
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 352, Number 9, Pages 3937–3956
S 0002-9947(00)02532-0
Article electronically published on May 22, 2000

LOCAL BOUNDARY RIGIDITY
OF A COMPACT RIEMANNIAN MANIFOLD

WITH CURVATURE BOUNDED ABOVE

CHRISTOPHER B. CROKE, NURLAN S. DAIRBEKOV,
AND VLADIMIR A. SHARAFUTDINOV

Abstract. This paper considers the boundary rigidity problem for a compact
convex Riemannian manifold (M,g) with boundary ∂M whose curvature sat-
isfies a general upper bound condition. This includes all nonpositively curved
manifolds and all sufficiently small convex domains on any given Riemannian
manifold. It is shown that in the space of metrics g′ on M there is a C3,α-
neighborhood of g such that g is the unique metric with the given boundary
distance-function (i.e. the function that assigns to any pair of boundary points
their distance — as measured in M). More precisely, given any metric g′ in
this neighborhood with the same boundary distance function there is diffeo-
morphism ϕ which is the identity on ∂M such that g′ = ϕ∗g. There is also a
sharp volume comparison result for metrics in this neighborhood in terms of
the boundary distance-function.

1. Statement of the result

The general boundary rigidity problem reads: to which extent is a Riemann-
ian metric on a compact manifold with boundary determined from the distances
between boundary points? More precisely, it can be formulated as follows.

Let (M, g) be a compact Riemannian manifold with boundary ∂M . Let g′ be
another Riemannian metric on M . We say that g and g′ have the same boundary
distance-function if dg(x, y) = dg′(x, y) for arbitrary boundary points x, y ∈ ∂M ,
where dg (resp. dg′ ) represents distance in M with respect to g (resp. g′). It is
easy to give examples of pairs of metrics with the same boundary distance-function.
Indeed, if ϕ : M →M is an arbitrary diffeomorphism of M onto itself which is the
identity on the boundary, then the metrics g and g′ = ϕ∗g have the same boundary
distance-function. Here g′ = ϕ∗g is the pull-back of g under ϕ (i.e., for arbitrary
vectors ξ, η ∈ TxM we have 〈ξ, η〉′x = 〈ϕ∗ξ, ϕ∗η〉ϕ(x), where ϕ∗ : TxM → Tϕ(x)M is
the differential of ϕ at x and 〈 , 〉 (resp. 〈 , 〉′) is the inner product with respect to
the metric g (resp. g′)).

We say that a compact Riemannian manifold is boundary rigid if this is the
only type of nonuniqueness. More precisely, (M, g) is boundary rigid if, for every
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Riemannian metric g′ on M with the same boundary distance-function as g, there
is a diffeomorphism ϕ : M → M which is the identity on the boundary and for
which g′ = ϕ∗g. It was conjectured in [Cr1] that, SGM -manifolds (SGM —“strong
geodesic minimizing”) are always boundary rigid. This conjecture holds in a number
of cases (see for example [Cr2], [Ml], and [Ot]).

In the present article we prove “local” boundary rigidity for a compact dissipative
Riemannian manifold (M, g) with a certain upper bound of the curvature. The word
“local” means that we presume g′ to be sufficiently close to g. A similar result was
established recently in [SU] for M a convex domain in Rn and the metrics g and g′

sufficiently close to the Euclidean metric.
We recall that (M, g) is a compact dissipative Riemannian manifold (CDRM)

if M is compact, the boundary ∂M is strictly convex, and for every point x ∈ M
and every nonzero vector ξ ∈ TxM the maximal geodesic γx,ξ(t), satisfying the
initial conditions γx,ξ(0) = x and γ̇x,ξ(0) = ξ, is defined on some bounded interval
[τ−(x, ξ), τ+(x, ξ)].

Let ΩM = { (x, ξ) | x ∈ M, ξ ∈ TxM, |ξ| = 1 } stand for the unit sphere bundle
of M . The boundary ∂ΩM is the union of two submanifolds

∂±ΩM = { (x, ξ) ∈ ΩM | x ∈ ∂M,±〈ξ, ν(x)〉 ≥ 0 }
of inward and outward vectors. Here ν is the unit outward normal to ∂M .

Given (x, ξ) ∈ ΩM , we denote by K(x, ξ) the maximum of the sectional curva-
tures of all two-planes σ ⊂ TxM such that ξ ∈ σ.

For (M, g) a CDRM, we define the following invariant:

k+(M, g) = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)∫
0

tK+(γx,ξ(t), γ̇x,ξ(t)) dt,(1.1)

where

K+(x, ξ) = max{0,K(x, ξ)}.
In particular, k+(M, g) = 0 if (M, g) is nonpositively curved.

Given a natural number k and a real number α, 0 < α < 0, we denote by
Diffk,α0 (M) the set of all diffeomorphisms of M onto itself that are the identity on
the boundary and are given by functions of class Ck,αloc in local coordinates of M .
We endow Diffk,α0 (M) with the Ck,α-topology, defining some Ck,α-norm by means
of a finite atlas and a subordinate partition of unity. The resultant topology is
clearly independent of the choice of the norm.

We let Ck,α(S2τ ′M ) stand for the space of Ck,α-smooth covariant symmetric
tensor fields of degree 2 on M . We endow Ck,α(S2τ ′M ) with the natural Ck,α-
topology. Then Ck,α(S2τ ′M ) becomes a topological Banach space, i.e., a topological
vector space whose topology can be defined by some norm making it a Banach space.

Now, we are in a position to formulate our main result.

Theorem 1.1. Let a CDRM (M, g) satisfy the condition

k+(M, g) < 1/3.(1.2)

Then there is a neighborhood W ⊂ C3,α(S2τ ′M ) of g, with any 0 < α < 1, such that
if a metric g′ ∈ W has the same boundary distance-function as g, then there exists
a diffeomorphism ϕ : M →M in Diff3,α

0 (M) such that g′ = ϕ∗g; moreover, ϕ tends
to the identity as g′ tends to g (both in C3,α-topology).
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Remark. Condition (1.2) implies the simplicity of (M, g); cf. p. 120 of [Sh2]. This
means that every pair of points p, q in M can be joined by a unique minimizing
geodesic segment γpq that varies smoothly with p and q. Inequality (1.2) holds for
instance when M is nonpositively curved or is a sufficiently small convex piece of
an arbitrary Riemannian manifold.

