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Abstract
Let f be a matrix function on a bounded domain D ⊂ R

n furnished with
a Riemannian metric. For a unit speed geodesic γ : [0, l] → D between
boundary points, let �[f ](γ ) = U(l), where U(t) is the solution to the
Cauchy problem DU/dt = (Qγ̇ (t)f (γ (t)))U,U(0) = E,E being the unit
matrix. Here Qξ is an orthogonal projection onto the space {h ∈ gl(Cn)|hξ =
h∗ξ = 0, tr h = 0}. We consider the inverse problem of recovering the
function f from the data �[f ] known on the manifold of all unit speed
geodesics between boundary points. The problem arises in optical tomography
of weakly anisotropic media. The local uniqueness theorem is proved: a
C1-small function f can be recovered from the data uniquely up to a natural
obstruction.

1. Introduction

This paper is a continuation of [4] that is referred to as [NS]. The reference (NS.1.1) stands for
formula (1.1) of [NS]. Here, we consider the problem posed at the end of section 2 of [NS].
We start with the physical motivation of the problem.

Let us consider propagation of time-harmonic electromagnetic waves of frequency ω in a
medium with the zero conductivity, unit magnetic permeability and the dielectric permittivity
tensor of the form

εij = n2δij +
1

k
χij , (1.1)

where k = ω/c is the wave number, c being the light velocity. Here n > 0 is a function of
a point x ∈ R

3, and the tensor χij = χij (x) determines a small anisotropy of the medium.
The smallness is emphasized by the factor 1/k. The tensor χ is assumed to be Hermitian,
χij = χ̄ji .

In the scope of the zero approximation of geometric optics, propagation of electromagnetic
waves in such media is described as follows. Exactly as in the background isotropic medium,
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Figure 1. Polarization ellipse.

light rays are geodesics of the Riemannian metric

dt2 = n2(x)|dx|2; (1.2)

the electric vector E(x) and magnetic vector H(x) are orthogonal to each other as well as to
the ray, and the polarization vector η = n−1|E|−1E satisfies the equation (generalized Rytov’s
law)

Dη

dt
= i

2n2
πγ̇ χη (1.3)

along a geodesic ray γ (t). Here πγ̇ is the orthogonal projection onto the plane γ̇ ⊥, and
D/dt = γ̇ k∇k is the covariant derivative along γ in metric (1.2).

For a fixed unit speed geodesic γ (t), let (e1(t), e2(t), e3(t) = γ̇ (t)) be an orthonormal
basis parallel along γ in the sense of metric (1.2). Let η(t) = η1(t)e1(t) + η2(t)e2(t) be the
representation of the polarization vector in this basis, and χij be the components of the tensor
χ in this basis. Equation (1.3) is equivalent to the system

dη1

dt
= i

2n2
(χ11η1 + χ12η2),

dη2

dt
= i

2n2
(χ21η1 + χ22η2).

(1.4)

The vectors η and E are complex. It is the real vector

ξ(t, T ) = Re[η(t) ei(kt−ωT )]

that has a physical meaning. We fix a point t = t0 on the ray. With time T , the end of the
vector

ξ(T ) = Re[(η1e1 + η2e2) ei(kt0−ωT )]

runs an ellipse in the plane of vectors e1, e2; it is called the polarization ellipse. The shape
and disposition of the ellipse are determined by the angles α and ψ shown in figure 1. The
sign of ψ depends on whether the polarization is right or left. The angle α is not defined if
ψ = ±π/4 (the case of circular polarization).
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Only the angles α and ψ are measured in practical polarimetry. Simple arguments
presented in section 6.1 of [5] lead to the following conclusion: the complex ratio η2/η1 of
the components of the vector η is in one-to-one correspondence with the pair of the angles
(α, ψ) that determine the shape and disposition of the polarization ellipse. Note also that
|η1|2 + |η2|2 = const. on the ray since (1.4) is a system with a skew-Hermitian matrix.

