Upper bounds on the numbers of binary plateaued and bent functions

Vladimir N. Potapov

Sobolev Institute of Mathematics, Russia

Boolean Functions and their Applications, Voss, Norway, September 3-8, 2023

Boolean functions

 $\mathbb{F} = \{0, 1\}$. \mathbb{F}^n is the *n*-dimensional Boolean hypercube. $\langle \mathbb{F}^n, \oplus \rangle$ is an *n*-dimensional vector space over \mathbb{F} . $f : \mathbb{F}^n \to \mathbb{F}$ is a Boolean function on *n* variables.

 $\ell: \mathbb{F}^n \to \mathbb{F} \text{ is a linear function if} \\ \ell(x) = \langle u, x \rangle = u_1 x_1 \oplus u_2 x_1 \oplus \cdots \oplus u_n x_n, \ u \in \mathbb{F}^n.$

The Walsh–Hadamard transform of f is

$$W_f(u) = \sum_{x \in \mathbb{F}^n} (-1)^{\langle u, x \rangle \oplus f(x)}.$$

 $\{W_f(u)|u \in \mathbb{F}^n\}$ is the Walsh spectrum of f.

 $\begin{array}{l} (-1)^f : \mathbb{F}^n \to \mathbb{R} \\ V = \{ G : \mathbb{F}^n \to \mathbb{R} \} \text{ is a } 2^n \text{-dimensional vector space over } \mathbb{R}. \\ \{ (-1)^{\langle u, x \rangle} : u \in \mathbb{F}^n \} \text{ is an orthogonal basis in } V. \end{array}$

Definition

A Boolean function f in n variables is said to be a bent function if the Walsh spectrum of f consists of $\pm 2^{n/2}$.

Definition

A Boolean function f in n variables is said to be a *s*-plateaued function if the Walsh spectrum of f consists of $\pm 2^{(n+s)/2}$ and 0.

Boolean bent functions exist if and only if *n* is even. The Parseval identity $\sum_{u \in \mathbb{F}^n} |W_f(u)|^2 = 2^{2n}$.

Proposition

For every *s*-plateaued function, a proportion of nonzero values of its Walsh–Hadamard transform is equal to $\frac{1}{2^s}$.

Algebraic degree

Denote by wt(z) a number of units in $z \in \mathbb{F}^n$. Every boolean function f can be represented as a polynomial

$$f(x_1,\ldots,x_n)=\bigoplus_{y\in\mathbb{F}^n}M[f](y)x_1^{y_1}\cdots x_n^{y_n},$$

where $x^0 = 1, x^1 = x$, and $M[f] : \mathbb{F}^n \to \mathbb{F}$ is the Möbius transform of f. Note that M[M[f]] = f for each boolean function. The degree of this polynomial is called the algebraic degree of f.

Proposition

The algebraic degree of bent functions is not greater than n/2 if $n \ge 4$.

Known upper bounds on the number of bent functions

Let $\mathcal{N}(n, s)$ be the binary logarithm of the number of *n*-variable *s*-plateaued Boolean functions.

Proposition

Since the algebraic degree of bent functions is bounded by n/2, we have

$$\mathcal{N}(n,0) \leq \frac{1}{2} \cdot 2^n + \frac{1}{2} \binom{n}{n/2}.$$

Carlet, Klapper (2002) and Agievich (2020) slightly improved the upper bounds, but asymptotically $\mathcal{N}(n, 0)$ remained the same.

Theorem (P., 2021)

$$\mathcal{N}(n,0) \leq \frac{3}{8} \cdot 2^n + o(2^n).$$

Denote by *h* Shannon's entropy function, i.e., $h(p) = -p \log p - (1-p) \log(1-p)$ for $p \in (0,1)$. Since the Walsh–Hadamard transform is a bijection, $\mathcal{N}(n,s)$ is not greater than the number of bits such that is sufficient to identify W_f for an *s*-plateaued function *f*. Therefore, by Shannon's theorem we obtain inequality:

$$\mathcal{N}(n,s) \leq 2^n \left(h(rac{1}{2^s})(1+o(1))+rac{1}{2^s}\right).$$

Denote by b(n, r) the cardinality of a ball $B_{n,r}$ with radius r in \mathbb{F}^n , i.e., $b(n, r) = |\{x \in \mathbb{F}^n : wt(x) \le r\}|.$

Theorem 1

 $\mathcal{N}(n,s) \leq (\alpha b(n-2, \lceil \frac{n-s}{2} \rceil + 1) + 2^{n-2}(h(\frac{1}{2^s}) + \frac{1}{2^s}))(1+o(1))$ where s > 0 is fixed and $n \to \infty$.

