On the multidimensional permanent and *q*-ary designs

Vladimir N. Potapov

Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia

> Third International Castle Meeting on Coding Theory and Applications (3ICMCTA)

Let $Q_q = \{0, 1, \dots, q-1\}$ and $Q_{q*} = Q_q \cup \{*\}.$

 Q_q^n denotes the *n*-dimensional hypercube.

The set of faces of Q_q^n is in one-to-one correspondence with Q_{q*}^n and each *k*-dimensional face (*k*-face) corresponds to a codeword with *k* symbols *.

For example, the set $(0, *, 2, *) = \{(0, x, 2, y) \mid x, y \in Q_3\}$ is a 2-face of Q_3^4 .

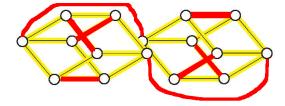
Definition

An H(n, q, w, t) design (H-design) is a collection of (n - w)-faces of the hypercube Q_q^n that perfectly pierce all (n - t)-faces.

Example

The set
$$\{(0,0,0,*), (1,1,1,*), (1,0,*,0), (0,1,*,1), (0,*,1,0), (1,*,0,1), (*,1,0,0), (*,0,1,1)\}$$

is an $H(n = 4, q = 2, w = 3, t = 2)$ design.

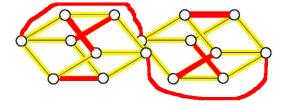


Definition

An A(n, q, w, t) design (A-design) is a collection of (n - t)-faces of Q_q^n that perfectly cover all (n - w)-faces.

Example

The set $\{(0,0,0,*), (1,1,1,*), (1,0,*,0), (0,1,*,1), (0,*,1,0), (1,*,0,1), (*,1,0,0), (*,0,1,1)\}$ is an A(n = 4, q = 2, w = 4, t = 3) design.



If q = 1 then an H(n, 1, w, t) design is just a Steiner system S(t, w, n). Here * is replaced by 0 and 0 is replaced by 1.

$$(*, 0, *, *, *, 0, 0) \Rightarrow (0, 1, 0, 0, 0, 1, 1) \ H(7, 1, 3, 2) \Rightarrow S(2, 3, 7)$$

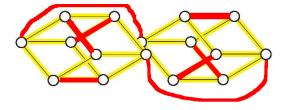
Moreover, an A(n, 1, w, t) design is just a Steiner system S(n - w, n - t, n). Here * is replaced by 1.

$$(*,0,*,0,0,*,0) \Rightarrow (1,0,1,0,0,1,0) \ A(7,1,5,4) \Rightarrow S(2,3,7)$$

A set of 1-faces is called a precise clique matching if it is both H(n, q, n-1, n-2) design and A(n, q, n, n-1) design. The precise clique matchings with $n = 2^{t+1}$ and $q = 2^t$ are constructed in

V. N. Potapov, Clique matchings in the *k*-ary *n*-dimensional cube, Siberian Math. J. 2011.

Example (when t = 1) from P. Hamburger, R. E. Pippert and W. D. Weakley, On a leverage problem in the hypercube, Networks. 1992



H. Hanani, On some tactical configurations, Canad. J. Math. 1963.

W. H. Mills, On the existence of H design, Proceedings of the Twenty-First Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congr. Numer. 1990.

T. Etzion, Optimal constant weight codes over Z_k and generalized designs, Discrete Math. 1997.

V. A. Zinov'ev and J. Rifa, On new completely regular *q*-ary codes, Probl. Inf. Transm. 2007.

L. Ji, An improvement on H design, J. Combin. Des. 2009.

Construction 1

Let $S \subset Q_{q*}^n$ be an H(n, q, w, t) design and let $R \subset Q_{q'*}^w$ be an H(w, q', w, w - 1) design (MDS code). Given $(a^1, \ldots, *, \ldots, a^i, \ldots, *, \ldots, a^w) \in S$ and $(b_1, \ldots, b_w) \in R$ arrange the codeword

$$((a^1,b_1),\ldots,*,\ldots,(a^i,b_i),\ldots,*,\ldots,(a^w,b_w))\in Q^n_{qq'*}.$$

Proposition 1

The set of all these codewords is an H(n, qq', w, t) design.

