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Abstract
John proved that a function ¢ on the manifold of lines in R belongs to the
range of the x-ray transform if and only if ¢ satisfies some second order
differential equation and obeys some smoothness and decay conditions. We
generalize the John equation to the case of the x-ray transform on arbitrary
rank symmetric tensor fields: a function ¢ on the manifold of lines in R3
belongs to the range of the x-ray transform on rank m symmetric tensor fields
if and only if ¢ satisfies some differential equation of order 2(m + 1) and
obeys some smoothness and decay conditions.

Keywords: tensor fields tomograhy, John equation, Radon transform

1. Introduction

The famous 1938 paper [4] by John gives a characterization of the range of the x-ray
transform in R3 in terms of an ultrahyperbolic equation in four variables parameterizing
(locally) the tangent bundle of the unit sphere S? C R3. Afterwards, this result was gen-
eralized to arbitrary dimensions [3] and to the case of arbitrary rank symmetric tensor fields
[6]. Note, however, that these generalizations are formulated in terms of the tangent bundle of
the whole Euclidean space R” rather than that of the unit sphere. This naturally leads to more
variables and more equations. For example, in three-dimensions even for the scalar functions
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case, one gets three equations in six variables instead of the single John equation in four
variables. This difference becomes more essential in the case of symmetric tensor fields.
Therefore the following question arises in the most important case of three-dimensional tensor
tomography: Can one formulate the corresponding conditions on using four (local) coordi-
nates on the tangent bundle of the unit sphere? The present paper gives the positive answer to
the question.

First of all we recall the definition of the x-ray transform. Given a continuous rank m
symmetric tensor field f on R”, the x-ray transform of fis defined by

U &= 3 f oo (A6 6 dI RERL0=EERY (L
[T i=1" "%

under the assumption that f decays at infinity so that the integral converges. Let S(SR") be

the space of all rank m symmetric tensor fields on R” whose all components belong to the

Schwartz space. We restrict ourselves by considering tensor fields f € S(S™R"). For such a

tensor field, 1 (x, §) = (f)(x, §) is a C**-smooth function on R" x (R™\ {0}) and satisfies

the following conditions

tm
Y (x, 1§) = Hw(x, O O=reR), P&+158O=1v(x9) (1.2)
which mean that (If)(x, £) depends actually on the line through the point x in direction &.
Let (-, -) be the standard dot-product on R". We parameterize the manifold of oriented
lines in R" by points of the tangent bundle

TS 1= {(x, 9 e R" x R[|¢]| =1, (x, £ = 0} C R x (R"\ {0})

of the unit sphere S"~! C R". Let S(TS"~!) be the space of C*®-smooth functions y (x, £) on
TS"~! such that all their derivatives decay rapidly in the first argument, where derivatives are
taken with respect to Cartesian coordinates on R” x R” while the function y is extended to a
neighborhood of 7S"~!in R” x R" by the homogeneity: x (x, &) = x (x, £/||€]]). For a tensor
field f € S(S™R™), the restriction y = 1|rgi-1 of the function ) = If to the manifold 7S"~!
belongs to S(T'S"~1). Moreover, the function %) is uniquely recovered from x by the formula

P NN i) 3
vx O = ¢ X(x P C T (13)

that follows from (1.2). Thus, the x-ray transform can be considered as the linear continuous
operator

I: SES™R") — S(TS" ). (1.4)

Let us cite theorem 2.10.1 of [6].

Theorem 1.1. A function x € S(TS"™Y) (n > 3) belongs to the range of operator (1.4) if
and only if the following two conditions hold:

(1) x(x, =8 = (=D"x(x, &
(2) being defined by (1.3), the function 1p € C*(R" x (R"\ {0})) satisfies the equations

2 2 2 2
oo __9% | g - 4 v =0 (1.5)
8)6,'1 8£jl 8)(?1'] 85,-1 8x,~m+l 851-%] 8)61‘”1“86

that are written for all indices 1 < iy, ji, s lms 1 Jppg < 1

Un+1

2



Inverse Problems 32 (2016) 105013 N S Nadirashvili et al

An elegant application of equations (1.5) to the problem of inversion of the x-ray
transform from incomplete data was found by Denisjuk [2].