Let us now consider the inverse problem. Assume a medium under investigation to be
contained in a bounded domain D ⊂ R

3 with a smooth boundary. The background isotropic
medium is assumed to be known, i.e., metric (1.2) is given. The domain D is assumed to be
convex with respect to the metric, i.e., for any two boundary points x0, x1 ∈ ∂D, there exists
a unique unit speed geodesic γ : [0, l] → D such that γ (0) = x0, γ (l) = x1. We consider the
inverse problem of determining the anisotropic part χij of the dielectric permittivity tensor.
The data for the inverse problem are the angles α and ψ that are measured for outcoming light
along every unit speed geodesic γ : [0, l] → D with the endpoints on the boundary of D. We
denote by U(l) the fundamental matrix of system (1.4), i.e.,⎛

⎝η1(l)

η2(l)

0

⎞
⎠ =

⎛
⎝u11 u12 0

u21 u22 0
0 0 1

⎞
⎠

⎛
⎝η1(0)

η2(0)

0

⎞
⎠ , U(l) =

⎛
⎝u11 u12 0

u21 u22 0
0 0 1

⎞
⎠ .

In [NS], studying the inverse problem, we assumed the matrix U(l) to be completely known.
Now, by the above conclusion, we assume that the ratio η2(l)/η1(l) is known as a function of
the ratio η2(0)/η1(0), for all solutions to system (1.4). As one can easily see, this is equivalent
to the fact that the matrix U(l) is known up to a factor⎛

⎝ eiλ 0 0
0 eiλ 0
0 0 1

⎞
⎠ (1.5)

with a real λ. If the tensor field χ/n2 is sufficiently small, λ on (1.5) can be assumed to satisfy

|λ| < π/2 (1.6)

since the fundamental matrix U(l) is sufficiently close to the unit matrix. In other words, the
results of the measurement do not change if a solution (η1(t), η2(t)) is multiplied by eiλ(t),
where λ(t) is a real function satisfying λ(0) = 0 and |λ(t)| < π/2.

Using the last observation, we change the variables in system (1.4) as follows:

f = i

2n2
χ, ζ = exp

[
− i

4n2

∫ t

0
(χ11 + χ22) dt

]
η.

Then the system is transformed to the following one:

dζ1

dt
= 1

2
(f11 − f22) ζ1 + f12ζ2,

dζ2

dt
= f21ζ1 +

1

2
(f22 − f11) ζ2.

(1.7)

Let us observe that the structure of this system coincides with that of system (1.22) of [1].
As compared with (1.4), system (1.7) has the next advantage: the results of the

measurements allow us to determine completely the fundamental matrix U(l) of system
(1.7). Indeed, note that the trace of the matrix of this system is equal to zero. Therefore the
fundamental matrix of the system satisfies the condition

det U(l) = 1. (1.8)
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Assume that, for every solution ζ(t) to system (1.7), the ratio ζ2(l)/ζ1(l) is known as a function
of ζ2(0)/ζ1(0). As above, this allows us to determine the matrix U(l) up to a factor (1.5).
Under assumption (1.6), the factor is uniquely determined by condition (1.8).

Let gl(C3) be the space of all linear operators on C
3. Equations (1.7) are written in a basis

(e1(t), e2(t), e3(t) = γ̇ (t)) related to the ray γ . To find an invariant form of the equations, we
note that the matrix of the system

Qγ̇ f =
⎛
⎝

1
2 (f11 − f22) f12 0

f21
1
2 (f22 − f11) 0

0 0 0

⎞
⎠

considered as the linear operator on C
3 is the orthogonal projection of the tensor f onto the

subspace

{h ∈ gl(C3)|hγ̇ = h∗γ̇ = 0, tr h = 0}.
Thus system (1.7) takes the invariant form

Dζ

dt
= (Qγ̇ f )ζ. (1.9)

Instead of (1.9), we will consider the corresponding operator equation

DU

dt
= (Qγ̇ f )U. (1.10)

Equation (1.10) has a unique solution satisfying the initial condition U(0) = E, where E is the
identity operator. Since Qγ̇ f is a trace-free skew-Hermitian operator satisfying (Qγ̇ f )γ̇ = 0,
the solution U(t) belongs to SU(3) and satisfies U(t)γ̇ (t) = γ̇ (t). The final value of the
solution

�[f ](γ ) = U(l)

is the data for the inverse problem. Given the function �[f ] on the set of unit speed
geodesics between boundary points, we have to determine the tensor field f = (fij (x)) on the
domain D.

