (x) + F (x + a) = b have zero or two solutions x ∈ Fk
2 .

F is called an APN permutation if APN function F is bijective on
Fk

2 .

Consider matrix M of size 2k × (2k − 1) consists of columns(
x

F (x)

)
, where x ∈ Fk

2\{0̄}.

Theorem (Carlet, Charpin, Zinoviev (1998))
d(CM) = 5 if and only if F is an APN function.



Almost Perfect Nonlinear Functions

Fk
2 ∼ F2k

Proposition F (x) = x3 is an APN function; if k is odd then F is a
permutation.

Problem Are there exist APN permutations for even k > 6?

Proposition APN-permutation in k variables exists if and only if
there exist two Hamming codes C1 and C2 of length 2k − 1 such
that d(C1 ∩ C2) = 5.



Almost Perfect Nonlinear Functions

The Hamming distance between two functions is the number of
arguments where values of functions are differ.

Problem Are there exist a pair of APN functions at the Hamming
distance 1?

The code C of length 2k is said a doubled Hamming code if the
parity check matrix of C contains only two equal columns.

Proposition There exists a pair of APN functions at the Hamming
distance 1 if and only if there exists a linear code with parameters
(n = 2k , 2n−2k , 5) contained a doubled Hamming code.



The End