Theorem 1.1 is definitely false in the case of n = 2. Indeed, in the case of
(m, n) = (0, 2), operator (1.4) coincides, up to notation, with the Radon transform on the
plane. Unlike (1.5), the corresponding consistency conditions for the Radon transform are of
integral nature, see [3, chapter 1, theorem 2.4]. These conditions are well known under the
name ‘Helgason—Ludwig’s conditions’ although they have been first written down by
Gelfand et al [1, section 1.6]. Helgason—Ludwig’s conditions were generalized to the case of
n = 2 and of arbitrary m by Pantjukhina [5].

How many linearly independent equations does system (1.5) contain? Of course, every
pair (i, j,) (1 < s <m + 1) can be ordered so that i; < j. There are N=n(n — 1)/2
ordered pairs. Since factors on the left-hand side of (1.5) commute with each other, the system

. (N . . .
contains ( 44_—"11) linearly independent equations.
m

Now, we consider the three-dimensional case. System (1.5) contains (m + 2)(m + 3)/2
linearly independent equations. Nevertheless, each of these equations turns out equivalent to a
single equation for the function x expressed in appropriate coordinates.

For the open set U = {(x, &) € TS?&; > 0} C T'S?, we define the diffeomorphism

(b : U - R49 (-x9 f) = (.XI, X2, x3, £]> 627 63) = (Y» a) = (yl, y23 ap, a2)
by
y=x— é)63, Yy =X — é)@, ap = é, ap = i (1.6)

& & & &

Then (U, ®) is a coordinate patch on TS2. For a function y € C*(U), we define
© € C*(R* by

¢ = (laff + Dby 0 71

These two functions are expressed through each other by the formulas

) 3 & & &
xx, & = &8 1 (x — X3, Xp — —=Xx3, —, —), (1.7)

3 (2 st 53 3 2 53 3 53 53

2 —(m-1)/2 _ . (o, y)au . (a, y) g . (a, )
e 07000 =~ 252, 2, L

q (6%) 1

, , . (1.8)
JlelP+1 el +1 J||a||2+1]

If, like in the statement of theorem 1.1, a function y € C®(TS? satisfies
X, =& = (—1)"x (x, &), then it is uniquely determined by the function

¢ =(lafF + D" D2y 0 &1 € CRY.
For a tensor field f € S(S™R"), the function
¢ = (lafF + D" D23y o &' € CF(RY
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is expressed through f by the formula

3 o0
ey, a) = § f ﬁll (y; + aut, y, + aot, Da, ... o, dt, (1.9)
) 1 J-

iy ey iy =

where a3 = 1. This easily follows from (1.1). Formula (1.9) has the obvious meaning: the
family of non-horizontal lines in R? is parameterized by the variable (y, o) € R*. Exactly this
parametrization was used by John in [4].

We can now formulate the main result of the current paper.

Theorem 1.2. In the case of n = 3, a function y € S(T'S?) belongs to the range of operator
(1.4) if and only if the following two conditions hold:

(1) x(x, =& = (=1)"x (x, &);
(2) being defined by (1.8), the function p € C®(R*) solves the equation

Lty =0, (1.10)
where

52 52
T 0y 0a,  Oy,00;

L (1.11)

Theorem 1.2 follows from theorem 1.1 with the help of the following statement.

Proposition 1.3. Let a function y € C>®(TS?) satisfy
X, =) = (=1)"x(x, &) (1.12)

for some non-negative integer m. Define functions 1 € C®(R> x (R3\ {0})) and
© € C*(R* by formulas (1.3) and (1.8) respectively. The function 1) satisfies equations (1.5)
Sforall1 < iy, ji,...,imsts 1 < 3 0f and only if the function ¢ solves equation (1.10).

Observe that, formally speaking, proposition 1.3 does not relate to the x-ray transform.
The proof of proposition 1.3 consists of changing independent variables in (1.5) and
demonstrating that, after the change, each equation of system (1.5) becomes equivalent to
(1.10). The proof is presented in the next section.

2. Proof of proposition 1.3

Given a function x € C®(TS?) satisfying (1.12), define ¢ € C*(R3 x (R* {0})) and
@ € C®(R* by formulas (1.3) and (1.8) respectively. Then the function ¢ satisfies (1.2). It
suffices to control the validity of equations (1.5) on the open set

R x R = {(x, §) € R x R} > 0} € R? x (R3\ {0)).

