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Boolean functions

F2 = {0, 1}. Fn
2 is the n-dimensional Boolean hypercube.

〈Fn
2,⊕〉 is an n-dimensional vector space over F2.

f : Fn
2 → F2 is a Boolean function on n variables.

` : Fn
2 → F2 is a linear function if

`(x) = 〈u, x〉 = u1x1 ⊕ u2x1 ⊕ · · · ⊕ unxn, u ∈ Fn
2.

The Walsh–Hadamard transform of f is

Wf (u) =
∑
x∈Fn

2

(−1)〈u,x〉⊕f (x).

{Wf (u)|u ∈ Fn
2} is the Walsh spectrum of f .

(−1)f : Fn
2 → R

V = {G : Fn
2 → R} is a 2n-dimensional vector space over R.

{(−1)〈u,x〉 : u ∈ Fn
2} is an orthogonal basis in V .



Boolean bent functions

The Parseval identity
∑

u∈Fn
2

|Wf (u)|2 = 22n.

Definition

A Boolean function f on n variables is said to be a bent function if
the Walsh spectrum of f consists of ±2n/2.

Bent functions exist if and only if n is even.

S. Mesnager, Bent Functions: Fundamentals and Results. Springer,
2016.



Nonlinearity

The Hamming distance dH(f , g) between two functions f and g is
the number of arguments on which they differ.
Denote by An the set of affine functions f : Fn

2 → F2. The distance
between a function f and a set of functions A is the minimum
distance between f and any function g ∈ A.
The nonlinearity nl(f ) is the distance between f and An.
The nonlinearity of a Boolean function f is connected to its Walsh
spectrum

nl(f ) = 2n−1 − 2−1 max
u∈Fn

2

|Wf (u)|. (1)



Nonlinearity

nl(f ) = 2n−1 − 2−1 max
u∈Fn

2

|Wf (u)|. (1)

Proof. Let g(x) = 〈u, x〉.
Wf (u) =

∑
x∈Fn

2

(−1)〈u,x〉⊕f (x) =

= |{x ∈ Fn
2 : f (x) = g(x)}| − |{x ∈ Fn

2 : f (x) 6= g(x)}| =
= 2n − 2|{x ∈ Fn

2 : f (x) 6= g(x)}| = 2n − 2dH(f , g).
Then dH(f , g) = 2n−1 − 2−1Wf (u).

Let g(x) = 〈u, x〉 ⊕ 1.
Wf (u) = 2n − 2|{x ∈ Fn

2 : f (x) 6= g(x)⊕ 1}| =
= 2n − 2(2n − |{x ∈ Fn

2 : f (x) 6= g(x)}|) = −2n + 2dH(f , g).
Then dH(f , g) = 2n−1 − 2−1(−Wf (u)).



Nonlinearity and bent functions

nl(f ) = 2n−1 − 2−1 max
u∈Fn

2

|Wf (u)|. (1)

Theorem

A Boolean function f on even variables has maximal nonlinearity iff
it is a bent function.

Proof. By the Parseval identity, max
u∈Fn

2

|Wf (u)| ≥ 2n/2 for every f .

Then
nl(f ) ≤ 2n−1 − 2

n
2−1.

(⇒) If nl(f ) = 2n−1 − 2
n
2−1, then |Wf (u)| ≤ 2n/2 for every u. By

the Parseval identity |Wf (u)| = 2n/2 for every u.
(⇐) If f is a bent function, then nl(f ) = 2n−1 − 2

n
2−1 by (1).



Ternary case

A function f : Fn
p → Fp is called a p-ary bent function if and only if

|Wf (y)| does not depend on y ∈ Fn
p.

Theorem

1) For every f : Fn
3 → F3 it holds nl(f ) ≤ 2 · 3n−1 − 3

n
2−1;

2) nl(f ) = 2 ·3n−1−3
n
2−1 if and only if f is a ternary bent function,

n is even and Wf (y) = −3n/2e2πai/3, a ∈ F3, for each y ∈ Fn
3.

Potapov, V.N. On q-ary bent and plateaued functions // Des.
Codes Cryptogr. 2020



Maiorana–McFarland construction

Let ψ be a Boolean function on n variables and let π be a
permutation of Fn

2.

Maiorana–McFarland family of bent functions (1973):

fψ,π(x , y) = f (x1, . . . , xn, y1, . . . , yn) = ψ(x)⊕ 〈π(x), y〉.

Proposition

fψ,π is a bent function.

Proof.
Wf (u, v) =

∑
x∈Fn

2

∑
y∈Fn

2

(−1)〈u,x〉⊕〈v ,y〉⊕f (x ,y) =

=
∑

x∈Fn
2

(−1)〈u,x〉⊕ψ(x)

( ∑
y∈Fn

2

(−1)〈v⊕π(x),y〉

)
=

2n ∑
x :π(x)=v

(−1)〈u,x〉⊕ψ(x).



