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Let Qq = {0, 1, . . . , q − 1} and Qq∗ = Qq ∪ {∗}.
Qn

q denotes the n-dimensional hypercube.

The set of faces of Qn
q is in one-to-one correspondence with

Qn
q∗ and each k-dimensional face (k-face) corresponds to a

codeword with k symbols ∗.
For example, the set (0, ∗, 2, ∗) = {(0, x , 2, y) | x , y ∈ Q3} is a
2-face of Q4

3 .



Definition

An H(n, q, w , t) design (H-design) is a collection of
(n − w)-faces of the hypercube Qn

q that perfectly pierce all
(n − t)-faces.

Example

The set {(0, 0, 0, ∗), (1, 1, 1, ∗), (1, 0, ∗, 0), (0, 1, ∗, 1),
(0, ∗, 1, 0), (1, ∗, 0, 1), (∗, 1, 0, 0), (∗, 0, 1, 1)}
is an H(n = 4, q = 2, w = 3, t = 2) design.



Definition

An A(n, q, w , t) design (A-design) is a collection of
(n − t)-faces of Qn

q that perfectly cover all (n − w)-faces.

Example

The set {(0, 0, 0, ∗), (1, 1, 1, ∗), (1, 0, ∗, 0), (0, 1, ∗, 1),
(0, ∗, 1, 0), (1, ∗, 0, 1), (∗, 1, 0, 0), (∗, 0, 1, 1)}
is an A(n = 4, q = 2, w = 4, t = 3) design.



If q = 1 then an H(n, 1, w , t) design is just a Steiner system
S(t, w , n). Here ∗ is replaced by 0 and 0 is replaced by 1.

(∗, 0, ∗, ∗, ∗, 0, 0) ⇒ (0, 1, 0, 0, 0, 1, 1)

H(7, 1, 3, 2) ⇒ S(2, 3, 7)

Moreover, an A(n, 1, w , t) design is just a Steiner system
S(n − w , n − t, n). Here ∗ is replaced by 1.

(∗, 0, ∗, 0, 0, ∗, 0) ⇒ (1, 0, 1, 0, 0, 1, 0)

A(7, 1, 5, 4) ⇒ S(2, 3, 7)



A set of 1-faces is called a precise clique matching if it is both
H(n, q, n − 1, n − 2) design and A(n, q, n, n − 1) design. The
precise clique matchings with n = 2t+1 and q = 2t are
constructed in

V.N. Potapov, Clique matchings in the k-ary n-dimensional cube,

Siberian Math. J. 2011.
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Construction 1

Let S ⊂ Qn
q∗ be an H(n, q, w , t) design and let R ⊂ Qw

q′∗ be
an H(w , q′, w , w − 1) design (MDS code). Given
(a1, . . . , ∗, . . . , ai , . . . , ∗, . . . , aw) ∈ S and (b1, . . . , bw ) ∈ R
arrange the codeword

((a1, b1), . . . , ∗, . . . , (ai , bi), . . . , ∗, . . . , (aw , bw )) ∈ Qn
qq′∗.

Proposition 1

The set of all these codewords is an H(n, qq′, w , t) design.

As mentioned above, H(2k, k, 2k − 1, 2k − 2) designs exist for k = 2t , t ≥ 1.

Since MDS codes with distance 2 exist for all q ≥ 2, we get

Corollary 1

For all s, t ≥ 1 there exist H(2t+1, s2t , 2t+1 − 1, 2t+1 − 2)
designs.



Construction 2

Let S ⊂ Qn
q∗ be an A(n, q, w , t) design. For each pair of

(a1, . . . , ∗, . . . , ai , . . . , ∗, . . . , at) ∈ S and (b1, . . . , bt) ∈ Qw
q′

we form the codeword

((a1, b1), . . . , ∗, . . . , (ai , bi), . . . , ∗, . . . , (at , bt)) ∈ Qn
qq′∗.

Proposition 2

The set of all these codewords is an A(n, qq′, w , t) design.

As mentioned above, each Steiner system S(n− w , n− t, n) is equivalent to an

A(n, 1, w , t) design.

Corollary 2

If there exists a Steiner system S(n − w , n − t, n) then for
each q ≥ 1 there exists an A(n, q, w , t) design.



Consider a k-partite hypergraph Gk containing N vertices in
each part Ci , i = 1, . . . , k . Suppose that each k-edge of Gk

consists of k vertices, with one vertex in each part of the
hypergraph. A set of disjoint k-edges that matches all vertices
of the hypergraph is called a perfect k-matching.



Let each part of the hypergraph be enumerated by 1, 2, . . . , N .
We define the adjacency array M(Gk) = (ai1...ik ) by the
following rule: ai1...ik = 1 if there exists a k-edge consisting of
vertices with numbers i1 from the first part, i2 from the second
part and so on and ai1...ik = 0 otherwise. A k-element subset I
of {1, . . . , N}k is called a diagonal if every pair of elements of
I is distinct in each position. We define the k- dimensional
permanent of M(Gk) as

perkM(Gk) =
∑
I∈DN

∏
(i1,...,ik )∈I

ai1...ik ,

where DN is the set of all diagonals.



It is well known that the permanent of the adjacency matrix of
a bipartite graph is equal to the number of perfect matchings
of the graph. The following statement is straightforward.

Proposition 3

The number of perfect k-matchings of a hypergraph Gk is
equal to perkM(Gk).



Denote by Qn
q (t) the set of (n − t)-faces of Qn

q . By definition
each A(n, q, w , t) design is a subset of Qn

q (t) such that its
faces do not intersect but cover Qn

q (w). We assume that there

exists a partition A = {A1, . . . , Am}, where m =
(
w
t

)
, of Qn

q (t)
into A(n, q, w , t) designs. Define the m-part hypergraph GA
with parts A1, . . . , Am. A collection {a1, . . . , am}, where
ai ∈ Qn

q (t), is a m-edge in GA if there exists b ∈ Qn
q (w),

b =
⋂m

i=1 ai .

Proposition 4

The number of different H(n, q, w , t) designs is equal to
permM(GA).

Proposition 5

The number of different A(n, q, w , t) designs is equal to
perkM(GH).