Indeed, if equations (1.5) hold for & > 0, they also hold for & < 0 in virtue of
P(x, —&) = (=" Y (x, £); and then, by continuity, equations (1.5) hold for all ¢ = 0.
Therefore we assume 1) € C®(R? x Ri) in what follows.

4
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Introduce the differential operators
Ji, Jo, J3 0 C2(R? x RY) — C®(R? x RY)
by

02 02 02 0?2 02 02
= - . b= - . L= — :
0,086 On0g, T 0mdE  ond& T 9wmdE,  0x0&

Ji 2.1)

Since factors on the left-hand side of (1.5) commute with each other, system (1.5) can be
written as
HBBY=0 (r+s+t=m+1). (2.2)

Hereafter (r, s, t) are non-negative integers.
Being defined by formulas (1.3) and (1.8) respectively, the functions ¢ € C* (R? x Ri)
and ¢ € C®(R*) are related by

Yx, ) =& oy, a), (2.3)

where

3 3 53, 53

In order to write (2.3) in a more invariant form, we introduce the smooth map

y=0p» = (xl - %x& Xy — %xs), a = (g, ) = (é é) (2.4)

F:R xR —RY F:(x, &~ (3, a) (2.5)

by formulas (2.4) and let F*: C™(R* — C®(R® x R3) be the pull-back operator, i.e.,
F*u =u o F for u € C*(R*. Then (2.3) is written as

¥ = &7 Fro. (2.6)

Lemma 21. On using the notation R? x Ri = {(, x2, 13, &, &, &)& > 0} and
R* = { (3, y» 1, @2)}, the identities

J{J;J;(ég”’lF*ga) = éF*(afaiLm“go) r+s+t=m+1) 2.7
3

hold for every function p € C>®(R*), where the differential operator L : C*°(R*) — C>®(R%"

is defined by (1.11).

Proposition 1.3 follows from lemma 2.1. Indeed, (2.6) and (2.7) imply

HIBI = éF*(a{a%Lm“gﬁ) r+s+t=m+ 1).
3

Since F* is an injective operator, each equation of system (2.2) is equivalent to L™ty = 0.
Before proving lemma 2.1, we study some properties of the operators Jj, J,, J;. First of

all, they commute with each other as any differential operators with constant coefficients. The

operators J; and —J, are obtained from each other by the transposition x; < x,, this sym-

metry will be used in what follows. Since J5 is independent of &5, it commutes with the

operator of multiplication by an arbitrary smooth function g(&5), i.e.

5
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J8(&3) = g(§) 5 (2.8)

For J; and J,, the corresponding commutator formulas look as follows:

he€) = sl + €)= he€) = g€ — g€ 2. 2.9)
0x, Oxy

From this, one obtains by induction the commutator formulas for powers of these operators

s _ d o s (o) s—0 8

. Be) =Y (=1 8 7(&) 5
o Ox,

(2.10)

a

Jg&) = Z(r]g(p)(§3)11rp o

P
p=0 Ox} =0

The Jacobi matrix of map (2.4) can be easily computed. We write the result in the
operator form

iF* = F*i’ iF* = F*i’ iF* - _F¥* ali + ozzi),
0x; o 0x; dy, Ox3 M 9y,
O pr_ X 0 + Lp*i O Mg 0 + Lp*i
3 & Oy & Oa 9§, & Oy, & O
0 X3 0 0 1 0 0
—F*=2F*lag— + az—) - —F*(Om— + Oéz—)- 2.11)
0&; & ( Iy, Iy, & doy ee%)

On using these formulas and definitions (1.11) and (2.1), we derive the important formulas
relating operators Ji, J,, J3 to L

L F* = LF*(OqL + i), LF* = iF*[OQL — i], J3F>’< = LF*L. (2.12)
& v, & oy 13

Finally, we will need a commutator formula for the operator L. As follows immediately
from definition (1.11),

LOtl = OqL — i, LOQ = OézL + i
0y, Oy,

This implies with the help of induction in r and s

0 0
Lofab = afadL + safoy '— — ral lay —. (2.13)

Proof of lemma 2.1. In the case of m = 0, the lemma states that

1 1
Ji(&; F*p) = ?F*(ale), L (&5 F¥p) = ?F*@Lw,
3 3

1
J(&5 F¥p) = F*(Lyp). (2.14)
3

The last of these equalities is almost obvious. Indeed, operator J; commutes with the
multiplication by 53’1 in virtue of (2.8), i.e.
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J(& Fre) = &1 FYe.