Example

Let q : F2n
2 → F2 be a quadratic function

q(x , y) = 〈x , y〉 = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn.

π is identity permutation, ψ = 0.

q(x1, x2, y1, y2) = x1y1 ⊕ x2y2, nl(q) = 6.



Constructions

Definition

A collection S = {S1, . . . , SM} of k-dimensional linear spaces
Si ⊆ Fn

2, is called a partial k-spread if each x ∈ Fn
2 \ {0} belongs

to no more than one Si .

A partial spread is a spread if the union of all its elements equals Fn
2.

Dillon’s PS− family of bent functions (1975):
Let S be a partial n-spread in F2n

2 of size M = 2n−1.
Let fS be a characteristic function of

⋃M
i=1 Si \ {0}.

Proposition

fS is a bent function.

S⊥ = {u : 〈u, x〉 = 0,∀x ∈ S}. Note that if Si ∩ Sj = 0 then
S⊥i ∩ S⊥j = 0 for all n-dimensional subspaces Si and Sj of F2n

2 .



Constructions

Proof.
(−1)fS = 1 + 2M10 − 2

∑
i 1Si .

WfS (u) =
∑

x∈F2n
2

(−1)〈u,x〉(1 + 2M10 − 2
∑

i

1Si )(x).

∑
x∈F2n

2

1S(x)(−1)〈u,x〉 =
∑
x∈S

(−1)〈u,x〉 =

{
2n, if u ∈ S⊥;
0, if u 6∈ S⊥.

∑
x∈F2n

2

(−1)〈u,x〉(1 + 2M10) = 22n10 + 2M1.

WfS (u) =


22n + 2M − 2M2n = 2n, if u = 0;

2M − 2n+1 = −2n, if u ∈
⋃

i S
⊥
i ;

2M = 2n, if u 6∈
⋃

i S
⊥
i .



Constructions

Definition

Boolean function f is called a plateaued function iff
|Wf (u)| ∈ {0, µ} for each u ∈ Fn

2.

The support of the Walsh spectrum is the set {u : Wf (u) 6= 0}.
Let {Ca}a∈Fn1

2
, Ca ⊆ Fn2

2 be an ordered partition of Fn2
2 into affine

subspaces of dimensions n2 − n1 (OPAS).
Let F = {fa}a∈Fn1

2
be a family of plateaued functions such that the

support of the Walsh spectrum of fa is exactly Ca.



Constructions

Agievich (2008), Çeşmelioğlu and Meidl (2013), Baksova and
Tarannikov (2020)

Construction (K)

Define a Boolean function f on n variables as a Boolean sum

fF (x , y) =
⊕

a∈Fn1
2

fa(y)xa,

where x ∈ Fn1
2 , y ∈ Fn2

2 , a ∈ F2, xa = xa1
1 · · · xan1

n1 , x1
i = xi and

x0
i = xi ⊕ 1

here n = n1 + n2, n2 ≥ n1, n and n2 − n1 are even, {Ca}a∈Fn1
2

is OPAS,
fa ∈ F .

Proposition

fF is a bent function.



How many bent functions exist?

Class of bent f. Asymptotics of log2 of cardinality

MM family log2 |M(n)| = n
2 · 2

n/2(1 + o(1))

completed MM family log2 |M#(n)| = n
2 · 2

n/2(1 + o(1))

C class log2 |C(n)| = n
2 · 2

n/2(1 + o(1))

D class log2 |D(n)| = n
2 · 2

n/2(1 + o(1))

Agievich class log2 A(n) = n
2 · 2

n/2(1 + o(1))

special subclass of PS log2 |PSap(n)| = 2n/2(1 + o(1))

Partial Spread family log2 |PS(n)| ≤ n2

8 · 2
n/2(1 + o(1))

Construction (K) log2 |K (n, 1)| = 3n
4 · 2

n/2(1 + o(1))

Theorem (P., Taranenko, Tarannikov, 2022)

The logarithm of the number of bent function on n variables is not
less than 3n

4 · 2
n/2(1 + o(1)).



The number of bent functions constructed by (K)

Let bm be the number of bent functions on m variables. Let
n1 = n/2− k , n2 = n/2 + k , where k ∈ N, k ≥ 1.

K (n, k) = (b2k)2
n1 · Ñ2k

n2
,

where Ñ2k
n2

is the number of OPAS.

Proposition

log2 Ñ2k
n2
≤ (2k + 1)n

2k+1 · 2n/2 + o(n2n/2).

