On Weight Spectrum of Linear Codes

Vladimir N. Potapov

Sobolev Institute of Mathematics, Novosibirsk, Russia

online seminar: "Problems and Methods Related to Coding Theory", December 14, 2021

Definitions

Let F_q^n be a vector space of dimension *n* over the Galois field F_q . The weight wt(x) of a vector $x = (x_1, \ldots, x_n) \in F_q^n$ is the number of nonzero coordinates x_i of x.

The support of a function f is the set of arguments x such that $f(x) \neq 0$.

A linear (affine) code is a linear (affine) subspace of F_q^n .

Definitions

Denote by $A_i(V) = \{x \in V : wt(x) = i\}$ the subset of $V \subset F_q^n$ which consists of the vectors with weight *i*.

A finite sequence $|A_i(V)|$, i = 0, ..., n, is called the weight distribution of V.

A code V is called t-weight if $A_i(V) \neq \emptyset$ only for t different weights.

For a linear code $V \subseteq F_q^n$ we introduce the notation

$$\alpha'(V) = \max_i \frac{|\mathcal{A}_i(V)|}{|V|}.$$

Main definition

We will say that a sequence (V_n) of linear codes $V_n \subseteq F_q^{m_n}$ has a uniform weight spectrum if $\alpha'(V_n) \to 0$ as $n \to \infty$.

Note that dim $V_n \to \infty$ if a sequence (V_n) has a uniform weight spectrum.

Examples

1. If $\Gamma_n \subseteq F_q^{m_n}$ is a sequence of *n*-dimensional faces (axis-aligned planes) and $n \to \infty$ then (Γ_n) has a uniform weight spectrum.

2. If (H_n) is a sequence of Hamming codes and $n \to \infty$ then (H_n) has a uniform weight spectrum.

3. If (C_n) is a sequence of *t*-weight codes then (C_n) has not uniform weight spectrum.

4. Random linear codes (V.M.Sidel'nikov and V.K.Leont'ev)

V.M. Sidelnikov, Teoriya kodirovaniya, 2008 (in Russian).

V.K. Leont'ev, "On spectra of linear codes", Probl. Peredachi Inf., 2017.

Main problem

What is sufficient conditions for uniform weight spectrum?

Let us generalize the definition of a uniform weight spectrum sequences to affine codes.

For affine code $C \subseteq F_q^n$ define $\alpha(C) = \max_{i,x} \frac{|\mathcal{A}_i(C+x)|}{|C|}$ where $x \in F_q^n$.

Definition

A sequence of affine codes $C_n \subseteq F_q^{m_n}$ has a strong uniform weight spectrum (SUWS) if $\alpha(C_n) \to 0$ as $n \to \infty$.

Suppose C = W + y where W is a linear code and $y \in F_q^n$. It is clear that $\alpha'(W) \le \alpha(C)$. Let $\alpha(C) = \frac{|\mathcal{A}_i(C+x)|}{|C|} = \frac{|\mathcal{A}_i(W+y+x)|}{|W|}$. Let V be a linear span of $\{x + y, W\}$. Then $\alpha(C) \le q\alpha'(V)$.

Therefore sufficient conditions for strong or don't strong uniform weight spectrum should be analogous.

Theorem

Let (V_n) and (U_n) be sequences of subspaces of $F_2^{m_n}$ and $U_n \subset V_n$. If (U_n) has SUWS then (V_n) has SUWS.

Proof. Consider a bipartite graph G with parts $D_1 = A_i(V_n \oplus w)$ and $D_2 = (A_i(V_n \oplus w) \oplus U_n) \setminus D_1$ for some weight i and a vector w. Without lost of generality, let $w = \overline{0}$.

Vertices $v_1 \in D_1$ and $v_2 \in D_2$ are adjacent if and only if $v_2 = v_1 \oplus u$ where $u \in U_n$.

