Constructions of bent functions and their number

Vladimir N. Potapov

Novosibirsk State University, Russia

Colloquia at Institute of Applied Mathematics, October 18, 2022

Boolean functions

 $\mathbb{F}_2 = \{0, 1\}. \mathbb{F}_2^n \text{ is the } n\text{-dimensional Boolean hypercube.} \\ \langle \mathbb{F}_2^n, \oplus \rangle \text{ is an } n\text{-dimensional vector space over } \mathbb{F}_2. \\ f : \mathbb{F}_2^n \to \mathbb{F}_2 \text{ is a Boolean function on } n \text{ variables.} \end{cases}$

 $\ell: \mathbb{F}_2^n \to \mathbb{F}_2 \text{ is a linear function if} \\ \ell(x) = \langle u, x \rangle = u_1 x_1 \oplus u_2 x_1 \oplus \cdots \oplus u_n x_n, \ u \in \mathbb{F}_2^n.$

The Walsh–Hadamard transform of f is

$$W_f(u) = \sum_{x \in \mathbb{F}_2^n} (-1)^{\langle u, x \rangle \oplus f(x)}.$$

 $\{W_f(u)|u \in \mathbb{F}_2^n\}$ is the Walsh spectrum of f.

 $\begin{aligned} &(-1)^f: \mathbb{F}_2^n \to \mathbb{R} \\ &V = \{G: \mathbb{F}_2^n \to \mathbb{R}\} \text{ is a } 2^n \text{-dimensional vector space over } \mathbb{R}. \\ &\{(-1)^{\langle u, x \rangle}: u \in \mathbb{F}_2^n\} \text{ is an orthogonal basis in } V. \end{aligned}$

Boolean bent functions

The Parseval identity
$$\sum_{u \in \mathbb{F}_2^n} |W_f(u)|^2 = 2^{2n}$$
.

Definition

A Boolean function f on n variables is said to be a bent function if the Walsh spectrum of f consists of $\pm 2^{n/2}$.

Bent functions exist if and only if n is even.

S. Mesnager, *Bent Functions: Fundamentals and Results*. Springer, 2016.

Nonlinearity

The Hamming distance $d_H(f,g)$ between two functions f and g is the number of arguments on which they differ. Denote by A_n the set of affine functions $f : \mathbb{F}_2^n \to \mathbb{F}_2$. The distance between a function f and a set of functions A is the minimum distance between f and any function $g \in A$. The nonlinearity nl(f) is the distance between f and A_n . The nonlinearity of a Boolean function f is connected to its Walsh spectrum

$$nl(f) = 2^{n-1} - 2^{-1} \max_{u \in \mathbb{F}_2^n} |W_f(u)|.$$
 (1)

$$nl(f) = 2^{n-1} - 2^{-1} \max_{u \in \mathbb{F}_2^n} |W_f(u)|. \quad (1)$$

Proof. Let
$$g(x) = \langle u, x \rangle$$
.
 $W_f(u) = \sum_{x \in \mathbb{F}_2^n} (-1)^{\langle u, x \rangle \oplus f(x)} =$
 $= |\{x \in \mathbb{F}_2^n : f(x) = g(x)\}| - |\{x \in \mathbb{F}_2^n : f(x) \neq g(x)\}| =$
 $= 2^n - 2|\{x \in \mathbb{F}_2^n : f(x) \neq g(x)\}| = 2^n - 2d_H(f, g).$
Then $d_H(f, g) = 2^{n-1} - 2^{-1}W_f(u).$

Let
$$g(x) = \langle u, x \rangle \oplus 1$$
.
 $W_f(u) = 2^n - 2|\{x \in \mathbb{F}_2^n : f(x) \neq g(x) \oplus 1\}| =$
 $= 2^n - 2(2^n - |\{x \in \mathbb{F}_2^n : f(x) \neq g(x)\}|) = -2^n + 2d_H(f,g).$
Then $d_H(f,g) = 2^{n-1} - 2^{-1}(-W_f(u)).$

Nonlinearity and bent functions

$$nl(f) = 2^{n-1} - 2^{-1} \max_{u \in \mathbb{F}_2^n} |W_f(u)|.$$
 (1)

Theorem

A Boolean function f on even variables has maximal nonlinearity iff it is a bent function.