The “infinitesimal” version of this “local” theorem was proved in [Sh1]. The
infinitesimal version says in particular that if g satisfies the condition of the theorem
and if gt is a smooth one parameter family of Riemannian metrics onM with g0 = g,
all having the same boundary distance-function, then gt is isometric to g. “Local”
uniqueness theorems can be considered part of a program for proving finiteness
theorems (the other part being compactness results).

The problem considered here is closely related to the isospectral problem (length
and eigenvalue spectra) for compact manifolds of negative curvature without bound-
ary. In [Cr-Sh] following the earlier work of [GK] the “infinitesimal” version was
proved. Also see [Sh3] for results in the Anosov case. However, not all of the tech-
niques used here can be extended to that case (for which a number of compactness
results already exists; see for example [An] and [BPP]). However the results of Sec-
tion 2 do extend. The main problem in extending these results to the no boundary
case lies in the non-existence of an appropriate “approximate Livčic theorem”.

In the next few paragraphs we explain how the paper is organized. Each section
treats a different aspect of the problem and many sections work more generally
than when dg = dg′ . For example, Sections 2 and 4 deal with any two sufficiently
close metrics while Section 3 deals with a metric g′ near a simple metric g such
that dg′ (x, y) ≥ dg(x, y) for all x, y on the boundary.

In Section 2 we “shift” any tensor g′ which is sufficiently close to a given metric
g to a solenoidal one with respect to g. That is, we find a diffeomorphism ϕ ∈
Diff3,α

0 (M) such that the pull-back g1 = ϕ∗g′ of g′ is a solenoidal tensor field with
respect to g (i.e., the g-divergence of g1 is 0).

In Section 3, we show that if g1 is sufficiently close to a simple metric g and if,
for all pairs x and y on the boundary, dg1(x, y) ≥ dg(x, y), then the ray transform
If of the tensor f = g1 − g is nonnegative (i.e. If(γ) ≥ 0 for every geodesic ray γ
from a boundary point to a boundary point). Also using Santaló’s formula we see
that λ ≡ (g, f)L2(S2τ ′M ) ≥ 0.

In Section 4, we consider the volume of metrics g1 which are sufficiently close
to a given metric g. We show that if Vol(g1) ≤ Vol(g), then the tensor f = g1 − g
satisfies λ ≤ 2

3‖f‖2L2(S2τ ′M ).
In Section 5, we consider metrics g1 close to a given dissipative metric g which

induce the same Riemannian metric on the boundary as the one induced by g. The
ray transform of f = g1−g satisfies a number of useful properties that are exploited
in Section 6.

In Section 6, we complete the proof of the main theorem with the help of Pestov’s
identity. In fact we show

Proposition 1.2. For any metric g satisfying the assumptions of Theorem 1.1
there is a neighborhood W ⊂ C3,α(S2τ ′M ) of g, with any 0 < α < 1, such that if
a metric g′ ∈ W induces the same Riemannian metric on the boundary as g and
dg′(x, y) ≥ dg(x, y) for all boundary points x and y, then Vol(g′) ≥ Vol(g) with
equality if and only if g′ is isometric to g.
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The main theorem follows directly from this since if g′ and g have the same
boundary distance-function, then they induce the same Riemannian metric on the
boundary and they have the same volume.

Proposition 1.2 may be of some independent interest since little is understood
about how inequalities between the boundary distance functions might relate the
volumes of Riemannian manifolds with boundary (see for example Gromov’s notion
of the filling volume [Gr]). The corresponding statement for the compact without
boundary case would be: If g is a metric on a compact negatively curved manifold
M and g′ is a metric sufficiently close to g and such that the g′-length of each free
homotopy class is ≥ the g-length, then Vol(g′) ≥ Vol(g) with equality holding if
and only if g′ is isometric to g. This statement remains an open question, but the
results in this paper lend it support.

2. Shift of a tensor field to a solenoidal one

Theorem 2.1. Let (M, g) be a compact Riemannian manifold with convex bound-
ary and let k ≥ 2 be an integer and 0 < α < 1 a real number. Then for every neigh-
borhood U ⊂ Diffk,α0 (M) of the identity there is a neighborhood W ⊂ Ck,α(S2τ ′M ) of
the metric tensor g such that for every metric g′ ∈ W there exists a diffeomorphism
ϕ ∈ U for which the tensor field ϕ∗g′ is solenoidal; i.e., δ(ϕ∗g′) = 0, where δ is the
divergence in the metric g.

Remark. The assumption that the boundary is convex slightly simplifies the proof
of the theorem but is not essential for its validity. A similar theorem holds for a
closed (M, g) under the assumption that there exists a dense geodesic in ΩM .

The proof consists in applying a Banach space version of the implicit function
theorem. To this end, we first of all must realize some neighborhood of the identity
in Diffk,α0 (M) as an open set in a Banach space.

Denote by Ck,α0 (τM ) the topological Banach space of vector fields of class Ck,α

on M which vanish on ∂M . Let Ω be the open neighborhood of the zero in
Ck,α0 (τM ) (k ≥ 1) which consists of the vector fields v satisfying the inequal-
ity |∇v| < 1. This inequality and the boundary condition v|∂M = 0 imply that
|v(x)| ≤ dist(x, ∂M) for all x ∈M . Therefore, the mapping

ev : M →M, ev(x) = expx v(x),(2.1)

is well-defined for all v ∈ Ω. It is easy to check that there is some smaller neigh-
borhood Ω′ ⊂ Ω of zero in Ck,α0 (τM ) such that ev ∈ Diffk,α0 (M) for v ∈ Ω′. The
mapping

Ω′ → Diffk,α0 (M), v 7→ ev(2.2)

is continuous. The inverse of (2.2), ϕ 7→ vϕ, is defined for ϕ ∈ Diffk,α0 (M) suf-
ficiently close to the identity as follows: vϕ(x) = γ̇(0), where γ : [0, 1] → M is
the geodesic such that γ(0) = x and γ(1) = ϕ(x); the existence of this geodesic
is guaranteed by the convexity of the boundary. We thus establish that (2.2) is a
homeomorphism of the neighborhood Ω′ of the zero in the Banach space Ck,α0 (τM )
onto some neighborhood of the identity in the space Diffk,α0 (M). Therefore, the
theorem will be proven once we prove the following assertion.