By (2.12), JsF* = &' F*L. Substituting this value into the previous formula, we obtain the
last of equalities (2.14). First two equalities on (2.14) are very similar to each other because of
the above-mentioned symmetry between J; and J,. We present the proof of the first equality.
First we permute J; and the multiplication by & 3’1 with the help of (2.9)

W& Fro) = W& HFo = &1 (hFHp — gf(%F*)%
2

Substituting the values JiF* = &'F*( oL + - from (2.12) and —F* F*Z ,)ay from
oYy
(2.11), we arrive to the first of equalities (2. 14) The lemma is thus proved in the case

of m = 0.
We continue the proof by induction in m. On assuming (2.7) to be valid for some m > 0,
we have to prove the equality

J LY Frp) = éF*(a{a%Lm”go) r+s+t=m+2). (2.15)
3

Again, this equality is almost obvious and is proved similarly to the last equality of (2.14) in
the case of r + s = 0. Therefore we assume r + s > 0. Moreover, we can assume r > 0
because of the above-mentioned symmetry between J; and J,. We start with the identity

HBI(EF*p) = BT &E T FRp) = I B UIE)E)  Fp

and try to move the factor &; to the first position. Since J3 commutes with the multiplication
by &, the formula can be written as

H BT EFF*o) = I (J3E)I4E ' Fo. (2.16)
By (2.10)

s s §— 6
hHh& =8 — sk !
6)61

Substitute this value into (2.16)
H BT ETF*o) = ([ &BIEN Fro — sI[ T3~ 188 JE PR, (2.17)
Quite similarly, on using the commutator formula

W =& + ' —
X

we transform (2.17) to the form

rrs m rrs m— r— 8 S m—
HBI(ESF*p) = GI BIEY T Fro + 1] 1_8x SEY T FRp
2

— ST aijfgm TF*p. (2.18)

Of course, the partial derivative 9

o commutes with J;. Therefore (2.18) can be written as
(recall that » > 0)
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3T (€5 Frp) = £3J1<J{ BT FRp)
+ra—(J{ WBIEYT FRp) — s—(f1 BN Fxp). (2.19)
By the induction hypothesis

1 1
W BHER Frp 52F*(af*‘ocaLm“@, HB~ e P = ?F*(Ozfa‘i’lL”'“sD)
3 3

multiplication by &7 2 to get

HIBBEFo) = & (W& FXai as L)
+ LiF*(al as Loy — —iF*(a Tl le+1<p) (2.20)
é-3 8)(?2 53 Ox; X

In the first term on the right-hand side, we permute J; and 5;2 with the help of the
commutator formula
3 0
o
that follows from (2.9). In this way (2.20) takes the form

Jl§3 - 532] - 253

rgs m 1 r— s m
H LI5S Frp) = 5—(J1F*)(011 a3 L)
3

29 prapogertip) - S pratay i),

_|_
53 axZ 53 Ox X1

Substituting the values - F *=F * 9 from (2.11), we obtain
rys m 1 r—1 _sr1m
J LI (&Y Frp) = é._(JlF*)(al 042L o)
3

r—2 .0 0
F*——(a{" a3 L") — —F*——(ajay 'L ).
§§ o, gz o

Then we insert value (2.12) for J,F*

+

J! J2J3 (f2 F*p) = —F*(OqL + i)(041 OC‘EL”’H(,O)
€3 ayZ
+ r— 2F>k_( ozszH(p) a (a{a%fle“gﬁ).
53 0y, 53 8)’1

After opening big parenthesis and grouping similar terms, this takes the form

1 .
L5 (€5 F¥p) = ?F* (ar(Laf Taf)Lm + 1)
3

~1
+ I e Oty ity — F*—(a oy 'Ly (221)

5% 0y, 53 Ay,
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By (2.13)