Proof. By the Parseval identity, $\max_{u \in \mathbb{F}_2^n} |W_f(u)| \ge 2^{n/2} \text{ for every } f.$ Then $nl(f) \le 2^{n-1} - 2^{\frac{n}{2}-1}.$ $(\Rightarrow) \text{ If } nl(f) = 2^{n-1} - 2^{\frac{n}{2}-1}, \text{ then } |W_f(u)| \le 2^{n/2} \text{ for every } u. \text{ By the Parseval identity } |W_f(u)| = 2^{n/2} \text{ for every } u.$ $(\Leftarrow) \text{ If } f \text{ is a bent function, then } nl(f) = 2^{n-1} - 2^{\frac{n}{2}-1} \text{ by (1)}.$

Ternary case

A function $f : \mathbb{F}_p^n \to \mathbb{F}_p$ is called a *p*-ary bent function if and only if $|W_f(y)|$ does not depend on $y \in \mathbb{F}_p^n$.

Theorem

1) For every $f : \mathbb{F}_3^n \to \mathbb{F}_3$ it holds $nl(f) \le 2 \cdot 3^{n-1} - 3^{\frac{n}{2}-1}$; 2) $nl(f) = 2 \cdot 3^{n-1} - 3^{\frac{n}{2}-1}$ if and only if f is a ternary bent function, n is even and $W_f(y) = -3^{n/2}e^{2\pi a i/3}$, $a \in \mathbb{F}_3$, for each $y \in \mathbb{F}_3^n$.

Potapov, V.N. On q-ary bent and plateaued functions // Des. Codes Cryptogr. 2020

Maiorana-McFarland construction

Let ψ be a Boolean function on n variables and let π be a permutation of \mathbb{F}_2^n .

Maiorana-McFarland family of bent functions (1973):

$$f_{\psi,\pi}(x,y) = f(x_1,\ldots,x_n,y_1,\ldots,y_n) = \psi(x) \oplus \langle \pi(x),y \rangle.$$

Proposition

 $f_{\psi,\pi}$ is a bent function.

Proof.

$$W_{f}(u, v) = \sum_{x \in \mathbb{F}_{2}^{n}} \sum_{y \in \mathbb{F}_{2}^{n}} (-1)^{\langle u, x \rangle \oplus \langle v, y \rangle \oplus f(x, y)} =$$

$$= \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{\langle u, x \rangle \oplus \psi(x)} \left(\sum_{y \in \mathbb{F}_{2}^{n}} (-1)^{\langle v \oplus \pi(x), y \rangle} \right) =$$

$$2^{n} \sum_{x:\pi(x)=v} (-1)^{\langle u, x \rangle \oplus \psi(x)}.$$

Example

Let $q: \mathbb{F}_2^{2n} \to \mathbb{F}_2$ be a quadratic function

$$q(x,y) = \langle x,y \rangle = x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n.$$

 π is identity permutation, $\psi={\rm 0}.$

 $q(x_1, x_2, y_1, y_2) = x_1y_1 \oplus x_2y_2, \ nl(q) = 6.$

A collection $S = \{S_1, \ldots, S_M\}$ of k-dimensional linear spaces $S_i \subseteq \mathbb{F}_2^n$, is called a partial k-spread if each $x \in \mathbb{F}_2^n \setminus \{\overline{0}\}$ belongs to no more than one S_i .

A partial spread is a spread if the union of all its elements equals \mathbb{F}_2^n .