Lemma 2.2. Under the conditions of Theorem 2.1, let Ω ⊂ Ck,α0 (τM ) be a neigh-
borhood of zero such that the mapping (2.1) is defined for all v ∈ Ω. Then there
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exists a neighborhood G ⊂ Ck,α0 (S2τ ′M ) of zero and a continuous mapping β : G→ Ω
such that β(0) = 0 and the tensor field (eβ(f))∗(g + f) is solenoidal (in the metric
g) for all f ∈ G.

Proof. Consider the mapping

F : Ω× Ck,α(S2τ ′M )→ Ck−2,α(τ ′M )(2.3)

defined by

F (v, f) = δ(e∗v(g + f)), v ∈ Ω ⊂ Ck,α0 (τM ), f ∈ Ck,α(S2τ ′M ).(2.4)

We need to show that F is continuous and has continuous partial derivatives F ′v
and F ′f . To this end, represent F as the composition

F (v, f) = δR(v, g + f),(2.5)

where δ : Ck−1,α(S2τ ′M ) → Ck−2,α(τ ′M ) is the divergence in the metric g and the
mapping

R : Ω× Ck,α(S2τ ′M )→ Ck−1,α(S2τ ′M )(2.6)

is defined by

R(v, f) = e∗vf.(2.7)

Since δ is a first order linear differential operator, we have

F ′v(v, f) = δR′v(v, g + f), F ′f (v, f) = δR′f (v, g + f).(2.8)

Hence, the matter is reduced to verifying the continuity of the function R and of
its derivatives R′v and R′f .

Let (x1, . . . , xn) be a local coordinate system on M with domain U ⊂ M . For
x ∈ U and a sufficiently small vector ξ ∈ TxM , the point expx ξ belongs to U as
well; we denote the coordinates of this point by (E1(x, ξ), . . . , En(x, ξ)). According
to (2.1), the point ev(x) has coordinates (e1

v(x), . . . , env (x)) with

eiv(x) = Ei(x, v(x)).(2.9)

Now, (2.7) is rewritten in coordinates as

(R(v, f))ij =
∂epv
∂xi

∂eqv
∂xj

fpq◦ev.(2.10)

For every vector field v ∈ Ck,α0 (τM ), the function epv(x) is of class Ck,α. The fact
that the right-hand side of (2.10) lies in the space Ck−1,α(S2τ ′M ) and that it has
continuous dependence on (v, f) follow from the two facts:

(a) if ϕ, ψ ∈ Ck,α, then the product ϕψ also belongs to Ck,α and the mapping
Ck,α × Ck,α → Ck,α, (ϕ, ψ) 7→ ϕψ, is continuous;

(b) if ϕ, ψ ∈ Ck,α (k ≥ 1) and the composition ϕ◦ψ is defined, then ϕ◦ψ ∈ Ck,α
and the mapping Ck,α × Ck,α → Ck,α, (ϕ, ψ) 7→ ϕ◦ψ, is continuous.

Since the mapping (2.6) is linear in f , the partial derivative R′f is given by the
expression R′f (v, f)f̃ = e∗vf̃ and its continuity ensues from the same arguments as
for R.
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Differentiating (2.10) with respect to v, we find (using fpq = fqp) the partial
derivative R′v:

(R′v(v, f)ṽ)ij =
(
∂epv
∂xi

∂(Deqv)
∂xj

+
∂epv
∂xj

∂(Deqv)
∂xi

)
fpq◦ev

+ (Derv)
∂epv
∂xi

∂eqv
∂xj

∂fpq
∂xr
◦ev,

(2.11)

where Deiv is the variation of the function eiv which by (2.9) is given by the expres-
sion

Deiv =
∂Ei

∂ξr
(x, v(x))ṽ r(x).(2.12)

On using (2.11) and (2.12), the continuity of R′v follows from the same arguments
as above.

We now compute F ′v(0, 0). Setting v = 0, f = g in (2.11), (2.12) and using the
relations

eiv|v=0 = xi,
∂Ei

∂ξr
(x, 0) = δir,

we find

(R′v(0, g)ṽ)ij = gip
∂ṽp

∂xj
+ gjp

∂ṽp

∂xi
+
∂gij
∂xp

ṽp.

Rewriting the partial derivatives ∂ṽp/∂xi in terms of the covariant derivatives
∇iṽp = ∂ṽp/∂xi + Γpiq ṽ

q, we arrive at the equality

(R′v(0, g)ṽ)ij = ∇iṽj +∇j ṽi = 2(dṽ)ij ,

where ṽi = gij ṽ
j and d = σ∇ is the symmetric part of the covariant derivative in

the metric g. Thus we have shown that

R′v(0, g) = 2d.(2.13)

From (2.8) and (2.13) we see that

F ′v(0, 0) = δR′v(0, g) = 2δd.

As shown in Section 3.3 of [Sh2], the Dirichlet problem for the operator δd is
elliptic and has zero kernel and cokernel in appropriate Sobolev spaces. Now, the
Schauder-type estimates of [ADN] for elliptic boundary value problems in the spaces
Ck,α imply that the operator

F ′v(0, 0) = δd : Ck,α0 (τM )→ Ck−2,α(S2τ ′M )

has a continuous inverse.
We have thus verified that the function (2.3) satisfies all conditions of the implicit

function theorem [KA]. This theorem guarantees local solvability of the equation
F (v, f) = 0 in v over a neighborhood of the point (v, f) = (0, 0), which completes
the proof of Theorem 2.1.
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3. Nonnegativity of the ray transform and Santaló’s formula

In what follows, some notions (the ray transform, the vertical and horizontal
derivatives, the Pestov identity, and so on) are used without definitions. The defi-
nitions can be found in [Sh2].

For a tensor field f ∈ C2(S2τ ′M ) on a simple Riemannian manifold we define the
ray transform If as a map from {γ | γ : [0, 1]→ M is a geodesic segment between
boundary points} to the reals defined by

If(γ) =

1∫
0

fij(γ(t))γ̇i(t)γ̇j(t) dt.

The first goal of this section is to show:

Proposition 3.1. If (M, g) is a simple Riemannian manifold, then there exists
ε > 0 such that if f ∈ C2(S2τ ′M ) satisfies

‖f‖C2(S2τ ′M ) < ε

and if for every pair x, y ∈ ∂M the metric g1 = g + f satisfies

dg1(x, y) ≥ dg(x, y),

then If ≥ 0.

