# Независимые множества и разрезы в графах

В. Н. Потапов

семинар "Теория графов", 12 марта 2024 г.

## разрез графа

Пусть A и B подмножества вершин в простом графе G. Определим величину  $e(A,B)=|\{(a,b)\in E(G):a\in A,b\in B\}|$  — число рёбер, соединяющих вершины из множества A с вершинами из множества B, причём если  $a,b\in A\cap B$ , то ребро  $\{a,b\}$  считается дважды. Заметим, что  $e(A,B)=(\mathbf{1}_A,M\mathbf{1}_B)$ , где M — матрица смежности графа G.

## Определение

Разрезом графа G называется пара множеств вершин  $A\subset V(G)$  и  $B=V(G)\setminus A$  или множество рёбер между ними, величиной разреза называется число e(A,B).

## Определение

Множеств вершин  $C \subset V(G)$  в графе G называется независимым, если e(C,C)=0.

## Теорема [граница Дельсарта—Хоффмана, Hoffman 1970]

Пусть G-r-регулярный граф, n=|V(G)| и  $\lambda_{min}-$  минимальное собственное число его матрицы смежности M. Тогда мощность любого независимого множества в графе G не превосходит  $\frac{\lambda_{min}n}{\lambda_{min}-r}$ . Независимое множество имеет мощность  $\frac{\lambda_{min}n}{\lambda_{min}-r}$  тогда и только тогда, когда его характеристическая функция есть совершенная раскраска с матрицей параметров

$$S = \begin{pmatrix} 0 & r \\ -\lambda_{min} & r + \lambda_{min} \end{pmatrix}.$$

# Доказательство теоремы

Рассмотрим ортонормированный базис собственных функций  $\phi_i$  матрицы M. Характеристическую функцию  $f=\mathbf{1}_C$  произвольного независимого множества можно разложить по базису:  $f=\sum_i \alpha_i \phi_i$ , где собственной функцией, соответствующей собственному числу r, является  $\phi_0=\mathbf{1}/\sqrt{n}$ . Тогда

$$0 = (Mf, f) = \sum_{i} \alpha_i^2 \lambda_i, \tag{1}$$

где  $\lambda_i$  — собственные числа функций  $\phi_i$ . Из равенства  $(f,f)=\sum_i \alpha_i^2$  следует, что  $\sum_{i\neq 0} \alpha_i^2=(f,f)-\alpha_0^2=|C|-|C|^2/n$ .

Тогда из (1) и минимальности  $\lambda_{min}$  получаем:  $0 \geq (|C| - |C|^2/n)\lambda_{min} + r|C|^2/n$ . Отсюда  $\frac{|C|}{n} \leq \frac{\lambda_{min}}{\lambda_{min} - r}$ , поскольку  $\lambda_{min} - r < 0$ .

## Совершенная раскраска

Пусть  $\{1,\ldots,k\}$  — множество из k цветов. Раскраской вершин графа G=(V,E) называется функция  $f:V\to\{1,\ldots,k\}$ . Для каждой вершины  $x\in V(G)$  определим окрестность вершины (единичную сферу с центром в вершине) следующим образом:  $U_1(x)=\{y\in V\mid \{x,y\}\in E\}$ . Множество  $U_1(x)$  состоит из вершин смежных с вершиной x. Пусть f(x)=i, обозначим  $s_{ij}(x)=|U_1(x)\cap f^{-1}(j)|$ .

#### Определение

Раскраска называется совершенной, если величина  $s_{ij}(x) = s_{ij}$  не зависит от выбора вершины x цвета i.

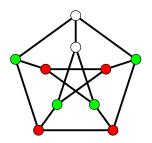
# Совершенная раскраска

## Определение

Матрицей параметров совершенной раскраски называется матрица

$$S_{k\times k}=(s_{ij})$$

Совершенная раскраска графа Петерсена, порядок цветов: белый, зелёный, красный.



$$S = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

# Совершенная раскраска

Совершенные раскраски булева куба в 2 цвета. Первому цвету соответствует черный цвет, второму — белый.



$$S = \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}$$



$$S = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$S = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$



$$S = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$$

## матричное уравнение

Пусть  $f:V(G) \to \{1,\ldots,k\}$  — раскраска графа. Рассмотрим матрицу F размера  $n \times k$ , у которой столбец  $F_i$  является характеристической функцией цвета i.

#### Лемма

Пусть M — матрица смежности графа G. Функция f является совершенной раскраской графа G с матрицей параметров S тогда и только тогда, когда MF = FS.

