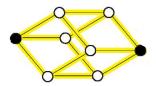
Transitive 1-perfect codes from quadratic functions D. S. Krotov, V. N. Potapov Sobolev Institute of Mathematics, Novosibirsk State University

International Conference Mal'tsev Meeting Novosibirsk, November 12–16, 2012 Let F be a finite field of order q; let F^n be the vector space of all n-words over the alphabet F.

Definition

A subset C of F^n is called a 1-perfect code if for every word v from F^n there is exactly one c in C agreeing with v in at least n-1 positions.



Definition

The automorphism group $\mathcal{AUT}(C)$ of a code $C \subset F^n$ is the set of permutations of F^n that preserve the neighborhood (two words are neighbors if they differ in exactly one position) and stabilize C.

Definition

The code *C* is transitive if for every two codewords *a*, *b* there exists $\varphi \in AUT(C)$ such that sends *a* to *b*.

Vasil'ev — Schönheim construction

Let $H \subset F^n$ be a 1-perfect code and $\lambda : H \to F$ be an arbitrary function. Define the set $C(H, \lambda) =$ $\{(v_0, \ldots, v_{q-1}, p) : v_i \in F^n, \sum_{i \in F} v_i = c \in H, p = \sum_{i \in F} i |v_i| + \lambda(c)\},$ where $|v_i|$ is the sum of all *n* elements of v_i . Then $C(H, \lambda)$ is a 1-perfect code of length qn + 1, known as a Schonheim code (in the case q = 2, Vasil'ev code).

J. Schönheim. On linear and nonlinear single-error-correcting *q*-ary perfect codes // *Inform. Contr.*, 12(1):23–26, 1968.

Vasil'ev, Ju. L. On ungrouped, close-packed codes// *Problemy Kibernet.* No. 8 1962 337–339.(Russian)

Assume *H* is a subspace of *Fⁿ*. A function $\lambda : H \to F$ is called *quadratic* if for every $c \in V$ there exist $\alpha_0^c, \alpha_1^c, \ldots, \alpha_n^c$ such that $\lambda(x + c) = \lambda(x) + \alpha_0^c + \alpha_1^c x_1 + \ldots + \alpha_n^c x_n$ for all $x = (x_1, \ldots, x_n) \in H$.

Theorem

If $H \subset F^n$ is a linear 1-perfect code and $\lambda : H \to F$ is a quadratic function, then $C(H, \lambda)$ is a transitive 1-perfect code.

The quadratic functions are exactly the functions whose polynomial representation has degree at most 2. The number of such functions has the form $q^{\frac{n^2}{2}(1+o(1))}$, and so, this expression gives a lower bound on the number of different transitive 1-perfect *q*-ary codes of length qn + 1.

Corollary

The number of nonequivalent transitive 1-perfect q-ary codes of length qn + 1 is not less than $q^{\frac{n^2}{2}(1+o(1))}$.

F. I. Solov'eva, "On Construction of Transitive Codes // Problems of Information Transmission, 2005, 41:3, 204–211.

V.N. Potapov. A lower bound for the number of transitive perfect codes // Journal of Applied and Industrial Mathematics, 2007, 1:3, 373–379

F. I. Solov'eva. On transitive partitions of an n-cube into codes// *Problems Inform. Transmission*, 45:1 (2009), 23–31.

J. Borges, J. Rifà, I. Yu. Mogilnykh, and F. I. Solov'eva. Structural properties of binary propelinear codes// *Advances in Mathematics of Communications*. 2012. V. 6, N 3, P. 329 - 346, 2012.

Lemma

Let $f'(x) = f(x) + \beta x_j$ for some $j \in [1..n]$, $\beta \in F$. Then $C(H, f') = \prod_j^{\beta} C(H, f)$ where \prod_j^{β} is the coordinate permutation that sends the $(\alpha + \beta, j)$ th coordinate to the (α, j) th coordinate (the *j*th coordinate of the block $v_{\alpha}, \alpha \in F$) for all $\alpha \in F$ and fix the other coordinates.