Let (M, g) be a simple Riemannian manifold (which implies in particular that
the boundary of M is strictly convex). Let ε > 0 be so small that for every
f ∈ C2(S2τ ′M ) such that

‖f‖C2(S2τ ′M ) < ε(3.1)

the metric

gτ = g + τf (0 ≤ τ ≤ 1)

is also simple for every τ ∈ [0, 1].
Fix two points p, q ∈ ∂M and let

γτ : [0, 1]→M, γτ (0) = p, γτ (1) = q

be the geodesic of gτ between p and q. The simplicity of the metrics gτ guarantees
that the γτ vary differentiably. Denote the energy of γτ by E(τ):

E(τ) =
∫
γτ

gτ dt =

1∫
0

gτij(γτ (t))γ̇iτ (t)γ̇jτ (t) dt.(3.2)

Then E(τ) is a C2-smooth function on [0, 1] and (since d
dβ |β=τ

∫
γβ
gτdt = 0)

E′(τ) = (Iτf)(γτ ) =

1∫
0

fij(γτ (t))γ̇iτ (t)γ̇jτ (t) dt,(3.3)

where Iτ is the ray transform in the metric gτ .
Proposition 3.1 now follows from:

Lemma 3.2. The function E(τ) is concave on [0, 1]; i.e., E′′(τ) ≤ 0.
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Proof. Let 0 ≤ τ < τ ′ ≤ 1. Since γτ is an extremal for gτ , we can write

E(τ ′) =
∫
γτ′

gτ
′
dt =

∫
γτ′

(gτ + (τ ′ − τ)f) dt =
∫
γτ′

gτ dt+ (τ ′ − τ)
∫
γτ′

f dt

≥
∫
γτ

gτ dt+ (τ ′ − τ)
∫
γτ′

f dt = E(τ) + (τ ′ − τ)E′(τ ′).

Thus,

E′(τ ′) ≤ E(τ ′)− E(τ)
τ ′ − τ .(3.4)

Similarly

E(τ) =
∫
γτ

gτ dt =
∫
γτ

(
gτ
′ − (τ ′ − τ)f

)
dt =

∫
γτ

gτ
′
dt− (τ ′ − τ)

∫
γτ

f dt

≥
∫
γτ′

gτ
′
dt− (τ ′ − τ)

∫
γτ

f dt = E(τ ′)− (τ ′ − τ)E′(τ).

Thus,

E′(τ) ≥ E(τ ′)− E(τ)
τ ′ − τ .(3.5)

Comparing (3.4) and (3.5), we obtain E′(τ) ≥ E′(τ ′), completing the proof of the
lemma.

We now recall the Santaló formula [Sl]:

∫
ΩM

F (x, ξ) dΣ2n−1(x, ξ) =
∫

∂+ΩM

〈ξ, ν(x)〉

 0∫
τ−(x,ξ)

F (γx,ξ(t), γ̇x,ξ(t)) dt

 dΣ2n−2(x, ξ)

(3.6)

whenever F ∈ C(ΩM).
Taking F (x, ξ) = fij(x)ξiξj , from (3.6) we deduce∫

M

 ∫
ΩxM

ξiξj dωx(ξ)

 fij(x) dV n(x) =
∫

∂+ΩM

〈ξ, ν(x)〉If(x, ξ) dΣ2n−2(x, ξ).

In the above and in the rest of the paper If(x, ξ) is the ray transform applied to
the geodesic γx,ξ which is parameterized by arc length on [τ−(x, ξ), 0]. Proposition
3.1 applies to these geodesic segments by a simple reparametrization.

The left-hand side of this equality is nothing but (1/n)λ with

λ = (g, f)L2(S2τ ′M).

We thus arrive at the formula

λ = n

∫
∂+ΩM

〈ξ, ν〉If dΣ2n−2.(3.7)
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Observe that λ = (g, f)L2(S2τ ′M) is half of the derivative of the volume of the
manifold (M, gτ ) with respect to τ at τ = 0. So we proceed with studying the
volume of (M, gτ ).

4. Volume of the metric gτ = g + τf

The purpose of this section is to prove:

Proposition 4.1. Let (M, g) be a compact Riemannian manifold with boundary.
There exists an ε > 0 such that if f ∈ C(S2τ ′M ) satisfies

‖f‖C(S2τ ′M ) < ε

and if Vol(g + f) ≤ Vol(g), then

λ = (g, f)L2(S2τ ′M) ≤
2
3
‖f‖2L2(S2τ ′M ).

Proof. We choose a domain D ⊂ Rn and a smooth mapping D →M that carries D
diffeomorphically onto an open set of M whose closure coincides with M . Denote
the volume of M in the metric gτ = g + τf by V (τ). Then

V (τ) =
∫
D

(detgτ )1/2 dx.(4.1)

We represent the integrand of (4.1) as follows:

detgτ = det(g + τf) = detg · det(E + τg−1f);

detgτ = detg · (1 + λ1τ + λ2τ
2 + · · ·+ λnτ

n),(4.2)

where λk is the k-th elementary symmetric function in the eigenvalues µ1, . . . , µn
of the matrix g−1f . The eigenvalues are real. Note that

〈g, f〉 = f ii = λ1(4.3)

and

|f |2 = fijf
ij =

n∑
k=1

µ2
k = λ2

1 − 2λ2.(4.4)

Our assumptions and (4.4) imply the estimate

|λk| ≤ Ck|f |k ≤ Ckεk.(4.5)

Using the inequality
√

1 + x ≥ 1 +
1
2
x− 1

4
x2 (|x| ≤ 1

2
),

from (4.2) we obtain

(detgτ )1/2 ≥ (detg)1/2

[
1 +

1
2

(λ1τ + λ2τ
2 + · · ·+ λnτ

n)

−1
4

(λ1τ + λ2τ
2 + · · ·+ λnτ

n)2

]
.

With the help of (4.5), the last inequality implies the estimate

(detgτ )1/2 ≥ (detg)1/2

[
1 +

1
2
λ1τ + (

1
2
λ2 −

1
4
λ2

1)τ2 − Cε|f |2τ3

]
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with some constant C depending only on n. Expressing λ2 through λ1 and |f |2 by
(4.4) and inserting the resultant expression in the preceding inequality, we obtain

(detgτ )1/2 ≥ (detg)1/2

[
1 +

1
2
λ1τ −

1
4
|f |2τ2 − Cε|f |2τ3

]
.

Integrating this inequality over D, we discover that

V (τ) ≥ V (0) +
1
2
λτ − 1

4
‖f‖2L2

τ2 − Cε‖f‖2L2
τ3.

Since V (1) ≤ V (0), this inequality implies that

λ ≤ (
1
2

+ Cε)‖f‖2L2(S2τ ′M).