~1 ~1 151 0 2 s 0
Laj "oy = o a5l + saf a5 _y — (- Doy QET.
1 2

Substituting this value into (2.21) and grouping similar terms, we arrive to (2.15). This
finishes the induction step. |

3. Higher dimensions

Here, we discuss a generalization of theorem 1.2 to the higher-dimensional case. The
manifold of all non-horizontal lines in R” is parameterized similarly to the parametrization in
section 1. Formulas (1.8) and (1.9) have the obvious generalizations:

—(m— <O[, y>O(1 <Oé, y>0¢n,1 7<O" y>
( « 2+1) (m 1)/2()0())7 a):X N—7 5 o n—1 > >
lol P P N P
Qaj Q1 1
JalP+1 " JlalP+1 " il +1 o
py, a) = Z f ﬁl-.-im Oy + aut, oy, + apoit, Doy, .o, dt, 3.2)
. 0

iy ey big=1""7
where (y, @) € R*~! x R*~! = R?=D and a, = 1.

Theorem 3.1. A function x € S(TS") (n > 3) belongs to the range of operator (1.4) if and
only if the following two conditions hold:

(1) x(x, =& = (=D"x(x, &
(2) being defined by (3.1), the function p € C®(R*"~D) satisfies the equations

2 2 2 2
9 __9 9 - 9 =0 (3.3)
8ypl oy, Byql o, 8y1’m+1 day aquﬂ Oday

that are written for all indices 1 < py, G- Ppit> Qg <1 — 1

N +m
m—+ 1

N’ = (n — 1)(n — 2)/2. This is substantially less than (N —:_r;l) with N=nm — 1)/2.
m

The following statement is the higher-dimensional generalization of proposition 1.3. It
immediately implies theorem 3.1.

System  (3.3)  has ( ) linearly  independent equations, where

Proposition 3.2. Given a function 1 € C*(R" x (R"\ {0})) (n > 3) satisfying (1.2), let
the function ¢ € CP R x R"1) be related to ) by

(P(y’ Oé) = ¢(y1,-~-,yn,1, 0’ ALy ees A1, 1),
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_ em—1 é o E —1 E_ gnfl
1/)()6 g) £ Sgn(f )90()51 gnxnw-"xnfl fn fn I gn .

Then (x, §) satisfies equations (1.5) for all 1 < iy, ji, - simyits Jupy < 0 if and only if
0 (y, a) satisfies equations (3.3) for all 1 < py, Gy, .sPpy1> ey S 1 — L

Similarly to (2.1), we introduce the operators

0? 0?
Jp= - I<p<n-—-0D,
0x,0¢,  0x,08,
0? 0?
Jpg = - d<p,g<sn—1D.

Ox, 08,  0x,08,
In this notation, (1.5) is written as the system of equations
VARVLEN =0 (0 <p.gpp g <n—1 (3.4

that should be valid forry + --- +r,_;+ 51+ ... + s = m + 1.
We also introduce the operators
0? 0?
Oy,0a, Oy, 0,

qu: I<p,g<n—1.

Then (3.3) becomes

Lyg-Lp g ., 9=0 (1<p,qpsPpits Gupr <n— D 3.5)

To formulate a generalization of lemma 2.1 for any n > 3, we introduce the operator L")
for an (n — 1)-uple r = (r,...,1,_1) of non-negative integers by the recursive formulas

n—1
100 = 1d; [0+ = ZaqL(”Lqp A<p<n—-1), 3.6)
g=1
where 1, = (0,...,0, 1, 0,...,0) with 1 on the pth position. In particular

n—1

L) = Zaq - 3.7

The definition is correct. Indeed, LU+ '»*+14) can be written in two ways:
n—1 n—1
L+ L+1) — ZasL(r+ lq)Lsp — Z oy O‘tL(r)Lthspa
s=1 s, =1
n—1 n—1
Lo+1L,+1) — ZOéIL(rH”)Ltq = Z OlstrL(r)Lspqu-

=1 s,t=1

The right-hand sides coincide since operators L,, and Ly, commute (as any differential
operators with constant coefficients).

Definition (3.6) implies the important statement: Every operator L) can be represented
as a homogeneous polynomial of degree |r| =r + ---+r,_; in the variables
L,; (1 < p, g <n — 1) with coefficients polynomially depending on c.