## Следствие

Функция f является совершенной 2-раскраской регулярного связного графа G тогда и только тогда, когда при некоторых  $\alpha$  и c функция  $\alpha f + c$  является собственной функцией графа G.

# Доказательство теоремы

Равенство  $\frac{|C|}{n}=\frac{\lambda_{min}}{\lambda_{min}-r}$  имеет место только в случае когда  $f=\phi+\alpha_0\varphi_0$ , где  $\phi$ — собственная функция с собственным числом  $\lambda_{min}$ . Из следствия получаем, что f— совершенная раскраска. Коэффициент  $s_{21}$  матрицы S можно найти из соотношения  $\frac{\lambda_{min}nr}{\lambda_{min}-r}=s_{21}n(1-\frac{\lambda_{min}}{\lambda_{min}-r})$  на число рёбер с разноцветными концами.

## Теорема [Haemers 1979]

Пусть G-r-регулярный связный граф и  $\lambda_k < \lambda_{k-1} < \dots < \lambda_1 < \lambda_0 = r$ — собственные числа его матрицы смежности M. Пусть  $C \subset V(G)$ ,  $C \neq V(G)$  и e(C,C)— удвоенное число пар смежных вершин в множестве C. Тогда справедливы неравенства

$$\lambda_k|C| + \frac{(r-\lambda_k)|C|^2}{|V(G)|} \le e(C,C) \le \lambda_1|C| + \frac{(r-\lambda_1)|C|^2}{|V(G)|}.$$

Причём, если для некоторого множества C в одном из неравенств достигается равенство, то его характеристическая функция есть совершенная раскраска.

## Teopeма [ N. Alon, V. Milman 1986, Tanner 1984, Golubev 2020]

Пусть G-r-регулярный связный граф и  $\lambda_k < \lambda_{k-1} < \cdots < \lambda_1 < \lambda_0 = r$ — собственные числа его матрицы смежности M. Пусть  $A \subset V(G)$ ,  $B = V(G) \setminus A$ . Тогда справедливы неравенства

$$\frac{(r-\lambda_1)|A||B|}{|V(G)|} \le e(A,B) \le \frac{(r-\lambda_k)|A||B|}{|V(G)|}.$$

Причём, если для некоторого множества A в одном из неравенств достигается равенство, то его характеристическая функция есть совершенная раскраска.

## expander mixing lemma

Teopeма [expander mixing lemma N. Alon, F. R. K. Chung 1988, K. Devriendt, P. Van Mieghem 2019]

Пусть G-r-регулярный связный граф и  $\lambda-$  максимальное по модулю, за исключением r, собственное число его матрицы смежности M. Тогда для любых подмножеств вершин A и B справедливо неравенство

$$\left| e(A,B) - \frac{r|A||B|}{|V(G)|} \right| \le |\lambda| \sqrt{|A||B|(1-|A|/|V(G)|)(1-|B|/|V(G)|)}.$$

Причём, если в неравенстве достигается равенство, то  ${\bf 1}_A$  — совершенная раскраска с собственным числом  $\lambda$  и B=A или  $B=V(G)\setminus A$ .

#### Определение

Обозначим среднюю внутреннюю степень множества вершин, через  $\sigma(C) = e(C,C)/|C| = (M(G)\mathbf{1}_C,\mathbf{1}_C)/|C|$ .

#### Определение

Граф G называется amply regular, если его матрица смежности  $M_2(G)$  по расстоянию 2 является полиномом от его матрицы смежности M

$$M_2(G) = p(M) = p_2 M^2 + p_1 M + p_0 I.$$
 (2)

$$M_2(G) = p(M) = p_2 M^2 + p_1 M + p_0 I.$$
 (3)

Любой amply regular граф является r-регулярным, где  $r=r_p=-p_0/p_2$ .

$$M^2 = \frac{1}{p_2}M_2 - \frac{p_1}{p_2}M - \frac{p_0}{p_2}I.$$

#### Определение

Обозначим через  $\sigma_2(C)$  среднее число соседей вершины на расстоянии 2 в множестве вершин  $C \subset V(G)$ ,  $\sigma_2(C) = (M_2(G)\mathbf{1}_C, \mathbf{1}_C)/|C|$ .