We consider the inverse problem in a more general setting. Instead of a domain D ⊂ R
3

with metric (1.2), we will consider a convex non-trapping manifold (CNTM in brief, see the
definition in [NS]) (M, g) of an arbitrary dimension n � 3 and an arbitrary complex tensor
field f = (fij ) on M . In such a setting, equation (1.10) makes sense along a geodesic γ .

Quite similarly to section 2 of [NS], the inverse problem can be equivalently posed as
follows. Given a tensor field f ∈ C∞(

τ 1
1 M

)
on a CNTM (M, g), let us consider the boundary

value problem

HU = (Qξf )U on �M, U |∂−�M = E. (1.11)

The inverse problem is now posed as follows: one has to recover the tensor field f given the
trace

�[f ] = U |∂+�M

of the solution to (1.11). In the same way as in [NS], this nonlinear inverse problem is reduced
to the linear problem of recovering f from the data

F [f ] = u|∂+�M,

where u is the solution to the boundary value problem

Hu = p(Qξf )q, u|∂−�M = 0
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with some weights p and q that are semibasic tensor fields. The linear problem is studied
in sections 2 and 3. In section 4, we present our main result on the local uniqueness in the
nonlinear inverse problem.

The problem under consideration is of some applied interest for photoelasticity [2, 6] and
for other kinds of optical tomography [3]. As the authors of [2] insist, the nonlinear problem
is important for photoelasticity in the case of testing solid objects with big point loads.

2. The linear problem in dimensions greater than 3

First we are going to correct some inaccuracy made in [NS]. Let us recall that a number k(M, g)

has been defined by formula (NS.3.6) for a CNTM (M, g). Unfortunately, the definition given
in [NS] is wrong and must be replaced with the following one:

k(M, g) = sup
(x,ξ)∈∂−�M

∫ τ+(x,ξ)

0
tK(γx,ξ (t)) dt, (2.1)

where K(x) is the supremum of the absolute values of sectional curvatures at the point x over
all two-dimensional subspaces of TxM . This coincides with definition (5.2.8) of [5].

Let us recall that, for a point x of a Riemannian manifold (M, g) and a vector
0 �= ξ ∈ TxM , we have introduced the linear operator Qξ : gl

(
T C

x M
) → gl

(
T C

x M
)

as
the orthogonal projection onto the subspace

{
f ∈ gl

(
T C

x M
)∣∣f ξ = f ∗ξ = 0, tr f = 0

}
.

Obviously, Qξg = 0, g being the metric tensor. If f is a scalar multiple of the metric tensor,
i.e., f = λg with λ ∈ C∞(M), equation (1.11) gives no information on f . Therefore we
will consider the inverse problem on the subspace of C∞(

τ 1
1 M

)
consisting of trace-free tensor

fields, i.e., f will always be assumed to satisfy

tr f = f i
i = 0. (2.2)

The quadratic form
∫
�xM

|Qξf |2 dωx(ξ) is positive definite on the space of second-rank tensors
at x satisfying (2.2). Therefore the estimate

|f (x)|2 � C

∫
�xM

|Qξf (x)|2 dωx(ξ) (2.3)

holds for a trace-free f ∈ C∞(
τ 1

1 M
)

with constant C depending only on n = dim M .
We start with studying the corresponding linear inverse problem.
Let (M, g) be a CNTM. Choose two semibasic tensor fields p, q ∈ C∞(

β1
1M;�M

)
satisfying

p∗(x, ξ)ξ = ξ, q(x, ξ)ξ = ξ. (2.4)

We can also assume these fields to satisfy

det p = det q = 1, (2.5)

but this assumption has not been used so far. For a trace-free tensor field f ∈ C∞(
τ 1

1 M
)
,

consider the boundary value problem on �M

Hu = p(Qξf )q, u|∂−�M = 0. (2.6)

The problem has a unique solution u ∈ C
(
β1

1M;�M
)

and, by virtue of (2.4), the solution
satisfies

u(x, ξ)ξ = u∗(x, ξ)ξ = 0. (2.7)

In this section, we consider the inverse problem of recovering the tensor field f from the data

F [f ] = u|∂+�M. (2.8)
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In the case of a real symmetric f and unit weights, the problem was considered in chapter 6 of
[5], see theorem 6.2.2 of [5]. Compared with [5], the main difficulty of our case relates to the
trace tr u of the solution u to (2.6). Indeed, tr u = 0 in the case of p = q = E, and this fact
plays a crucial role in the proof of theorem 6.2.2 of [5]. Therefore we start with estimating
tr u.