Proof. Let us consider the codeword $x = ((v_{\alpha})_{\alpha \in F}, p)$ of C(H, f). It satisfies $p = \sum_{\alpha \in F} \alpha |v_{\alpha}| + f(c)$. After the coordinate permutation $\prod_{j=1}^{\beta}$, we obtain the word $y = \prod_{j=1}^{\beta} x = ((u_{\alpha})_{\alpha \in F}, p)$ where for all α the word u_{α} coincides with v_{α} in all positions except the *j*th, $u_{\alpha,j}$ which is equal to $v_{\alpha+\beta,j}$. $p = \sum_{\alpha \in F} \alpha |v_{\alpha}| + f(c) = \sum_{\alpha \in F} \sum_{k \neq j} \alpha v_{\alpha,k} + \sum_{\alpha \in F} \alpha v_{\alpha,j} + f(c) =$

$$= \sum_{\alpha \in F} \sum_{k \neq j} \alpha u_{\alpha,k} + \sum_{\alpha \in F} \alpha u_{\alpha-\beta,j} + f(c) =$$

= $\sum_{\alpha \in F} \sum_{k \neq j} \alpha u_{\alpha,k} + \sum_{\alpha \in F} (\alpha + \beta) u_{\alpha,j} + f(c) =$
= $\sum_{\alpha \in F} \sum_{k=1}^{n} \alpha u_{\alpha,k} + \beta \sum_{\alpha \in F} u_{\alpha,j} + f(c) = \sum_{\alpha \in F} \alpha |u_{\alpha}| + f(c) + \beta c_{j},$
 $c = (c_{1}, \dots, c_{n}) = \sum v_{\alpha} = \sum u_{\alpha} \text{ and } \prod_{j}^{\beta}(x) \in C(H, f').$

Proposition

For every codeword $w = ((w_{\alpha})_{\alpha \in F}, p)$ of C(H, f) the transform $\Phi_w(v) = \Pi^c(v) + w$, where $c = \sum_{\alpha \in F} w_{\alpha}$, is an automorphism of C(H, f), which sends the all-zero word to w.

Proof. Consider $v = ((v_{\alpha})_{\alpha \in F}, q)$ from C(H, f). It satisfies $q = \sum_{\alpha \in F} \alpha |v_{\alpha}| + f(d)$, where $d = \sum_{\alpha} v_{\alpha}$. Applying the lemma with j = 1..n, we see that $\Pi^{c}(v) = ((u_{\alpha})_{\alpha \in F}, q)$ satisfies $q = \sum_{\alpha \in F} \alpha |u_{\alpha}| + f(d) + \beta_{1}^{c} d_{1} + \ldots + \beta_{n}^{c} d_{n}$, where $d = (d_{1}, \ldots, d_{n}) = \sum_{\alpha} u_{\alpha}$. Adding $w = ((w_{\alpha})_{\alpha \in F}, p)$, we obtain $\Pi^{c}(v) + w = ((u_{\alpha} + w_{\alpha}), r)$, where

$$r = \sum_{\alpha \in F} \alpha |u_{\alpha}| + f(d) + \beta_{1}^{c} d_{1} + \ldots + \beta_{n}^{c} d_{n} + \sum_{\alpha \in F} \alpha |w_{\alpha}| + f(c)$$

$$= \sum_{\alpha \in F} \alpha |u_{\alpha} + w_{\alpha}| + f(d+c) - \beta_{0}^{c} + f(c).$$

Since f(0) = 0, we have proved that $\Pi^{c}(v) + w$ belongs to C(H, f).

Problem

For a vector space V and a group \mathcal{A} of linear permutations of V, find non-quadratic functions f such that for every c from V there exists $\mu \in \mathcal{A}$ meeting $f(\mu(x) + c) = f(x) + I(x)$ for some affine I. For example, for constructing transitive 1-perfect codes as above, we can take V = H and $\mathcal{A} \subset \mathcal{AUT}(H)$.