The degree of $v \in D_1$ in *G* is not less than $|U_n|(1 - \alpha(U_n))$. Indeed if $v \oplus u \in D_1$ then $\operatorname{wt}(v \oplus u) = i$ and, consequently, $u \in \mathcal{A}_i(U_n \oplus v)$. By the definition of SUWS we obtain that $|\mathcal{A}_i(U_n \oplus v)| \leq \alpha(U_n)|U_n|$. In other case $v \oplus u \in D_2$. In the same way we can prove that the degree of $v \in D_2$ in G is not greater than $\alpha(U_n)|U_n|$. Indeed if $v \oplus u \in D_1$ then wt $(v \oplus u) = i$ and, consequently, $u \in \mathcal{A}_i(U_n \oplus v)$. By the definition of SUWS we obtain that $|\mathcal{A}_i(U_n \oplus v)| \leq \alpha(U_n)|U_n|$.

By double counting edges we obtain that $|E| \leq \alpha(U_n)|U_n||D_2|$ and $|E| \geq |D_1||U_n|(1 - \alpha(U_n))$. Then $|D_1|(1 - \alpha(U_n)) \leq \alpha(U_n)|D_2|$.

$$\frac{|\mathcal{A}_i(V_n)|}{|V_n|} \leq \frac{|D_1|}{|D_2|} \leq \frac{\alpha(U_n)}{1 - \alpha(U_n)}.$$

By the hypothesis (U_n) has SUWS. Then $\alpha(U_n) \to 0$. Consequently, $\alpha(V_n) = \max \frac{|\mathcal{A}_i(V_n)|}{|V_n|} \to 0$ and (V_n) has SUWS.

Corollary

If
$$|\mathcal{A}_1(V_n)| \to \infty$$
 then a sequence (V_n) has SUWS.

If $|\mathcal{A}_1(V_n)| = k$ then V_n contains k-dimensional subcube F_q^k .

question 1

Has a sequence (V_n) SUWS if $|\mathcal{A}_t(V_n)| \to \infty$ for fixed t?

It is well known the following

Delsarte's theorem

If
$$f: F_q^n \to \mathbb{R}$$
 is a function such that $\widehat{f}(0) \neq 0$ and
 $\operatorname{supp}(\widehat{f}) \subseteq \mathcal{A}_{i_1} \cup \cdots \cup \mathcal{A}_{i_k}$, then $|\operatorname{supp}(f)| \ge q^n/b(n, q, k)$ where $b(n, q, k) = |\mathcal{A}_0 \cup \cdots \cup \mathcal{A}_k|$.

There
$$\widehat{f}(z) = \frac{1}{q^{n/2}} \sum_{x \in F_n^q} f(x) \left(e^{\frac{2\pi i}{q}}\right)^{(x,z)}$$
 are coefficients of the

Fourier transform of f.

Corollary

If $C \subset F_q^n$ is a t-weight linear code then $|C| \leq b(n,q,t) = O(n^t)$.

P. Delsarte, "Four fundamental parameters of a code and their combinatorial significance", *Information and Control*, 1973.

How large may be linear codes from a nonuniform weight spectrum sequence?

question 2

Consider a sequence (C_n) , $C_n \subset F_q^n$, which has a nonuniform weight spectrum. Does inequality $|C_n| << q^{\varepsilon n}$ holds for $\varepsilon > 0$?

Counterexamples

Answers to questions 1 and 2 are "No".

Let
$$q = 2$$
. Consider affine spaces
 $M_{n,i} = \{(x, x \oplus \overline{1}, \overline{0}) : x \in F_2^{(n-i)/2}\}$ where $i = n - 2k$.
 $\mathcal{A}_{(n-i)/2}(M_{n,i}) = M_{n,i}$.
 $|M_{n,i}| = 2^{(n-i)/2}$.
 $V_{n,0} = \{(x, x) : x \in F_2^{n/2}\}$ where *n* is even.
 $M_{n,0} = V_{n,0} \oplus (\overline{0}, \overline{1})$.
 $|\mathcal{A}_2(V_{n,0})| = n/2 \to \infty$.