The factors p and q on (2.6) are considered as weights. We will assume the weights to
be close to the unit weight E in the following sense: the inequalities

|p − E| < ε, |q − E| < ε, | v

∇p| < ε, | v

∇q| < ε (2.9)

hold uniformly on �M . The value of ε will be specified later.
Equation (2.6) is initially considered on �M . To get some freedom in treating the

equation, we extend it to the manifold T 0M = {(x, ξ) ∈ T M|ξ �= 0} of nonzero vectors. The
weights are assumed to be positively homogeneous of zero degree in ξ

p(x, tξ) = p(x, ξ), q(x, tξ) = q(x, ξ) for t > 0.

Then the right-hand side of (2.6) is positively homogeneous in ξ of zero degree because f is
independent of ξ . The solution u must be extended to T 0M as a homogeneous function of
degree −1

u(x, tξ) = t−1u(x, ξ) for t > 0

because the operator H increases the degree of homogeneity by 1.
Exactly as in [NS], the solution u to (2.6) is continuous on T 0M and C∞ smooth on

T 0M \ T (∂M).
We rewrite the boundary value problem (2.6) in the form

Hu = Qξf + r on T 0M, u|∂+�M = 0, (2.10)

where

r = (p − E)Qξf + pQξf (q − E). (2.11)

By (2.9), the remainder r satisfies

|r| � Cε|f |, | v

∇r| � Cε

|ξ | |f | (2.12)

with constant C dependent only on n = dim M . In what follows in this section, we denote
different constants dependent only on n by the same letter C.

For sufficiently small ε, equation (2.10) and inequalities (2.12) imply the estimate

|f (x)|2 � C

∫
�xM

|Hu|2 dωx(ξ) � C

∫
�xM

| h

∇u|2 dωx(ξ). (2.13)

Indeed, from (2.3) and (2.10)

|f (x)|2 � C

∫
�xM

|Qξf (x)|2 dωx(ξ) = C

∫
�xM

|Hu − r|2 dωx(ξ)

� C

∫
�xM

|Hu|2 dωx(ξ) + C

∫
�xM

|r|2 dωx(ξ).

Estimating the last integral on the right-hand side with the help of (2.12), we obtain

(1 − Cε2)|f (x)|2 � C

∫
�xM

|Hu|2 dωx(ξ) � C

∫
�xM

| h

∇u|2 dωx(ξ).

This implies (2.13) under the assumption Cε2 < 1/2.
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Lemma 2.1. Let a CNTM (M, g) satisfy

k(M, g) < ε < 1/8 (2.14)

For every tensor field f ∈ C∞(
τ 1

1 M
)

and for every semibasic tensor field r ∈
C∞(

β1
1M; T 0M

)
, if the solution u ∈ C

(
β1

1M; T 0M
)

to the boundary value problem (2.10) is
positively homogeneous of degree −1 in ξ , then the estimate∫

�M

| h

∇(tr u)|2 d� � C

∫
�M

| v

∇r|2 d� + D′‖u|∂+�M‖2
H 1 (2.15)

holds with constant C dependent only on n = dim M and constant D′ dependent on (M, g)

but not on f and r .

Let us emphasize that no estimate for the remainder r is assumed in the lemma. If the
remainder satisfies (2.12), then (2.15) implies∫

�M

| h

∇(tr u)|2 d� � Cε2‖f ‖2
L2 + D′‖u|∂+�M‖2

H 1 . (2.16)

Before proving the lemma, let us give a remark. Estimates for |tr u| and | v

∇(tr u)| in terms

of |f | can be easily derived from (2.9)–(2.11). But the corresponding estimate for | h

∇(tr u)|
will involve |∇f |. Such an estimate does not fit our approach since the norm |∇f | does not
participate in the Pestov identity. The more tricky estimate (2.16) involves |f | but does not
involve |∇f |.
Proof of lemma 2.1. Let us denote ϕ = tr u. Since operators tr and H commute,
equation (2.10) implies