Dillon's \mathcal{PS}^- family of bent functions (1975): Let S be a partial *n*-spread in \mathbb{F}_2^{2n} of size $M = 2^{n-1}$. Let f_S be a characteristic function of $\bigcup_{i=1}^M S_i \setminus \{\overline{0}\}$.

Proposition

 $f_{\mathcal{S}}$ is a bent function.

 $S^{\perp} = \{u : \langle u, x \rangle = 0, \forall x \in S\}$. Note that if $S_i \cap S_j = \overline{0}$ then $S_i^{\perp} \cap S_j^{\perp} = \overline{0}$ for all *n*-dimensional subspaces S_i and S_j of \mathbb{F}_2^{2n} .

Constructions

Proof.

$$(-1)^{f_{\mathcal{S}}} = \mathbf{1} + 2M\mathbf{1}_{\overline{0}} - 2\sum_{i}\mathbf{1}_{S_{i}}.$$

$$W_{f_{\mathcal{S}}}(u) = \sum_{x \in \mathbb{F}_{2}^{2n}} (-1)^{\langle u, x \rangle} (\mathbf{1} + 2M\mathbf{1}_{\overline{0}} - 2\sum_{i}\mathbf{1}_{S_{i}})(x).$$

$$\sum_{x \in \mathbb{F}_2^{2n}} \mathbf{1}_{\mathcal{S}}(x) (-1)^{\langle u, x \rangle} = \sum_{x \in \mathcal{S}} (-1)^{\langle u, x \rangle} = \begin{cases} 2^n, \text{ if } u \in \mathcal{S}^{\perp}; \\ 0, \text{ if } u \notin \mathcal{S}^{\perp}. \end{cases}$$

$$\sum_{x\in\mathbb{F}_2^{2^n}}(-1)^{\langle u,x\rangle}(1+2M\mathbf{1}_{\overline{0}})=2^{2^n}\mathbf{1}_{\overline{0}}+2M\mathbf{1}.$$

$$W_{f_{\mathcal{S}}}(u) = \begin{cases} 2^{2n} + 2M - 2M2^{n} = 2^{n}, \text{ if } u = \overline{0}; \\ 2M - 2^{n+1} = -2^{n}, \text{ if } u \in \bigcup_{i} S_{i}^{\perp}; \\ 2M = 2^{n}, \text{ if } u \notin \bigcup_{i} S_{i}^{\perp}. \end{cases}$$

Boolean function f is called a plateaued function iff $|W_f(u)| \in \{0, \mu\}$ for each $u \in \mathbb{F}_2^n$.

The support of the Walsh spectrum is the set $\{u : W_f(u) \neq 0\}$. Let $\{C_a\}_{a \in \mathbb{F}_2^{n_1}}, C_a \subseteq \mathbb{F}_2^{n_2}$ be an ordered partition of $\mathbb{F}_2^{n_2}$ into affine subspaces of dimensions $n_2 - n_1$ (OPAS). Let $\mathcal{F} = \{f_a\}_{a \in \mathbb{F}_2^{n_1}}$ be a family of plateaued functions such that the support of the Walsh spectrum of f_a is exactly C_a .

Constructions

Agievich (2008), Çeşmelioğlu and Meidl (2013), Baksova and Tarannikov (2020)

Construction (K)

Define a Boolean function f on n variables as a Boolean sum

$$f_{\mathcal{F}}(x,y) = \bigoplus_{a \in \mathbb{F}_2^{n_1}} f_a(y) x^a,$$

where $x \in \mathbb{F}_2^{n_1}$, $y \in \mathbb{F}_2^{n_2}$, $a \in \mathbb{F}_2$, $x^a = x_1^{a_1} \cdots x_{n_1}^{a_{n_1}}$, $x_i^1 = x_i$ and $x_i^0 = x_i \oplus 1$

here $n = n_1 + n_2$, $n_2 \ge n_1$, n and $n_2 - n_1$ are even, $\{C_a\}_{a \in \mathbb{F}_2^{n_1}}$ is OPAS, $f_a \in \mathcal{F}$.