Let Γ be a 2-dimensional face (axes-aligned plane) of the hypercube and let $f : \mathbb{F}^n \to \mathbb{F}$ be an *s*-plateaued function. There exists a non-degenerate affine transformation A and an affine function ℓ such that the *s*-plateaued function $g = (f \circ A) \oplus \ell$ satisfies the following conditions.

(a) The number of faces $\Gamma \oplus y$, $y \in \mathbb{F}^n$, that contain an odd number of zero values of g, is less than 2^{n-3} .

(b) Among the faces $\Gamma \oplus y$, $y \in \mathbb{F}^n$, that contain an even number of zero values of g, not less than one fourth part contain four or zero values 0.

(a) The number of faces $\Gamma \oplus y$, $y \in \mathbb{F}^n$, that contain an odd number of zero values of g, is less than 2^{n-3} .

(b) Among the faces $\Gamma \oplus y$, $y \in \mathbb{F}^n$, that contain an even number of zero values of g, not less than one fourth part contain four or zero values 0.

Let p_0 be a probability of an even number of zero values in a 2-dimensional face and let p_1 be a probability of an odd number of zero values in a 2-dimensional face. Moreover, p'_0 is the probability of two zero value in a 2-dimensional face and $p'_0 < 3p_0/4$. How many bits on average we need to find four values $(-1)^{g(x)}$ from their sum in a 2-dimensional face? Under conditions (a) and (b) from the corollary, it is sufficient

 $p_0'\log_26+2p_1\leq 1+\frac{3}{8}\log_26=\alpha\approx 1.969$ bits by Shannon's theorem.

Let $\mathcal{N}_0(n, 1)$ be the binary logarithm of the number of *n*-variable 1-plateaued boolean functions which are obtained by a restriction of (n + 1)-variable bent functions into hyperplanes.

Theorem 2

 $\mathcal{N}_0(n,1) \leq b(n-2,rac{n+1}{2})(lpha+rac{3}{2})(1+o(1)) ext{ as } n
ightarrow \infty.$

Theorem 3

$$\mathcal{N}(n,0) \leq \mathcal{N}_0(n-1,1) + 2^{n-3}(1+o(1)) \approx rac{11}{32}2^n(1+o(1))$$
 as $n o \infty.$

Proof. The restriction of a bent function into a hyperplane is a 1-plateaued function. We have counted these functions in Theorem 2. Then we count the number of 1-plateaued function in (n-1) variables corresponding to one *n*-variable bent function.

Propositions

1. The degree of *n*-variable *s*-plateaued functions is not greater than $\frac{n-s}{2} + 1$. 2. Suppose that *f* and *g* are *n*-variable boolean functions and $\max\{\deg(f), \deg(g)\} \le r$. If $f|_{B_{n,r}} = g|_{B_{n,r}}$ then f = g.

Lower bounds of the number of bent functions

Class of bent f.	Asymptotics of log ₂ of cardinality
MM family	$\log_2 \mathcal{M}(n) = \frac{n}{2} \cdot 2^{n/2} (1 + o(1))$
completed MM family	$\log_2 \mathcal{M}^{\#}(n) = rac{n}{2} \cdot 2^{n/2} (1 + o(1))$
${\cal C}$ class	$\log_2 \mathcal{C}(n) = \frac{n}{2} \cdot 2^{n/2} (1 + o(1))$
${\cal D}$ class	$\log_2 \mathcal{D}(n) = \frac{n}{2} \cdot 2^{n/2} (1 + o(1))$
Agievich class	$\log_2 A(n) = \frac{n}{2} \cdot 2^{n/2} (1 + o(1))$
special subclass of \mathcal{PS}	$\log_2 \mathcal{PS}_{ap}(n) = 2^{n/2}(1+o(1))$
GMM family	$\log_2 K(n,1) = \frac{3n}{4} \cdot 2^{n/2} (1+o(1))$

Theorem (P., Taranenko, Tarannikov, 2023)

 $\mathcal{N}(n,0) \geq \frac{3n}{4} \cdot 2^{n/2}(1+o(1)).$