Corollary

log2 K (n, k) ≤ (2k + 1)n
2k+1 · 2n/2 + o(n2n/2).

This number is maximal when k = 1.



The number of bent functions constructed by (K)

Definition

A transversal in a latin hypercube Q of order n is a collection of n
entries hitting each hyperplane and each symbol exactly once.



The number of bent functions constructed by (K)

Let Qm be the 3-dimensional latin hypercube of order 2m such that

qα1,α2,α3 = α4 ⇔ α1 ⊕ · · · ⊕ α4 = 0.

Qm is the Cayley table of a 3-ary iterated group Zm
2 . Let Tm be the

number of transversals in Qm.

Theorem (Eberhard, 2017+)

Tm = (1 + o(1))
2m!3

2m(2m−1)
.



The number of bent functions constructed by (K)

Proposition (P., Taranenko, Tarannikov, 2022)

The number Nm of unordered partitions of Fm
2 into 2-dimensional

affine subspaces is not less than Tm−2:

log2 Nm ≥ log2 Tm−2 ≥
m
2
· 2m + c1 · 2m + o(2m).

Let Ñ i
m be the number of ordered partitions of Fm

2 into
i-dimensional affine subspaces. Then

Ñ i
m = 2m−i ! · N i

m.

k = 1, i = 2, m = n.

Corollary

log2 |K (n, 1)| = 3n
4 · 2

n/2(1 + o(1)).



Upper bounds on the number of bent functions

Proposition

Since the algebraic degree of bent functions is bounded by n/2, we
have

log2 bn ≤
1
2
· 2n +

1
2

(
n

n/2

)
.

Carlet, Klapper (2002) and Agievich (2020) slightly improved the
upper bounds, but asymptotically log2 bn remained the same.

Theorem (P., 2021)

log2 bn ≤
3
8
· 2n + o(2n).



Connections between bent functions and other structures

Proposition

Let f be a Boolean bent function. Then∑
x∈Fn

2

(−1)f (x)(−1)f (x⊕a) = 0 for each a ∈ Fn
2 \ {0}.

Define matrix H of size 2n × 2n by equation Hxy = (−1)f (x⊕y).

Proposition

H is the Hadamard matrix.



Connections between bent functions and other structures

Definition

Let G be a finite abelian group of order v . A subset D of G of
cardinality k is called (v , k , λ)-difference set in G if every element
g ∈ G , different from the identity, can be written as d1 − d2,
d1, d2 ∈ D, in exactly λ different ways.

For every f : Fn
2 → F2 define Df = {x ∈ Fn

2 : f (x) = 1}.

Theorem (Dillon)

f is a bent function iff Df is a
(2n, 2n−1 ± 2n/2−1, 2n−2 ± 2n/2−1)-difference set in Fn

2.



Connections between bent functions and other structures

Definition

A coloring f of a graph G = (V ,E ) is called perfect if the
collections of vertices adjacent to the vertices of the same color
have identical color composition.

For every color i and all x , y ∈ V (G )

f (x) = f (y) ⇒ |f −1(i) ∈ S(x)| = |f −1(i) ∈ S(y)|,

where S(x) is the set of vertices adjacent to x .

The set {f −1(i)}i∈I is called equitable partition of graph G .

The matrix P = (pij) whose entry pij equals the number of vertices
of color j adjacent to some vertex of color i is called the parameter
matrix of the perfect coloring.



Connections between bent functions and other structures

Perfect coloring of the Petersen graph.

P =

1 2 0
1 0 2
0 2 1





Connections between bent functions and other structures

Grassmann graphs are a special class of graphs defined from
systems of subspaces. The vertices of the Grassmann graph Jq(n, k)
are the k-dimensional subspaces of an n-dimensional vector space
over a finite field of order q; two vertices are adjacent when their
intersection is (k − 1)-dimensional.

Theorem (Avgustinovich, P., 2020)

f is a bent function of weight 2n−1 + 2n/2−1 iff it is a perfect
coloring of the graph J2(n, 2) with parameter matrix
0
BBB@

3(2n−3 − 2(n/2)−2 − 1) 3 · 2n−2 − 3 3(2n−3 + 2(n/2)−2) 0
2n−2 − 2(n/2)−1 5 · 2n−3 − 2(n/2)−2 − 5 2n−1 + 2(n/2)−1 2n−3 + 2(n/2)−2 − 1
2n−3 − 2(n/2)−2 2n−1 − 2(n/2)−1 − 1 5 · 2n−3 + 2(n/2)−2 − 3 2n−2 + 2(n/2)−1 − 2

0 3(2n−3 − 2(n/2)−2) 3 · 2n−2 3(2n−3 + 2(n/2)−2 − 2)

1
CCCA.


