# Isotopically transitive pairs of MOLS

V. N. Potapov

Sobolev Institute of Mathematics, Novosibirsk, Russia

Mal'tsev Meeting, Novosibirsk, May 3-7, 2015

Let  $F_q$  be the Galois field of order q. A subset M of  $F_q^n$  is called an MDS code (with code distance k+1) if  $|M \cap \Gamma| = 1$  for each k-dimensional face  $\Gamma$ . For k=n-2, an MDS code is equivalent to a set of (n-2) mutually orthogonal latin squares (MOLS).

$$M = \{(x, y, f_1(x, y), f_2(x, y), f_3(x, y)) \mid (x, y) \in F_4^2\}$$

### Proposition 1

Let  $M \subset F_q^m$  be an MDS code and let for each  $x \in M$  a set  $L(x) \subset F_{q'}^m$  be an MDS code (these codes have the same distance). Then the set  $C = \{(x,y) \mid x \in M, y \in L(x)\} \subset F_{q \times q'}^m$  is an MDS code.

If the code L(x) doesn't depend on x then the MDS code C is obtained as Cartesian product.

A subset T of MDS code  $C \subset F_q^n$  is called a subcode if T is an MDS code in  $A_1 \times \cdots \times A_n$  and  $T = C \cap (A_1 \times \cdots \times A_n)$  where  $A_i \subset F_q$ .

An isotopism is a transform  $\overline{\tau}: \overline{x} \mapsto \overline{\tau}\overline{x}$  where

 $\overline{x}=(x_1,\ldots,x_n)\in F_q^n, \ \overline{\tau x}=(\tau_1x_1,\ldots,\tau_nx_n), \ \tau_i\in S_q.$  Define the group of autotopisms  $\mathrm{Ist}(A)=\{\overline{\tau}\mid \overline{\tau}A=A\}$ , which map  $A\subseteq F_q^n$  to itself. A set  $A\subseteq F_q^n$  is called isotopically transitive if for every two vertices  $\overline{x},\overline{y}$  from A there exists an isotopism  $\overline{\tau}$  such that  $\overline{\tau}(\overline{x})=\overline{y}$  and  $\overline{\tau}(A)=A$ ; i.e., the group  $\mathrm{Ist}(A)$  acts transitively on A.

| 0 | 2 | 3 | 1 | 2 | 0 | 1 | 3 | 0 | 3 | 2 | 1 | 0 | 3 | 1 | 2 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | 1 | 0 | 2 | 0 | 2 | 3 | 1 | 3 | 0 | 1 | 2 | 1 | 2 | 0 | 3 |
| 1 | 3 | 2 | 0 | 3 | 1 | 0 | 2 | 1 | 2 | 3 | 0 | 2 | 1 | 3 | 0 |
| 2 | 0 | 1 | 3 | 1 | 3 | 2 | 0 | 2 | 1 | 0 | 3 | 3 | 0 | 2 | 1 |

### Proposition 2

If a code C is obtained as the Cartesian product of two isotopically transitive codes, then C is isotopically transitive.

A code is called linear if it is a linear subspace.

## Proposition 3

a) Any vertex of an MDS code obtained as the Cartesian product lies in two proper subcodes (at least).

b) A linear pair of MOLS over  $GF(q^2)$  (q is prime, d=3) either hasn't subcodes or any vertex of the code lies in two proper subcodes.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 0 | 4 | 5 | 3 | 7 | 8 | 6 | 2 | 0 | 1 | 5 | 3 | 4 | 8 | 6 | 7 |
| 2 | 0 | 1 | 5 | 3 | 4 | 8 | 6 | 7 | 1 | 2 | 0 | 4 | 5 | 3 | 7 | 8 | 6 |
| 3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 | 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 |
| 4 | 5 | 3 | 7 | 8 | 6 | 1 | 2 | 0 | 8 | 6 | 7 | 2 | 0 | 1 | 5 | 3 | 4 |
| 5 | 3 | 4 | 8 | 6 | 7 | 2 | 0 | 1 | 7 | 8 | 6 | 1 | 2 | 0 | 4 | 5 | 3 |
| 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 |
| 7 | 8 | 6 | 1 | 2 | 0 | 4 | 5 | 3 | 5 | 3 | 4 | 8 | 6 | 7 | 2 | 0 | 1 |
| 8 | 6 | 7 | 2 | 0 | 1 | 5 | 3 | 4 | 4 | 5 | 3 | 7 | 8 | 6 | 1 | 2 | 0 |

Consider the code  $C_0 \subset (F_{q \times q})^4$ ,  $(x_i, y_i) \in F_q \times F_q \simeq F_{q \times q}$ , determined by the equations

$$\begin{cases} x_3 = l_{11}x_1 + l_{12}x_2; \\ x_4 = l_{21}x_1 + l_{22}x_2; \\ y_3 = m_{11}y_1 + m_{12}y_2 + \xi_1(x_1, x_2); \\ y_4 = m_{21}y_1 + m_{22}y_2 + \xi_2(x_1, x_2), \end{cases}$$

where  $\xi_1$  and  $\xi_2$  are quadratic functions and the pairs of vectors  $(l_{11}, l_{12}), (l_{21}, l_{22})$  and  $(m_{11}, m_{12}), (m_{21}, m_{22})$  are not collinear.

### Theorem 1

If the pairs of vectors  $(l_{11}, l_{12})$ ,  $(m_{11}, m_{12})$  and  $(l_{21}, l_{22})$ ,  $(m_{21}, m_{22})$  are not collinear, then  $C_0$  is an isotopically transitive MDS code.

#### Theorem 2

If  $\xi_2(x_1, x_2) = x_1x_2$  and  $\xi_1(x_1, x_2) \equiv 0$  then  $C_0$  isn't isotopic to a linear code or to a code obtained as the Cartesian product.

$$\begin{cases} x_3 = x_1 + x_2; \\ x_4 = x_1 + 2x_2; \\ y_3 = y_1 + 2y_2; \\ y_4 = y_1 + y_2 + x_1x_2 \end{cases}$$

Wilson R. L. Jr. Isotopy-isomorphy loops of prime order // J. Algebra — 1974. — V. 31. P. 117–119.

Goodaire E. G., Robinson D. A. A class of loops which are isomorphic to all loop isotopes // Canadian J. Math. — 1982. — V. 34. — P. 662–672.

Kunen K. *G*-loops and permutation groups // J. Algebra — 1999. — V. 220, N 2. — P. 694–708.

Krotov D.S., Potapov V.N. Propelinear 1-perfect codes from quadratic functions // IEEE Trans. Inform. Theory. 2014. V. 60, N 4. P. 2065-2068.

Krotov D.S., Potapov V.N. Constructions of transitive latin hupercubes // arXiv.org eprint math., math.CO/1303.0004