## Теорема [Кротов 2012]

Пусть G amply r-регулярный граф с полиномом p и  $C \subset V(G)$ . Если  $\sigma(C) = a$  и  $\sigma(V(G) \backslash C) = d$ , то  $\sigma_2(C) \leq (p(S))_{11}$  и  $\sigma_2(V(G) \backslash C) \leq (p(S))_{22}$ , где  $S = \begin{pmatrix} a & r-a \\ r-d & d \end{pmatrix}$ . Кроме того, одновременно в двух неравенствах достигаются равенства тогда и только тогда, когда раскраска  $\mathbf{1}_C$  является совершенной с матрицей параметров S.

#### Следствие

Пусть G amply r-регулярный граф с полиномом p и  $C\subset V(G)$  — независимое множество. Тогда  $\sigma_2(C)\leq -p_2r(\lambda_{\min}+1)$ , где  $\lambda_{\min}$  — минимальное собственное число графа G. Кроме того,  $\sigma_2(C)=-p_2r(\lambda_{\min}+1)$  тогда и только тогда, когда раскраска  $1_C$  является совершенной с собственным числом  $\lambda_{\min}$ .

#### Теорема

Пусть G amply r-регулярный граф с полиномом p и  $C \subset V(G)$ . Если  $\sigma(C)=a$  и  $\beta=\sigma_2(C)$ , то  $|C|\leq \frac{(\beta-p(a))|V(G)|}{p_2(r-a)^2+\beta-p(a)}$ . Кроме того, если  $|C|=\frac{(\beta-p(a))|V(G)|}{p_2(r-a)^2+\beta-p(a)}$ , то раскраска  $\mathbf{1}_C$  является совершенной с собственным числом  $\theta=a-\frac{\beta-p(a)}{p_2(r-a)}$ .

На совершенных 2-раскрасках с минимальным собственным числом достигаются и граница из этой теоремы и граница Хоффмана. В этом случае  $\sigma_2(C)=\beta=-p_2r(\lambda_{\min}+1)$ . По следствию из теоремы Кротова  $\beta\leq -p_2r(\lambda_{\min}+1)$  для любого независимого множества C. Рассмотрим случай  $\beta<-p_2r(\lambda_{\min}+1)$ .

#### Следствие

Пусть G amply r-регулярный граф с полиномом p и  $C\subset V(G)$ .

Если 
$$\beta = \sigma_2(C) < -p_2 r (\lambda_{\min} + 1)$$
, то граница  $\frac{|C|}{|V(G)|} \le 1/(1 + \frac{p_2 r^2}{\beta + p_2 r})$  лучше границы Хоффмана.

$$1/(1+\frac{p_2r^2}{\beta+p_2r})<1/(1+\frac{p_2r^2}{-p_2r\lambda_{\min}})=\frac{-\lambda_{\min}}{r-\lambda_{\min}}.$$

# Границы

- Хэмминга
- Синглтона
- Дельсарта Хоффмана
- Хемерса
- Бирбрауэра Фридмана
- Фон-дер-Флаасса

## Литература

Potapov V.N. On extremal properties of perfect 2-colorings arXiv:2204.03308 [math.CO]  $\,$ 

Потапов В.Н. Совершенные структуры в кодировании и криптографии http://old.math.nsc.ru/ $\sim$ potapov/

# Граф Хэмминга

$$Q_q = \{0, 1, \dots, q - 1\}$$
  
$$(x_1, \dots, x_n) \in Q_q^n$$

#### Определение

Весом набора  $x=(x_1,\ldots,x_n)$  называется  $\operatorname{wt}(x)$  — число ненулевых координат в x. Расстоянием Хэмминга  $d_H(x,y)$  называется число различных координат в x и y,  $d_H(x,y)=\operatorname{wt}(x-y)$ .

#### Определение

Вершинами графа Хэмминга H(n,q) является множество  $Q_q^n$ , вершины на расстоянии 1 соединены ребром.

# Граф Хэмминга

$$\xi = e^{2\pi i/q}, \ \xi^q = 1$$
  $\phi_z(x) = \xi^{(x,z)}$   $(x,z) = x_1 z_1 + x_2 z_2 + \dots + x_n z_n \ \mathrm{mod} q$   $\mathcal{F}(H(n,q)) - \mathrm{пространство} \ \mathrm{функций} \ \mathrm{на} \ \mathrm{графe} \ \mathrm{Хэмминга}.$   $\mathcal{F}(H(n,q)) = \{f: Q_q^n \to \mathbb{C}\}$ 

