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Boolean functions

F = {0, 1}. Fn is the n-dimensional Boolean hypercube.
〈Fn,⊕〉 is an n-dimensional vector space over F.
f : Fn → F is a Boolean function on n variables.

` : Fn → F is a linear function if
`(x) = 〈u, x〉 = u1x1 ⊕ u2x1 ⊕ · · · ⊕ unxn, u ∈ Fn.

The Walsh–Hadamard transform of f is

Wf (u) =
∑
x∈Fn

(−1)〈u,x〉⊕f (x).

{Wf (u)|u ∈ Fn} is the Walsh spectrum of f .

(−1)f : Fn → R
V = {G : Fn → R} is a 2n-dimensional vector space over R.
{(−1)〈u,x〉 : u ∈ Fn} is an orthogonal basis in V .



Boolean bent functions

Definition

A Boolean function f in n variables is said to be a bent function if
the Walsh spectrum of f consists of ±2n/2.

Definition

A Boolean function f in n variables is said to be a s-plateaued
function if the Walsh spectrum of f consists of ±2(n+s)/2 and 0.

Boolean bent functions exist if and only if n is even.
The Parseval identity

∑
u∈Fn

|Wf (u)|2 = 22n.

Proposition

For every s-plateaued function, a proportion of nonzero values of its
Walsh–Hadamard transform is equal to 1

2s .



Algebraic degree

Denote by wt(z) a number of units in z ∈ Fn. Every boolean
function f can be represented as a polynomial

f (x1, . . . , xn) =
⊕
y∈Fn

M[f ](y)xy1
1 · · · xyn

n ,

where x0 = 1, x1 = x , and M[f ] : Fn → F is the Möbius transform
of f . Note that M[M[f ]] = f for each boolean function. The degree
of this polynomial is called the algebraic degree of f .

Proposition

The algebraic degree of bent functions is not greater than n/2 if
n ≥ 4.



Known upper bounds on the number of bent functions

Let N (n, s) be the binary logarithm of the number of n-variable
s-plateaued Boolean functions.

Proposition

Since the algebraic degree of bent functions is bounded by n/2, we
have

N (n, 0) ≤ 1
2
· 2n +

1
2

(
n

n/2

)
.

Carlet, Klapper (2002) and Agievich (2020) slightly improved the
upper bounds, but asymptotically N (n, 0) remained the same.

Theorem (P., 2021)

N (n, 0) ≤ 3
8
· 2n + o(2n).



Main results

Denote by h Shannon’s entropy function, i.e.,
h(p) = −p log p − (1− p) log(1− p) for p ∈ (0, 1).
Since the Walsh–Hadamard transform is a bijection, N (n, s) is not
greater than the number of bits such that is sufficient to identify
Wf for an s-plateaued function f . Therefore, by Shannon’s theorem
we obtain inequality:

N (n, s) ≤ 2n
(

h(
1
2s )(1 + o(1)) +

1
2s

)
.



Main results

Denote by b(n, r) the cardinality of a ball Bn,r with radius r in Fn,
i.e., b(n, r) = |{x ∈ Fn : wt(x) ≤ r}|.

Theorem 1

N (n, s) ≤ (αb(n − 2, dn−s
2 e+ 1) + 2n−2(h( 1

2s ) + 1
2s ))(1 + o(1))

where s > 0 is fixed and n →∞.

Let Γ be a 2-dimensional face (axes-aligned plane) of the hypercube
and let f : Fn → F be an s-plateaued function. There exists a
non-degenerate affine transformation A and an affine function `
such that the s-plateaued function g = (f ◦ A)⊕ ` satisfies the
following conditions.
(a) The number of faces Γ⊕ y , y ∈ Fn, that contain an odd
number of zero values of g , is less than 2n−3.
(b) Among the faces Γ⊕ y , y ∈ Fn, that contain an even number
of zero values of g , not less than one fourth part contain four or
zero values 0.



Main results

(a) The number of faces Γ⊕ y , y ∈ Fn, that contain an odd
number of zero values of g , is less than 2n−3.
(b) Among the faces Γ⊕ y , y ∈ Fn, that contain an even number
of zero values of g , not less than one fourth part contain four or
zero values 0.
Let p0 be a probability of an even number of zero values in a
2-dimensional face and let p1 be a probability of an odd number of
zero values in a 2-dimensional face. Moreover, p′0 is the probability
of two zero value in a 2-dimensional face and p′0 < 3p0/4. How
many bits on average we need to find four values (−1)g(x) from
their sum in a 2-dimensional face? Under conditions (a) and (b)
from the corollary, it is sufficient
p′0 log2 6 + 2p1 ≤ 1 + 3

8 log2 6 = α ≈ 1.969 bits by Shannon’s
theorem.



Main results

Let N0(n, 1) be the binary logarithm of the number of n-variable
1-plateaued boolean functions which are obtained by a restriction of
(n + 1)-variable bent functions into hyperplanes.

Theorem 2

N0(n, 1) ≤ b(n − 2, n+1
2 )(α + 3

2)(1 + o(1)) as n →∞.



Main results

Theorem 3

N (n, 0) ≤ N0(n − 1, 1) + 2n−3(1 + o(1)) ≈ 11
322n(1 + o(1)) as

n →∞.

Proof. The restriction of a bent function into a hyperplane is a
1-plateaued function. We have counted these functions in Theorem
2. Then we count the number of 1-plateaued function in (n − 1)
variables corresponding to one n-variable bent function.

Propositions

1. The degree of n-variable s-plateaued functions is not greater
than n−s

2 + 1.
2. Suppose that f and g are n-variable boolean functions and
max{deg(f ), deg(g)} ≤ r . If f |Bn,r = g |Bn,r then f = g .



Lower bounds of the number of bent functions

Class of bent f. Asymptotics of log2 of cardinality

MM family log2 |M(n)| = n
2 · 2

n/2(1 + o(1))

completed MM family log2 |M#(n)| = n
2 · 2

n/2(1 + o(1))

C class log2 |C(n)| = n
2 · 2

n/2(1 + o(1))

D class log2 |D(n)| = n
2 · 2

n/2(1 + o(1))

Agievich class log2 |A(n)| = n
2 · 2

n/2(1 + o(1))

special subclass of PS log2 |PSap(n)| = 2n/2(1 + o(1))

GMM family log2 |K (n, 1)| = 3n
4 · 2n/2(1 + o(1))

Theorem (P., Taranenko, Tarannikov, 2023)

N (n, 0) ≥ 3n
4 · 2n/2(1 + o(1)).