Proposition

 $f_{\mathcal{F}}$ is a bent function.

How many bent functions exist?

Class of bent f.	Asymptotics of log ₂ of cardinality
MM family	$\log_2 \mathcal{M}(n) = \frac{n}{2} \cdot 2^{n/2} (1 + o(1))$
completed MM family	$\log_2 \mathcal{M}^{\#}(n) = \frac{n}{2} \cdot 2^{n/2} (1 + o(1))$
${\cal C}$ class	$\log_2 \mathcal{C}(n) = \frac{n}{2} \cdot 2^{n/2} (1 + o(1))$
${\cal D}$ class	$\log_2 \mathcal{D}(n) = \frac{n}{2} \cdot 2^{n/2} (1 + o(1))$
Agievich class	$\log_2 A(n) = \frac{n}{2} \cdot 2^{n/2} (1 + o(1))$
special subclass of \mathcal{PS}	$\log_2 \mathcal{PS}_{ap}(n) = 2^{n/2}(1+o(1))$
$\mathcal{P}\mathrm{artial}\;\mathcal{S}\mathrm{pread}\;family$	$\log_2 \mathcal{PS}(n) \leq \frac{n^2}{8} \cdot 2^{n/2}(1+o(1))$
Construction (K)	$\log_2 K(n,1) = \frac{3n}{4} \cdot 2^{n/2} (1+o(1))$

Theorem (P., Taranenko, Tarannikov, 2022)

The logarithm of the number of bent function on *n* variables is not less than $\frac{3n}{4} \cdot 2^{n/2}(1 + o(1))$.

The number of bent functions constructed by (K)

Let b_m be the number of bent functions on m variables. Let $n_1 = n/2 - k$, $n_2 = n/2 + k$, where $k \in \mathbb{N}$, $k \ge 1$.

$$K(n,k)=(b_{2k})^{2^{n_1}}\cdot\widetilde{N}_{n_2}^{2k},$$

where $\widetilde{N}_{n_2}^{2k}$ is the number of OPAS.

Proposition

$$\log_2 \widetilde{N}_{n_2}^{2k} \leq \frac{(2k+1)n}{2^{k+1}} \cdot 2^{n/2} + o(n2^{n/2}).$$

Corollary

$$\log_2 K(n,k) \leq \frac{(2k+1)n}{2^{k+1}} \cdot 2^{n/2} + o(n2^{n/2}).$$

This number is maximal when k = 1.

A transversal in a latin hypercube Q of order n is a collection of n entries hitting each hyperplane and each symbol exactly once.

The number of bent functions constructed by (K)

Let Q_m be the 3-dimensional latin hypercube of order 2^m such that

$$q_{\alpha_1,\alpha_2,\alpha_3} = \alpha_4 \Leftrightarrow \alpha_1 \oplus \cdots \oplus \alpha_4 = \overline{0}.$$

 Q_m is the Cayley table of a 3-ary iterated group Z_2^m . Let T_m be the number of transversals in Q_m .

Theorem (Eberhard, 2017+)

$$T_m = (1 + o(1)) rac{2^m!^3}{2^{m(2^m-1)}}.$$

Proposition (P., Taranenko, Tarannikov, 2022)

The number N_m of unordered partitions of \mathbb{F}_2^m into 2-dimensional affine subspaces is not less than T_{m-2} :

$$\log_2 N_m \geq \log_2 T_{m-2} \geq \frac{m}{2} \cdot 2^m + c_1 \cdot 2^m + o(2^m).$$

Let \widetilde{N}_m^i be the number of ordered partitions of \mathbb{F}_2^m into *i*-dimensional affine subspaces. Then

$$\widetilde{N}_m^i = 2^{m-i}! \cdot N_m^i.$$

k = 1, i = 2, m = n.