#### Лемма

- $1. \ \{\phi_z(x): z \in Q_q^n\}$  ортогональный базис в  $\mathcal{F}(H(n,q)).$
- 2.  $\phi_z(x)$  собственная функция графа H(n,q) с собственным числом  $\lambda_z=(q-1)n-q{
  m wt}(z).$

$$|\phi_z|^2=q^n$$
  $f(x)=rac{1}{q^{n/2}}\sum_z a_f(z)\phi_z(x)$   $\sum_x |f(x)|^2=\sum_z |a(z)|^2$  равенство Парсеваля

## Определение

Пусть  $f:Q_q^n \to \{-1,1\}$ . Обозначим через  $I[f]=e(f^{-1}(-1),f^{-1}(1))$  число рёбер, в концах которых значения функции f отличаются. Для константы эта величина равна нулю, а для булева счётчика чётности —  $n2^{n-1}$ .



## Лемма [Nisan, Szegedy 1994]

$$I[f] = \frac{q}{4} \sum_{z \in Q_n^n} \operatorname{wt}(z) |a_f(z)|^2.$$

Доказательство. Пусть M — матрица смежности H(n,q). Нетрудно непосредственно проверить, что

$$2I[f] - (n(q-1)q^n - 2I[f]) = -(Mf, f), \tag{4}$$

поскольку в правой сумме каждое ребро учитывается два раза.

$$M\phi_z = \lambda_z \phi_z$$
, где  $\lambda_z = (q-1)n - q \operatorname{wt}(z)$ 

Представим функцию f в виде линейной комбинации

 $f=rac{1}{q^{n/2}}\sum_{z\in Q^n_\sigma}a_z\phi_z$ . Подставляя это выражение в (4) и

используя ортогональность характеров, а также равенство Парсеваля  $\sum |a_f(z)|^2 = q^n$ , получаем равенства  $z \in Q_n^n$ 

$$4I[f] = n(q-1)q^n - \sum_{z \in Q_n^n} \lambda_z |a_f(z)|^2 = \sum_{z \in Q_n^n} q \operatorname{wt}(z) |a_f(z)|^2.$$

Пусть Im(f) — множество значений, которое принимает функция f.

#### Определение

Функция f называется корреляционно-иммунной порядка k, если для любого  $b \in Im(f)$  она принимает значение b одинаковое число раз во всех гранях размерности n-k.

## Лемма [Таранников 2002]

Для функции  $f:Q_q^n \to \{-1,1\}$  равенство  $\mathrm{cor}(f)=k$  верно тогда и только тогда, когда  $a_f(z)=0$  для всех  $z\in Q_q^n$  веса  $0<\mathrm{wt}(z)\leq k$  и  $a_f(v)\neq 0$  для некоторого  $v\in Q_q^n$  веса  $\mathrm{wt}(v)=k+1$ .

#### Теорема

$$I[f] \geq q^n(\operatorname{cor}(f) + 1)(
ho(f) - 
ho^2(f))$$
, где  $ho(f) = |f^{-1}(-1)|/q^n$ .

Доказательство. Из леммы Таранникова следует, что  $a_f(z)=0$  при  $0<{\rm wt}(z)\le{\rm cor}(f)$ . Следовательно, имеем равенство

$$4I[f] \geq \sum_{z \in Q_n^n \setminus \bar{0}} q(\operatorname{cor}(f) + 1)|a_f(z)|^2.$$

$$\sum_{z \in Q_n^n} |a_f(z)|^2 = q^n$$
 и  $a_f(ar{0}) = q^{n/2}(1 - 
ho(f) - 
ho(f)).$  Тогда

$$\sum_{z \in Q_n^n \setminus \bar{0}} |a_f(z)|^2 = q^n - q^n (1 - 2\rho(f))^2 = 4q^n \rho(f)(1 - \rho(f)).$$

Если 
$$I[f] = q^n(\operatorname{cor}(f) + 1)(\rho(f) - \rho^2(f))$$
, то  $f$  — совершенная 2-раскраска.

# Неравенство Бирбрауэра – Фридмана

Для фиксированной плотности ho(f) величина I[f] достигает своего наибольшего значения, если все вершины, на которых функция f равна -1, несмежны. Поэтому

$$I[f] \le q^n(q-1)\rho(f)n$$

$$(cor(f) + 1)(\rho(f) - \rho^2(f)) \le (q - 1)\rho(f)n$$

Теорема [неравенство Бирбрауэра—Фридмана 1992, 1998]

Пусть 
$$f:Q_q^n o \{0,1\}, \ f 
eq \mathbf{0},$$
 тогда  $ho(f) \geq 1 - rac{n(q-1)}{q(\operatorname{cor}(f)+1)}.$