10
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As above in section 2, we introduce the smooth map
F:R' xR} >R x R-T=R»2 F:(x &~ (3, a)
by

& &
yp:xp_gxm ang_n (1 p I’l—l)
The Jacobi matrix of F is easily computed similar to (2.11) which leads to the following
analogues of (2.12):

J,F* = 1F*L(”—|— A<p<n—1),
. dy,

U

JpgF* = %F*qu (1<p,g<n—1. (3.8)

n

The following statement serves as a base of the proof of proposition 3.2.

Lemma 3.3. Let k > 0 and n > 3 be integers. Given two sequences r = (ry,---,1,_1) and
(s1,-++,8x) of non-negative integers, set

m=nrn+...+r_1+8+ ... +8 — 1.
For every function ¢ € C®(R?>'=2), the identities

1
n l,l A K m—1 T S
T T T g T (6T FYp) = 2 SF¥(LLy, Ly, ¢) (3.9)

n

hold for all indices 1 < p,, q, ...px, ¢ <n— L

Let us demonstrate how proposition 3.2 follows from lemma 3.3. If a function
P =" LF*(y) satisfies (3.4), then the validity of (3.5) follows from (3.9) with r = (0, ...,0)
(recall F* is an injective operator). Conversely, if ¢ satisfies (3.5), then the right-hand side of

(3.9) is equal to zero since L")L pa -+ Lptq 1s ahomogeneous polynomial of degree m + 1in

L,,. Equating the left-hand side of (3.9) to zero, we obtain (3.4) for 1) = 521’1F *(p).
Before proving lemma 3.3, we derive some commutator formulas for operators partici-
pating in the lemma.
The commutator formula for J, (1 < p < n — 1) and the operator of multiplication by
&, appear as follows:

0
L& = &d, + — (3.10)
ax,,
For a sequence r = (ry,...,r;—;) of non-negative integers, set J" = J/'..J;"-l. The
commutator formula

n—1
0
JE, =&+ Yo G.11)
] 0x,,
is proved on the base of (3.10) by induction in |r| = r; + --- 4+ r,_;. In (3.11) as well as in
some formulas below, the following agreement is used: r,J"~" = 0 in the case of r,=0

although the operator J"~% is not defined in the latter case.

11
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The commutator formula
9 oy
LW, = o, LW — q— + 62> a,—, (3.12)
q q q@y q Z i

P s=1 s

where 6/ is the Kronecker symbol, follows immediately from (3.7).

Lemma 3.4. For a sequence r = (ry, ... ,1,_1), the product formula holds
n—1
LI = [O+1) Z:qu(’Hl’*l‘l)@i IT<p<sn—1). (3.13)
g=1 Y

Proof. We argue by induction in |7|. There is nothing to prove if |r| = 0. Otherwise 7, > 0
for some t and L") = ZZ;} a,LU"~1WL,,. Therefore

n—1
LA [ = ZL(lp)aqL(rf lr)qu_

q=1
This gives with the help of (3.12)
n—1 b n—1 o
LWL =S, L) — e + 552%8— Lr=1L,
g=1 yp s=1 yg

py o, oy,

n—1 n—1 8 a
= o LWL OL, + > o LW —L, — —Ly|  (3.14)
q=1 q P

On using the obvious relation

0 0 0
a_Lpt - 8_th = _Lqpa_7
Yy Yp Vs
the second sum on the right-hand side of (3.14) is transformed as follows:
n—1 n—1
ZaqL("’I') inz — iLq, = —ZaqL(Fl’)Lqpi = _L(r+1,771,)£.
g=1 8yq 8yp g=1 ayt ayl
Substitute this value into (3.14)
n—1
LD = ZaqL(lp)L(rflz)th — L(fﬂ,;*L)i. (3.15)
g=1 ayt
By the induction hypothesis
n—1
LD r=1) — fO+1,=1) _ Z(”s — 5T)L(r+1,ﬁlﬁls)i_
— : 0y,
s=1 s
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Substitute this value into (3.15)

n—1 n—1 n—1
L) — ZaqL(r+l,,—l,)th — Z(rx — 6§)ZaqL(’+ll)_1'_lf)thi — L(r+1p—1,)i'
g=1 s=1 g=1 ayv ayt
In view of (3.6) this can be written as
n—1 o b
LA () = [r+1,) Z("S — 5§)L(r+lp—h)_ B U o3 Ml Y2 By
s=1 9 s ayt

This coincides with (3.13).