Choosing an appropriately small ε, we may conclude that

λ ≤ 2
3
‖f‖2L2(S2τ ′M).

5. Local estimates for If near ∂0ΩM

On a CDRM M , the definition of the ray transform

If(x, ξ) =

0∫
τ−(x,ξ)

fij(γx,ξ(t))γ̇ix,ξ(t)γ̇
j
x,ξ(t) dt ((x, ξ) ∈ ∂+ΩM)(5.1)

and smoothness of the function τ−(x, ξ) on ∂+ΩM (see Lemma 4.1.1 of [Sh2]) imply
the boundedness of the ray transform in the Ck-norms

‖If‖Ck(∂+ΩM) ≤ Ck‖f‖Ck(S2τ ′M ).(5.2)

The condition that the metrics g and g + f induce the same metric on ∂M is

fij(x)ξiηj = 0 for x ∈ ∂M ; ξ, η ∈ Tx(∂M).(5.3)

Lemma 5.1. If M is a CDRM and a tensor field f ∈ C2(S2τ ′M ) satisfies (5.3),
then the ray transform If vanishes on the boundary ∂0ΩM of the manifold ∂+ΩM
together with all its first order derivatives.

Proof. In a neighborhood of a point x0 ∈ ∂M we can choose semigeodesic coordi-
nates (x1, . . . , xn) such that |xn| coincides with the distance from x to ∂M . In this
coordinate system, gin = δin and the Christoffel symbols satisfy the relations

Γinn = Γnin = 0, Γαβn = −gαγΓnβγ .

(In this and subsequent formulas, Greek indices vary from 1 to n− 1; and repeated
Greek indices imply the summation from 1 to n − 1 as usual). The outward unit
normal vector ν to ∂M has coordinates (0, . . . , 0, 1), and 〈ξ, ν〉 = ξn = ξn. The
second fundamental form of ∂M

II(ξ, ξ) = −Γnαβ(x1, . . . , xn−1, 0)ξαξβ

is positive definite because of the strict convexity of the boundary. Condition (5.3)
is written in the chosen coordinates as

fαβ |xn=0 = 0.(5.4)

Let (x1, . . . , xn; ξ1, . . . , ξn) be the associated coordinate system on TM . Then
(x1, . . . , xn−1; ξ1, . . . , ξn) constitute a local coordinate system on ∂(TM). The
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submanifold ∂+ΩM of ∂(TM) is determined in these coordinates by the rela-
tions gij(x)ξiξj = 1, ξn = ξn ≥ 0; and its boundary ∂0ΩM is determined by
gαβ(x)ξαξβ = 1, ξn = 0.

The equality

τ−(x, ξ)|ξn=0 = 0 ((x, ξ) ∈ ∂(TM))(5.5)

is evident. We will now find the derivative ∂τ−(x,ξ)
∂ξn

∣∣∣
ξn=0

. To this end, given a point

(x, ξ) ∈ ∂(TM), ξ 6= 0, we denote by

γ(t;x, ξ) = (γ1(t;x, ξ), . . . , γn(t;x, ξ))

the geodesic in M that satisfies the initial conditions

γα(0;x, ξ) = xα, γn(0;x, ξ) = 0, γ̇i(0;x, ξ) = ξi.

The equation

γn(t;x, ξ) = 0

has two solutions t = 0 and t = τ−(x, ξ). Representing the function γn(t;x, ξ) in
the form

γn(t;x, ξ) = ξnt−
1
2

Γnαβ(x)ξαξβt2 + ϕ(t;x, ξ)t3

with some smooth function ϕ(t;x, ξ), we see that τ−(x, ξ) satisfies the equation

ξn −
1
2

Γnαβ(x)ξαξβτ−(x, ξ) + ϕ(τ−(x, ξ);x, ξ)τ2
−(x, ξ) = 0.

Differentiating this equation with respect to ξn and putting ξn = 0, we obtain

∂τ−(x, ξ)
∂ξn

∣∣∣∣
ξn=0

= 2
(
Γnαβ(x)ξαξβ

)−1
.(5.6)

We have to prove that

If |ξn=0 = 0,
∂(If)
∂ξn

∣∣∣∣
ξn=0

= 0.(5.7)

The first of these equalities follows from definition (5.1) and (5.5). To prove the
second one, we rewrite (5.1) in the form

If(x, ξ) =

0∫
τ−(x,ξ)

F (t;x, ξ) dt,(5.8)

where

F (t;x, ξ) = fij(γ(t;x, ξ))γ̇i(t;x, ξ)γ̇j(t;x, ξ).(5.9)

Differentiating (5.8), we obtain

∂(If)
∂ξn

= −∂τ−
∂ξn

F (τ−(x, ξ);x, ξ) +

0∫
τ−(x,ξ)

∂F (t;x, ξ)
∂ξn

dt.

Putting ξn = 0 in this formula and using (5.5), we derive

∂(If)
∂ξn

∣∣∣∣
ξn=0

=
[
−∂τ−
∂ξn

F

]
t=0,ξn=0

.(5.10)
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In view of (5.4), equality (5.9) implies

F |t=0,ξn=0 = fαβ(x)ξαξβ = 0.

This relation together with (5.10) implies the second of equalities (5.7). The lemma
is proved.

Corollary 5.2. Let

L : C∞(∂+ΩM)→ C∞(∂+ΩM)

be a first order linear differential operator with smooth coefficients on the manifold
∂+ΩM . If f ∈ C2(S2τ ′M ) is a tensor field satisfying (5.3), then the estimate

|L(If)(x, ξ)| ≤ C〈ξ, ν(x)〉‖f‖C2(S2τ ′M)(5.11)

holds with some constant C independent of f .

Proof. For (x, ξ1) ∈ ∂+ΩM , we can choose a curve t 7→ ξt, 0 ≤ t ≤ 1, in the sphere
ΩxM which joins ξ1 with a point ξ0 such that

〈ξ0, ν(x)〉 = 0, 〈ξt, ν(x)〉 ≥ 0,
∣∣∣∣dξtdt

∣∣∣∣ =
π

2
〈ξ1, ν(x)〉.

By Lemma 5.1, L(If)(x, ξ0) = 0. Therefore,

L(If)(x, ξ1) =

1∫
0

d

dt
[L(If)(x, ξt)] dt.