As mentioned above, H(2k, k, 2k - 1, 2k - 2) designs exist for $k = 2^t$, $t \ge 1$. Since MDS codes with distance 2 exist for all $q \ge 2$, we get

Corollary 1

For all $s, t \ge 1$ there exist $H(2^{t+1}, s2^t, 2^{t+1} - 1, 2^{t+1} - 2)$ designs.

Construction 2

Let $S \subset Q_{q*}^n$ be an A(n, q, w, t) design. For each pair of $(a^1, \ldots, *, \ldots, a^i, \ldots, *, \ldots, a^t) \in S$ and $(b_1, \ldots, b_t) \in Q_{q'}^w$ we form the codeword

$$((a^1,b_1),\ldots,*,\ldots,(a^i,b_i),\ldots,*,\ldots,(a^t,b_t))\in Q^n_{qq'*}.$$

Proposition 2

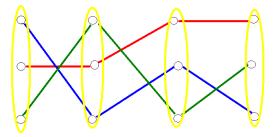
The set of all these codewords is an A(n, qq', w, t) design.

As mentioned above, each Steiner system S(n - w, n - t, n) is equivalent to an A(n, 1, w, t) design.

Corollary 2

If there exists a Steiner system S(n - w, n - t, n) then for each $q \ge 1$ there exists an A(n, q, w, t) design.

Consider a *k*-partite hypergraph G_k containing *N* vertices in each part C_i , i = 1, ..., k. Suppose that each *k*-edge of G_k consists of *k* vertices, with one vertex in each part of the hypergraph. A set of disjoint *k*-edges that matches all vertices of the hypergraph is called a perfect *k*-matching.



Let each part of the hypergraph be enumerated by 1, 2, ..., N. We define the adjacency array $M(G_k) = (a_{i_1...i_k})$ by the following rule: $a_{i_1...i_k} = 1$ if there exists a *k*-edge consisting of vertices with numbers i_1 from the first part, i_2 from the second part and so on and $a_{i_1...i_k} = 0$ otherwise. A *k*-element subset *I* of $\{1, ..., N\}^k$ is called a diagonal if every pair of elements of *I* is distinct in each position. We define the *k*- dimensional permanent of $M(G_k)$ as

$$\operatorname{per}_{k} M(G_{k}) = \sum_{I \in D_{N}} \prod_{(i_{1}, \dots, i_{k}) \in I} a_{i_{1} \dots i_{k}},$$

where D_N is the set of all diagonals.

It is well known that the permanent of the adjacency matrix of a bipartite graph is equal to the number of perfect matchings of the graph. The following statement is straightforward.

Proposition 3

The number of perfect k-matchings of a hypergraph G_k is equal to $per_k M(G_k)$.

Denote by $Q_q^n(t)$ the set of (n-t)-faces of Q_q^n . By definition each A(n, q, w, t) design is a subset of $Q_q^n(t)$ such that its faces do not intersect but cover $Q_q^n(w)$. We assume that there exists a partition $A = \{A_1, \ldots, A_m\}$, where $m = \binom{w}{t}$, of $Q_q^n(t)$ into A(n, q, w, t) designs. Define the *m*-part hypergraph *GA* with parts A_1, \ldots, A_m . A collection $\{\overline{a}_1, \ldots, \overline{a}_m\}$, where $\overline{a}_i \in Q_q^n(t)$, is a *m*-edge in *GA* if there exists $\overline{b} \in Q_q^n(w)$, $\overline{b} = \bigcap_{i=1}^m \overline{a}_i$.

Proposition 4

The number of different H(n, q, w, t) designs is equal to $per_m M(GA)$.

Proposition 5

The number of different A(n, q, w, t) designs is equal to $per_k M(GH)$.