Proof of lemma 3.3 Goes by induction in |r|. In the case of r = 0, (3.9) is proved by
induction in m exactly as in the proof of lemma 2.1.
Since operators J,; (1 < p, ¢ < n — 1) commute with the operator of multiplication by
&,» (3.9) can be written as

1
n 1 s s, m—2 ry s Ky
I L (G g e g (E0 T F ) = — F*(L )Lp:q] v Lyt ). (3.16)

n

The sequence (sy,...,s¢) and indices p;, g, ...,p, g, are fixed in the proof. Introducing
the functions

7 —2 % _
U = J;iql ...J;:qk &' Frp), = Llﬁiql ...Lgiqk ©,

we write (3.16) in the short form

J(ET) = ?F*(L%), (3.17)

n

where J" = J{1...J;"-1. We have to prove (3.17) for || > 0 under the induction hypothesis

n—

J'U = LZF*(LW@) for || =|r| — 1. (3.18)

n

With the help of (3.11), equation (3.17) takes the form

n-l v 1

EJV + S r gl = —F¥L"d). (3.19)
Ox, 2
q=1 q n

If [r] > 0, then r, > O for some p. Therefore (3.19) can be written as

n—1
Iy U 4 > oy = %F*(L“)cb). (3.20)
q=1 8.Xq 5n
By induction hypothesis (3.18),
T — ép*(L(rlp)(I)) (3.21)

n
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and
Jr—]qa_\:[/ — iJr—]q\I, — iziF*(L(r—lq)(I,) 1 F* L(r 1 )a(I) (322)
Ox,  Ox, £, Ox, fn 8yq
We have used ;) =F * , the permutability of —~ with J"~!4, and permutability of —
Xq

with LU~ 19, Substitute Values (3 21) and (3.22) into (3 20)

n—1
€Uy EDFHLC WD) + fiz F*[L(’ ”gq’] Lraoe). (23
n q=1 q n

With the help of the commutator formula

N 9
B &r=¢620, — 25”38

that is an analogous of (2.9) and (3.23) takes the form

1 2 0P 1= 0P 1
—7J F* L(rflp)cb F* L(r L)~ F* L(r )= F* L(r)(I)
¢ ( ) — 2 [ 5 ] =% [ o ] ( )-

n n p é.nq 1 q n

(3.24)

The first term on the left-hand side of (3.24) can be transformed with the help of (3.8) as
follows:

inF*(L(’”[?)cD) 1 F*(L(l VLU= d) + 1 F* 10— 1)8‘1)
£ & a, )

n n n

With the help of this, (3.24) takes the form

n—1
FX*LU L1 @) + Z(rq — (5{]’)F* L("lq)a—q) = F¥L"®). (3.25)
g=1 Byq
By lemma 3.4
-1
LODI=1)H — [P — nZ(rq _ 55)L<r—1q)‘9_q’_
q=1 ayq

Substituting this value into the first term on the left-hand side of (3.25), we arrive to the
identity. This completes the induction step. ]

Remark. The proof of lemma 3.3 can be considerably simplified if we use, instead of (3.13),
the dual product formula

Ly — po+1) |,,|L(r)ai. (3.26)
b

This coincides with (3.13) in the case of r = 1,.

14
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Indeed, on using the induction hypothesis and (3.26), we can write for [r] = m + 1

E T (€ FH () = gﬁﬂ[fzwp 4 mfflai]F*w
Xp

= &I NELF ) + mﬁif’fle*(gi]
Y,

P

:fiJrfnm_lF* L 1+ i 0| + mF* L(r)a_cp
ay,, 8yp

— P 10| L + 0 o| + mF* L(,>3_<p
9, ),

— F* (L(r+ 1,) <)0)

Unfortunately, the proof of (3.26) is rather cuambersome. Actually, we have proved formula
(3.26) implicitly since it is essentially equivalent to (3.9).
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