The integral in this formula admits the estimate

|L(If)(x, ξ1)| ≤
1∫

0

|grad(L(If))(x, ξt)|
∣∣∣∣dξtdt

∣∣∣∣ dt ≤ C‖If‖C2 · 〈ξ1, ν(x)〉

which, together with (5.2), gives (5.11).

Lemma 5.3. Let M be a CDRM and a tensor field f ∈ C2(S2τ ′M ) satisfy (5.3).
Fix a semigeodesic coordinate system (x1, . . . , xn) in a neighborhood U of a point
x0 ∈ ∂M such that |xn| = dist(x, ∂M). Then the inequality

|ξα
v

∇n
h

∇α(If)(x, ξ) < C‖f‖C2 · 〈ξ, ν(x)〉(5.12)

holds for all x ∈ U ∩ ∂M with a constant C independent of f . Here the summation
from 1 to n− 1 is meant with respect to the index α.

Proof. The left-hand side of (5.12) can be written as follows:

ξα
v

∇n
h

∇α(If) = ξα
∂2(If)
∂xα∂ξn

+ L(If),

where L is a first order linear differential operator on ∂+ΩM . On taking Corollary
5.2 into account, estimate (5.12) follows from the inequality∣∣∣∣∂2If(x, ξ)

∂xα∂ξn

∣∣∣∣ ≤ C〈ξ, ν(x)〉‖f‖C2 .(5.13)

So our goal is proving estimate (5.13).
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Differentiating (5.8), we obtain

∂2(If(x, ξ))
∂xα∂ξn

=− ∂2τ−(x, ξ)
∂xα∂ξn

F (τ−(x, ξ);x, ξ)

− ∂τ−(x, ξ)
∂xα

∂

∂ξn
[F (τ−(x, ξ);x, ξ)](5.14)

− ∂τ−(x, ξ)
∂ξn

∂F

∂xα
(τ−(x, ξ);x, ξ) +

0∫
τ−(x,ξ)

∂2F (t;x, ξ)
∂xα∂ξn

dt.

Introducing the notation

ϕ(x, ξ) = F (τ−(x, ξ);x, ξ),(5.15)

we have
∂F

∂xα
(τ−(x, ξ);x, ξ) =

∂ϕ(x, ξ)
∂xα

− ∂F

∂t
(τ−(x, ξ);x, ξ)

∂τ−(x, ξ)
∂xα

.

Substituting this expression into (5.14), we obtain

∂2(If(x, ξ))
∂xα∂ξn

=− ∂2τ−(x, ξ)
∂xα∂ξn

ϕ(x, ξ)

− ∂τ−(x, ξ)
∂xα

(
∂ϕ(x, ξ)
∂ξn

+
∂F

∂t
(τ−(x, ξ);x, ξ)

)
(5.16)

− ∂τ−(x, ξ)
∂ξn

∂ϕ(x, ξ)
∂xα

+

0∫
τ−(x,ξ)

∂2F (t;x, ξ)
∂xα∂ξn

dt.

Formulas (5.9) and (5.15) imply the estimates

‖F‖Ck ≤ C‖f‖Ck , ‖ϕ‖Ck ≤ C‖f‖Ck
for every k. Therefore (5.16) implies the inequality∣∣∣∣∂2If(x, ξ)

∂xα∂ξn

∣∣∣∣
≤ C

(
|ϕ(x, ξ)| +

∣∣∣∣∂ϕ(x, ξ)
∂xα

∣∣∣∣+
∣∣∣∣∂τ−(x, ξ)

∂xα

∣∣∣∣ ‖f‖C1 + |τ−(x, ξ)| · ‖f‖C2

)
.

The latter inequality would imply estimate (5.13) if we demonstrate that

|τ−(x, ξ)| ≤ C〈ξ, ν(x)〉, ∂τ−(x, ξ)
∂xα

≤ C〈ξ, ν(x)〉,(5.17)

|ϕ(x, ξ)| ≤ C〈ξ, ν(x)〉‖f‖C1 ,

∣∣∣∣∂ϕ(x, ξ)
∂xα

∣∣∣∣ ≤ C〈ξ, ν(x)〉‖f‖C2 .(5.18)

Estimates (5.17) are evident because τ−(x, ξ) and ∂τ−(x.ξ)/∂xα are smooth
functions on ∂+ΩM vanishing on the boundary ∂0ΩM which is determined by the
equation 〈ξ, ν(x)〉 = 0.

To prove estimates (5.18) we first note that the function ϕ(x, ξ) (and, conse-
quently, ∂ϕ(x, ξ)/∂xα) vanishes on ∂0ΩM . Indeed, τ−(x, ξ) = 0 for (x, ξ) ∈ ∂0ΩM ,
and definitions (5.9) and (5.15) give us

ϕ(x, ξ) = fij(x)ξiξj .

Since fαβ(x) = 0 (1 ≤ α, β ≤ n− 1) and ξn = 0, this implies that ϕ(x, ξ) = 0.
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Given a point (x, ξ1) ∈ ∂+ΩM , we can join it with a point (x, ξ0) ∈ ∂0ΩM by
a curve (x, ξt) ∈ ∂+ΩM (0 ≤ t ≤ 1) such that |dξt/dt| = 〈ξ1, ν(x)〉. Using the
representations

ϕ(x, ξ1) =

1∫
0

d

dt
(ϕ(x, ξt)) dt,

∂ϕ(x, ξ1)
∂xα

=

1∫
0

d

dt

(
∂ϕ

∂xα
(x, ξt)

)
dt,

we obtain the estimates

|ϕ(x, ξ1)| ≤
1∫

0

‖ϕ‖C1

∣∣∣∣dξtdt
∣∣∣∣ dt ≤ C〈ξ1, ν(x)〉‖f‖C1 ,

∣∣∣∣∂ϕ(x, ξ1)
∂xα

∣∣∣∣ ≤
1∫

0

‖ϕ‖C2

∣∣∣∣dξtdt
∣∣∣∣ dt ≤ C〈ξ1, ν(x)〉‖f‖C2

that are equivalent to (5.18). The lemma is proved.