Below we will show that this counterexamples are useful.

Definition

Introduce the notation $L(n, q, i_1, ..., i_k) = \min |\operatorname{supp}(f)|$, where $\operatorname{supp}(\widehat{f}) \subseteq \mathcal{A}_{i_1} \cup \cdots \cup \mathcal{A}_{i_k}$.

The values of L(n, q, i, i + 1, ..., j) for $q \ge 4$ and q = 3, $i + j \le n$ are calculated by Valuzhenich and Vorob'ev.

A. Valyuzhenich and K. Vorob'ev, "Minimum supports of functions on the Hamming graphs with spectral constraints", *Discrete Math.*, 2019.

The values of L(n, 2, k) were known early $L(n, 2, k) = 2^{(n+|\theta_k|)/2}$ where $\theta_k = n - 2k$.

D.S. Krotov, "Traids in the combinatorial configurations", XII International Seminar "Discrete Mathematics and its Applications" (Moscow, 20-25 June 2016)

Proposition

If $C \subset F_q^n$ is an affine code and $C \subseteq \mathcal{A}_{i_1} \cup \cdots \cup \mathcal{A}_{i_k}$ then $|C| \leq q^n / L(n, q, i_1, \ldots, i_k)$.

Proof. Since
$$\operatorname{supp}(\widehat{\widehat{\mathbf{1}_C}}) = C$$
 for any affine code C ,
 $L(n, q, i_1, \ldots, i_k) \leq |\operatorname{supp}(\widehat{\mathbf{1}_C})|.$
For any affine code C the equations $|C||\operatorname{supp}(\widehat{\mathbf{1}_C})| = q^n$ then
 $|C| = q^n/|\operatorname{supp}(\widehat{\mathbf{1}_C})| \leq q^n/L(n, q, i_1, \ldots, i_k).$

Corollary

If $C \subset F_2^n$ is an affine code and $C \subseteq \mathcal{A}_k$ then $|C| \leq 2^{(n-|\theta_k|)/2}$.

Affine codes $M_{n,i}$ reached this bound. $\mathcal{A}_{(n-i)/2}(M_{n,i}) = M_{n,i}, \ k = (n-i)/2, \ \theta_k = n-2k = i.$ $|M_{n,i}| = 2^{(n-i)/2}.$ It is well known that eigenvalues of the Fourier transform on F_2^n are equal to ± 1 . Known examples of eigenfunctions of the Fourier transform are functions of type $(-1)^b$ where b is a self-dual bent function. Functions of type $(-1)^b$ have maximum supports. Let us find eigenfunctions with a minimum support.

 $|\operatorname{supp}(f)| \cdot |\operatorname{supp}(\widehat{f})| \ge 2^n$. Therefore we obtain that $|\operatorname{supp}(f)| \ge 2^{n/2}$ if $\widehat{f} = \pm f$.

T. Tao, "An uncertainty principle for cyclic groups of prime order", *Math. Res. Lett.*, 2005

For even *n* consider the function $g:F_2^n \to \{0,\pm 1\}$ defined as

$$g(y) = \begin{cases} (-1)^{\mathrm{wt}(x)}, & \text{if } y = (x, x \oplus \overline{1}); \\ 0, & \text{otherwise.} \end{cases}$$

It is not difficult to calculate that $g = \widehat{g}$, $\operatorname{supp}(g) \subset \mathcal{A}_{n/2}$ and $|\operatorname{supp}(g)| = 2^{n/2}$.

```
Potapov V. N. On Weight Spectrum of Linear Codes // 2021 XVII
International Symposium on Problems of Redundancy in
Information and Control Systems (25-29 October 2021 Moscow,
Russia)
DOI:10.1109/REDUNDANCY52534.2021.9606478
https://arxiv.org/abs/2107.14576
```