Corollary

$$\log_2 |K(n,1)| = \frac{3n}{4} \cdot 2^{n/2} (1+o(1)).$$

Proposition

Since the algebraic degree of bent functions is bounded by n/2, we have

$$\log_2 b_n \leq \frac{1}{2} \cdot 2^n + \frac{1}{2} \binom{n}{n/2}.$$

Carlet, Klapper (2002) and Agievich (2020) slightly improved the upper bounds, but asymptotically $\log_2 b_n$ remained the same.

Theorem (P., 2021)

$$\log_2 b_n \leq \frac{3}{8} \cdot 2^n + o(2^n).$$

Proposition

Let
$$f$$
 be a Boolean bent function. Then

$$\sum_{x \in \mathbb{F}_2^n} (-1)^{f(x)} (-1)^{f(x \oplus a)} = 0 \text{ for each } a \in \mathbb{F}_2^n \setminus \{\overline{0}\}.$$

Define matrix H of size $2^n \times 2^n$ by equation $H_{xy} = (-1)^{f(x \oplus y)}$.

Proposition

H is the Hadamard matrix.

Let G be a finite abelian group of order v. A subset D of G of cardinality k is called (v, k, λ) -difference set in G if every element $g \in G$, different from the identity, can be written as $d_1 - d_2$, $d_1, d_2 \in D$, in exactly λ different ways.

For every
$$f : \mathbb{F}_2^n \to \mathbb{F}_2$$
 define $D_f = \{x \in \mathbb{F}_2^n : f(x) = 1\}$.

Theorem (Dillon)

f is a bent function iff D_f is a $(2^n, 2^{n-1} \pm 2^{n/2-1}, 2^{n-2} \pm 2^{n/2-1})$ -difference set in \mathbb{F}_2^n .

A coloring f of a graph G = (V, E) is called perfect if the collections of vertices adjacent to the vertices of the same color have identical color composition.

For every color *i* and all $x, y \in V(G)$

$$f(x)=f(y)\Rightarrow |f^{-1}(i)\in S(x)|=|f^{-1}(i)\in S(y)|,$$

where S(x) is the set of vertices adjacent to x.

The set $\{f^{-1}(i)\}_{i \in I}$ is called equitable partition of graph *G*.

The matrix $P = (p_{ij})$ whose entry p_{ij} equals the number of vertices of color *j* adjacent to some vertex of color *i* is called the parameter matrix of the perfect coloring.

Connections between bent functions and other structures

Perfect coloring of the Petersen graph.

 $P = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix}$

Grassmann graphs are a special class of graphs defined from systems of subspaces. The vertices of the Grassmann graph $J_q(n, k)$ are the k-dimensional subspaces of an n-dimensional vector space over a finite field of order q; two vertices are adjacent when their intersection is (k - 1)-dimensional.

Theorem (Avgustinovich, P., 2020)

f is a bent function of weight $2^{n-1} + 2^{n/2-1}$ iff it is a perfect coloring of the graph $J_2(n,2)$ with parameter matrix

(3	$(2^{n-3}-2^{(n/2)-2}-1)$	$3 \cdot 2^{n-2} - 3$	$3(2^{n-3}+2^{(n/2)-2})$	0)
	$2^{n-2} - 2^{(n/2)-1}$	$5 \cdot 2^{n-3} - 2^{(n/2)-2} - 5$	$2^{n-1} + 2^{(n/2)-1}$	$2^{n-3} + 2^{(n/2)-2} - 1$
	$2^{n-3} - 2^{(n/2)-2}$	$2^{n-1} - 2^{(n/2)-1} - 1$	$5 \cdot 2^{n-3} + 2^{(n/2)-2} - 3$	$2^{n-2} + 2^{(n/2)-1} - 2$
	0	$3(2^{n-3}-2^{(n/2)-2})$	$3 \cdot 2^{n-2}$	$3(2^{n-3}+2^{(n/2)-2}-2))$