Asymptotic lower bounds on the number of bent functions having odd many variables over finite fields of odd characteristic

Vladimir N. Potapov and Ferruh Özbudak

1 Sobolev Institute of Mathematics, Russia

2 Sabanci University and Middle East Technical University, Turkey

Boolean Functions and their Applications, Voss, Norway, September 3-8, 2023

Walsh Transform

Let p be a prime. Let \mathbb{F}_p be the finite field with p elements. For a function $f : \mathbb{F}_p^n \to \mathbb{F}_p$ and $\alpha \in \mathbb{F}_p^n$, let $\hat{f} : \mathbb{F}_{p^n} \to \mathbb{C}$ be the Walsh Transform of f at α defined as

$$\hat{f}(\alpha) = \sum_{x \in \mathbb{F}_p^n} e^{\frac{2\pi\sqrt{-1}}{p}(f(x) - \alpha \cdot x)},$$

where $\alpha \cdot x$ is the inner product $\alpha_1 x_1 + \cdots + \alpha_n x_n$ of $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $x = (x_1, \ldots, x_n)$. Let $0 \le m$ be an integer. We say that f is *m*-plateaued if

$$|\hat{f}(\alpha)| \in \{0, p^{\frac{n+m}{2}}\}$$

for all $\alpha \in \mathbb{F}_{p^n}$. Let $\operatorname{Supp}(\hat{f})$ denote the subset of \mathbb{F}_{p^n} consisting of α such that $\hat{f}(\alpha) \neq 0$.

- *f* is bent if and only if *f* is 0-plateaued.
- If f is m-plateaued, then $|\text{Supp}(\hat{f})| = p^{n-m}$.

Maiorana-McFarland family

Let $\mathcal{M}^{\sharp}(p, n)$ denote the family of completed Maiorana-McFarland bent functions in *n* variables over \mathbb{F}_p . Note that *n* is even if p = 2. The followings are well known:

Case *n* is even:

$$\ln \left| \mathcal{M}^{\sharp}(p,n) \right| = \frac{n}{2} p^{n/2} \ln(p) \left(1 + o(1) \right) \tag{1}$$

as $n \to \infty$ and *n* is even.

Case *n* is odd:

$$\ln \left| \mathcal{M}^{\sharp}(p,n) \right| = \frac{n-1}{2} p^{(n-1)/2} \ln(p) \left(1 + o(1) \right)$$
 (2)

as $n \to \infty$ and *n* is odd.

Here $o(\cdot)$ stands for the small o notation as $n \to \infty$.

Generalized MMF

Agievich (2008), Çeşmelioğlu and Meidl (2013), Baksova and Tarannikov (2020) Let $\{C_a\}_{a \in \mathbb{F}_p^{n_1}}$, $C_a \subseteq \mathbb{F}_p^{n_2}$ be an ordered partition of $\mathbb{F}_p^{n_2}$ into affine subspaces of dimensions $n_2 - n_1$ (OPAS). Let $\mathcal{F} = \{f_a\}_{a \in \mathbb{F}_p^{n_1}}$ be a family of plateaued functions such that the support of the Walsh spectrum of f_a is exactly C_a .

Generalized construction

Define a function f on n variables as a sum

$$f_{\mathcal{F}}(x,y) = \sum_{\boldsymbol{a} \in \mathbb{F}_p^{n_1}} f_{\boldsymbol{a}}(y) \mathbf{1}(x-\boldsymbol{a}),$$

where $x \in \mathbb{F}_p^{n_1}, y \in \mathbb{F}_p^{n_2}$, $a \in \mathbb{F}_p$, **1** is the indicator function of $\mathbb{F}_p^{n_2} \times \overline{0} \subset \mathbb{F}_p^{n_2} \times \mathbb{F}_p^{n_1}$, $n = n_1 + n_2$, $n_2 \ge n_1$, n and $n_2 - n_1$ are even, $\{C_a\}_{a \in \mathbb{F}_p^{n_1}}$ is OPAS, $f_a \in \mathcal{F}$.