6. Proof of Theorem 1.1

To prove the main theorem, it is sufficient to prove Proposition 1.2. Thus we
let (M, g) satisfy the hypotheses of Proposition 1.2 and let g1 be a metric C3,α-
close enough to g and such that the boundary distance-functions satisfy dg1(x, y) ≥
dg(x, y) for all x, y ∈ ∂M , the induced Riemannian metrics on ∂M coincide, and
Vol(g1) ≤ Vol(g). We will show that g1 is isometric to g. In view of Theorem
2.1, we may assume that the tensor field f = g1 − g is solenoidal and satisfies the
inequality ‖f‖C2(S2τ ′M ) < ε with an arbitrary small ε > 0. By choosing ε sufficiently
small and applying Proposition 3.1, equation (3.7), and Proposition 4.1 we see that
the tensor field f satisfies

δf = 0,(6.1)

‖f‖C2(S2τ ′M ) < ε,(6.2)

If ≥ 0,(6.3)

n

∫
∂+ΩM

〈ξ, ν〉If dΣ2n−2 = λ ≤ 2
3
‖f‖2L2(S2τ ′M ).(6.4)

We will prove that f = 0.
Given f , we define the function u ∈ C2(T 0M \ T (∂M)) by the equality

u(x, ξ) =

0∫
τ−(x,ξ)

fij(γx,ξ(t))γ̇ix,ξ(t)γ̇
j
x,ξ(t) dt ((x, ξ) ∈ T 0M),(6.5)

where T 0M = {(x, ξ) ∈ TM | ξ 6= 0} is the manifold of nonzero tangent vectors.
This function satisfies the boundary conditions

u|∂−ΩM = 0
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and

u(x, ξ) = If(x, ξ) ≥ 0 for (x, ξ) ∈ ∂+ΩM.(6.6)

The inequality (6.6) is just (6.3).
Since f is solenoidal, the Pestov integral identity for the function u (formula

(4.6.13) of [Sh2]) is:∫
ΩM

[
|
h

∇u|2 −Rijklξiξk
v

∇ju ·
v

∇lu+ (n+ 2)|Hu|2
]
dΣ

=
∫

∂+ΩM

[
L(If)− 4(If)fijξiνj

]
dΣ2n−2,

(6.7)

where H is the vector field on ΩM that generates the geodesic flow, and L is the
quadratic first order differential operator on the manifold ∂+ΩM which is expressed
in semigeodesic coordinates (x1, . . . , xn−1, xn = distance to the boundary) as follows
(formula (4.6.14) of [Sh2]):

Lu = ξn
h

∇αu ·
v

∇αu− ξα
h

∇αu ·
v

∇nu.(6.8)

The heart of the rest of the proof is:

Lemma 6.1. There is a constant C independent of f and such that∫
∂+ΩM

[
L(If)− 4(If)fijξiνj

]
dΣ2n−2 ≤ C‖f‖C2(S2τ ′M)λ.

We will come back to the proof of this lemma but we first show how the theorem
will follow.

Lemma 6.1, along with (6.7), gives∫
ΩM

[|
h

∇u|2 + (n+ 2)|Hu|2] dΣ ≤
∫

ΩM

Rijklξ
iξk

v

∇ju ·
v

∇lu dΣ + C‖f‖C2λ.(6.9)

The integral on the right-hand side of (6.9) can be estimated by formula (4.7.8) of
[Sh2]: ∫

ΩM

Rijklξ
iξk

v

∇ju ·
v

∇lu dΣ ≤ 3k+(n+ 2)
∫

ΩM

|Hu|2 dΣ + 3k+

∫
ΩM

|
h

∇u|2 dΣ,

where k+ = k+(M, g) is defined by (1.1). With the help of this inequality, (6.9)
gives

(1− 3k+)

 ∫
ΩM

|
h

∇u|2 dΣ + (n+ 2)
∫

ΩM

|Hu|2 dΣ

 ≤ C‖f‖C2λ.

Using (6.2) and (6.4), we obtain

(1− 3k+)

 ∫
ΩM

|
h

∇u|2 dΣ + (n+ 2)
∫

ΩM

|Hu|2 dΣ

 ≤ Cε‖f‖2L2
.(6.10)
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Finally, the kinetic equation Hu = fij(x)ξiξj implies the estimate

‖f‖2L2
≤ C′

∫
ΩM

|Hu|2 dΣ(6.11)

with some constant C′ independent of f . Combining (6.10) and (6.11), we arrive
at the final estimate

(1− 3k+)
∫

ΩM

|
h

∇u|2 dΣ + [(n+ 2)(1− 3k+)− CC′ε]
∫

ΩM

|Hu|2 dΣ ≤ 0.(6.12)

Since we can choose ε > 0 arbitrarily small, we can choose it so that the coefficients
of both integrals in (6.12) are positive. Therefore (6.12) implies that Hu ≡ 0 and
hence f ≡ 0. The theorem is proved.

Proof of Lemma 6.1. First we transform the integral
∫

∂+ΩM

Lu dΣ2n−2 by integra-

tion by parts. To this end we rewrite (6.8) as follows:

Lu = ai
v

∇iu,(6.13)

where

aα = ξn
h

∇αu, an = −ξα
h

∇αu.(6.14)

We extract a divergent term from (6.13):

Lu =
v

∇i(uai)− u
v

∇iai =
v

∇i(uai)− ξnu
v

∇α
h

∇αu+ u
v

∇n(ξα
h

∇αu).

Integrating this equality over ∂+ΩM and transforming the first term by Gauss —
Ostrogradskĭı, we obtain∫

∂+ΩM

Lu dΣ2n−2 = k

∫
∂+ΩM

u〈ξ, a〉 dΣ2n−2

−
∫

∂+ΩM

[
〈ξ, ν〉u

v

∇α
h

∇αu− u
v

∇n(ξα
h

∇αu)
]
dΣ2n−2.

The coefficient k depends on the degree of homogeneity of a. Its value does not
matter because 〈ξ, a〉 = 0 as we see from (6.14). Consequently,∫

∂+ΩM

Lu dΣ2n−2 = −
∫

∂+ΩM

[
〈ξ, ν〉u

v

∇α
h

∇αu− uξα
v

∇n
h

∇αu
]
dΣ2n−2.

We thus see that ∫
∂+ΩM

[
L(If)− 4(If)fijξiνj

]
dΣ2n−2

= −
∫

∂+ΩM

〈ξ, ν〉If ·
v

∇α
h

∇
α

(If) dΣ2n−2

+
∫

∂+ΩM

If · ξα
v

∇n
h

∇α(If) dΣ2n−2 − 4
∫

∂+ΩM

If · fijξiνj dΣ2n−2.(6.15)
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Some terms in this equation are written by using local coordinates. Nevertheless, all
the integrands are invariant; i.e., they are independent of the choice of coordinates.