Generalized MMF

Let $\mathcal{GMM}(p, n)$ denote the family of generalized Maiorana-McFarland bent functions in *n* variables over \mathbb{F}_p

Theorem (P., Taranenko, Tarannikov 2023)

If p = 2, then

$$\ln\left(|\mathcal{GMM}(p,n)|\right) \geq \frac{3}{4}np^{n/2}\ln(p)\left(1+o(1)\right)$$

as $n \to \infty$ and n is even.

Theorem 1

Let p an odd prime. There exists a sequence of odd integers n (moreover $n \equiv 3 \mod 4$), $n \to \infty$ and a corresponding sequence of families $\mathcal{F}_1(n)$ of generalized Maiorana-McFarland bent functions in n variables over \mathbb{F}_p satisfying

$$\ln (|\mathcal{F}_1(n)|) \geq \frac{np^n}{\sqrt{p}} \left(1 - \frac{1}{2(p^2 - 1)}\right) \ln(p)(1 + o(1))$$

as $n \to \infty$.

Remark

In Theorem 1, we improve the lower bound in (2) by increasing the coefficient of the main term $np^n \ln(p)$ from $\frac{1}{2\sqrt{p}}$ to

$$\frac{1}{\sqrt{p}} \left(1 - \frac{1}{2(p^2 - 1)} \right).$$
 Note that if $p = 3$, then
$$\frac{1}{\sqrt{p}} \left(1 - \frac{1}{2(p^2 - 1)} \right) = \frac{1}{\sqrt{3}} \frac{15}{16}.$$

Proof of Theorem1

Let $s \ge 1$ be an integer. Let n_1 be an integer such that $(s+1) \mid n_1$. Recall that a spread \mathbb{S} of dimension (s+1) in $\mathbb{F}_{p^{n_1}}$ is a collection of (s+1) dimensional subspaces of $\mathbb{F}_{p^{n_1}}$ such that any one dimensional subspace of $\mathbb{F}_{p^{n_1}}$ lies in exactly one of the elements of \mathbb{S} . Note that \mathbb{S} should have exactly $\frac{1+p+\dots+p^{n_1-1}}{1+p+\dots+p^s}$ many elements. As $n_1 \to \infty$ and $(s+1) \mid n_1$, Keevash et al. (2023) proved existence of $M_1(s, n_1)$ many spreads such that

$$\ln(M_1(s,n_1)) = p^{n_1-s-1}(n_1-1)s\ln(p)(1+o(1))$$

as $n_1 \to \infty$.

Using an hyperplane restriction of these spreads and using also more techniques from perfect matchings we obtain that the number $M_2(s, n_1)$ of ordered partitions of $\mathbb{F}_{p^{n_1+s}}$ into s dimensional affine subspaces satisfies

$$\ln (M_2(s, n_1)) \ge (p^{n_1} - p^{n_1 - s - 1} \delta(s)) (n_1 + s) s \ln(p) + p^{n_1} n_1 \ln(p) (1 + o(1))$$

as $n_1 \to \infty$. Here $\delta(s) = \frac{p^{s+1}}{(p^{s+1} - 1)}.$

Main results

Recall that \mathbb{F}_3 is the finite field with 3 elements.

Theorem 2

There exists a sequence of odd integers $n \to \infty$ and a corresponding sequence of families $\mathcal{F}_2(n)$ of generalized Maiorana-McFarland bent functions in n variables over \mathbb{F}_3 satisfying

$$\ln(|\mathcal{F}_2(n)|) \ge \frac{n3^n}{\sqrt{3}}\ln(3)(1+o(1))$$

as $n \to \infty$.

Proof of Theorem 2

Using results of Eberhald et al. (2022) we obtain exact number of transversal of Cayley table of \mathbb{F}_3^n . This implies that the number $M_4(m)$ of unordered partitions of \mathbb{F}_{3^m} into 1-dimensional subspaces satisfies

$$\ln(M_4(m) \ge 3^{m-1}m\ln(3)(1+o(1)))$$

as $m \to \infty$. Using also definition of transversal we obtain that for the number $M_5(n_1)$ of $2n_1 + 1$ many variable bent functions over \mathbb{F}_3 satisfies

$$\ln(M_5(n_1)) \ge 3^{n_1} 2n_1 \ln(3) - 2 \cdot 3^{n_1} (1 + o(1))$$

as $n_1 \to \infty$.