We will now estimate each of the integrals on the right-hand side of (6.15).
Using the nonnegativity of If , we obtain∣∣∣∣∣∣∣

∫
∂+ΩM

〈ξ, ν〉If ·
v

∇α
h

∇α(If) dΣ2n−2

∣∣∣∣∣∣∣ ≤ ‖If‖C2

∫
∂+ΩM

〈ξ, ν〉If dΣ2n−2.

Together with (6.4) and (5.2), this gives∣∣∣∣∣∣∣
∫

∂+ΩM

〈ξ, ν〉If ·
v

∇α
h

∇α(If) dΣ2n−2

∣∣∣∣∣∣∣ ≤ C‖f‖C2λ(6.16)

with some constant C independent of f .
Applying Lemma 5.3, we obtain

∣∣∣∣∣∣∣
∫

∂+ΩM

If · ξα
v

∇n
h

∇α(If) dΣ2n−2

∣∣∣∣∣∣∣ ≤ C‖f‖C2

∫
∂+ΩM

〈ξ, ν〉If dΣ2n−2 = C‖f‖C2λ.

(6.17)

The estimation of the last integral on the right-hand side of (6.15),

J =
∫

∂+ΩM

If · fijξiνj dΣ2n−2,(6.18)

is more troublesome because the factor fijξiνj of its integrand does not vanish
on ∂0ΩM (more precisely, we are not able to prove that it vanishes a priori). To
estimate this integral, we introduce the mapping

Φ : ∂+ΩM → ∂+ΩM(6.19)

by putting

Φ(x, ξ) = (y, η), where y = γx,ξ(τ−(x, ξ)), η = −γ̇x,ξ(τ−(x, ξ)).(6.20)

It is evident that Φ is smooth and Φ2 = Id. Consequently, Φ is a diffeomorphism.
One can see (Lemma [Cr3]) by a double use of Santaló’s formula and the fact that
the map v 7→ −v is measure preserving on ΩM that the absolute value of the
Jacobian on ∂+ΩM \ ∂0ΩM of Φ is 〈ξ,ν(x)〉

〈η,ν(y)〉 ; i.e.,

〈ξ, ν(x)〉
〈η, ν(y)〉 =

∣∣∣∣dΣ2n−2(y, η)
dΣ2n−2(x, ξ)

∣∣∣∣ .(6.21)

We need to study what happens on the boundary ∂0ΩM of ∂+ΩM . The relations

y(x, ξ) = x, η(x, ξ) = −ξ for (x, ξ) ∈ ∂0ΩM(6.22)

are evident. We will use the same semigeodesic coordinates as in the proof of
Lemma 5.1. Early in the proof of Lemma 5.1 we saw

τ− = 0,
∂τ−
∂ξn

= 2
(
Γnαβξ

αξβ
)−1

(6.23)
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hold on ∂0ΩM . Differentiating (6.20) and using (6.23), we obtain on ∂0ΩM

∂ηn

∂ξn
= −1− γ̈n∂τ−

∂ξn
= −1 + 2Γnαβξ

αξβ(Γnαβξ
αξβ)−1 = 1.

Since 〈ξ, ν〉 = ξn and 〈η, ν〉 = ηn in the chosen coordinates, the latter relation
implies the representation

〈η, ν〉 =
〈ξ, ν〉

1 + 〈ξ, ν〉ϕ(6.24)

with some ϕ ∈ C∞(∂+ΩM). In particular, this means that the absolute value of
the Jacobian of Φ (i.e. 〈ξ,ν〉〈η,ν〉 ) goes to 1 as (x, ξ) approaches ∂0ΩM .

We observe that the ray transform is invariant under Φ, i.e.,

If(y, η) = If(x, ξ) for (y, η) = Φ(x, ξ).

Using the change of variables (y, η) = Φ(x, ξ) in (6.18), we obtain

J =
∫

∂+ΩM

(If)(y, η) · fij(y)ηiνj(y) dΣ2n−2(y, η)

=
∫

∂+ΩM

(If)(x, ξ) · fij(y(x, ξ))ηi(x, ξ)νj(y(x, ξ))
〈ξ, ν〉
〈η, ν〉 dΣ2n−2(x, ξ).

Adding this equality to (6.18), we obtain

(6.25) 2J =
∫

∂+ΩM

(If)(x, ξ)〈ξ, ν〉
[
fij(y(x, ξ))ηi(x, ξ)νj(y(x, ξ))

〈η, ν〉

+
fij(x)ξiνj(x)
〈ξ, ν〉

]
dΣ2n−2(x, ξ).

We now need to bound the expression in brackets from above. We rewrite it as
the sum of two terms:

2J =
∫

∂+ΩM

(If)(x, ξ)〈ξ, ν〉(A +B)dΣ2n−2(x, ξ),(6.26)

where

A =
fij(y(x, ξ))ηi(x, ξ)νj(y(x, ξ)) + fij(x)ξiνj(x)

〈η, ν〉

and

B = fij(x)ξiνj(x)
[

1
〈ξ, ν〉 −

1
〈η, ν〉

]
.

Equations (6.24) and the compactness of M tell us that the part in brackets of
B is uniformly bounded by a constant independent of f . So B is bounded by a
constant times ‖f‖C0.
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Away from ∂0ΩM (i.e. 〈ξ, ν〉 ≥ constant > 0) A is clearly bounded by a
constant times ‖f‖C0. Near the boundary the numerator of A is bounded by
‖∇f‖ρ(x, y(x, ξ)) + ‖f‖C0|η + ξ| (where we interpret η + ξ as the vector at x with
coordinates (ξi + ηi)) . Now by Lemma 4.1.2 of [Sh2], ρ(x, y(x, ξ)) = |τ−(x, ξ)| ≤
constant 〈ξ, ν(x)〉 and hence the relations (6.24) tell us that near the boundary A
is bounded by a constant times ‖f‖C1. Thus we see that A is bounded on all of
∂+ΩM by a constant times ‖f‖C1.

Combining these estimates with equation (6.26) we get

|J | ≤ C‖f‖C1

∫
∂+ΩM

〈ξ, ν〉If dΣ2n−2 = C‖f‖C1λ.(6.27)

Lemma 6.1 (and hence Theorem 1.1) now follows by combining (6.16), (6.17)
and (6.27).

Added in Proof. The hypothesis K+(M, g) ≤ 1/3 of the main theorem can be im-
proved to K+(M, g) < (n + 3)/(2n + 4) where n = dimM , by a more careful
estimation of the curvature dependent of the Pestov identity.
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