Hϕ = tr r. (2.17)

We write the Pestov identity for the function ϕ

2 Re〈 h

∇ϕ,
v

∇Hϕ〉 = | h

∇ϕ|2 +
h

∇iv
i +

v

∇iw
i − Rikjlξ

kξ l
v

∇ iϕ · v

∇j ϕ̄, (2.18)

where

vi = Re(ξ i
h

∇jϕ · v

∇j ϕ̄ − ξ j
v

∇ iϕ · h

∇j ϕ̄), (2.19)

wi = Re(ξ j
h

∇ iϕ · h

∇j ϕ̄). (2.20)

By (2.17), the left-hand side of the Pestov identity admits the estimate

2 Re〈 h

∇ϕ,
v

∇Hϕ〉 = 2 Re〈 h

∇ϕ,
v

∇(tr r)〉 � 1
2 | h

∇ϕ|2 + 2| v

∇(tr r)|2 � 1
2 | h

∇ϕ|2 + C| v

∇r|2.
Therefore, the Pestov identity implies

1
2 | h

∇ϕ|2 +
v

∇iw
i � C| v

∇r|2 − h

∇iv
i + Rikjlξ

kξ l
v

∇ iϕ · v

∇j ϕ̄

for |ξ | = 1. We multiply the inequality by the volume form d�, integrate over �M , and
transform the integrals of divergent terms by Gauss–Ostrogradskii∫

�M

[
1

2
| h

∇ϕ|2 + (n − 2)|Hϕ|2
]

d�

� C

∫
�M

| v

∇r|2 d� −
∫

∂�M

〈v, ν〉 d�2n−2 +
∫

�M

Rikjlξ
kξ l

v

∇ iϕ · v

∇j ϕ̄ d�. (2.21)
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The integrand 〈v, ν〉 of the boundary integral on (2.21) is equal to zero on ∂−�M as is
seen from (2.19) and boundary condition u|∂−�M = 0. On ∂+�M , the integrand is the value
on ϕ of some quadratic first-order differential operator, as is shown at the end of section 4.6
of [5]. Therefore the boundary integral admits the estimate∣∣∣∣

∫
∂�M

〈v, ν〉 d�2n−2

∣∣∣∣ � D1‖ϕ|∂+�M‖2
H 1 � D2‖u|∂+�M‖2

H 1

with some constant D2 dependent on (M, g). Inequality (2.21) takes the form∫
�M

[
1

2
| h

∇ϕ|2 + (n − 2)|Hϕ|2
]

d�

�
∫

�M

Rikjlξ
kξ l

v

∇ iϕ · v

∇j ϕ̄ d� + C

∫
�M

| v

∇r|2 d� + D2‖u|∂+�M‖2
H 1 . (2.22)

The first integral on the right-hand side of (2.22) is estimated with the help of the Poincaré
inequality (see section 4.5 of [5]) like in section 4.7 of [5]. Namely, the integrand admits the
estimate

Rikjlξ
kξ l

v

∇ iϕ · v

∇j ϕ̄ � K+(x, ξ)| v

∇ϕ(x, ξ)|2, (2.23)

where K+(x, ξ) is defined by formula (4.3.2) of [5]. The vector field
v

∇ϕ vanishes on ∂−�M ,
so the Poincaré inequality can be applied and gives∫

�M

Rikjlξ
kξ l

v

∇ iϕ · v

∇j ϕ̄ d� � k+(M, g)

∫
�M

|H v

∇ϕ|2 d�,

where k+(M, g) is defined by (4.3.3) of [5]. This gives with the help of (2.14)∫
�M

Rikjlξ
kξ l

v

∇ iϕ · v

∇j ϕ̄ d� � ε

∫
�M

|H v

∇ϕ|2 d�. (2.24)

We have thus to estimate |H v

∇ϕ|. To this end, we apply the operator
v

∇ to equation (2.17)

and use the commutator formula
v

∇H = H
v

∇ +
h

∇
H

v

∇ϕ = − h

∇ϕ +
v

∇(tr r).

This implies the estimate

|H v

∇ϕ|2 � 2| h

∇ϕ|2 + C| v

∇r|2
for |ξ | = 1. Combining this inequality with (2.24), we obtain∫

�M

Rikjlξ
kξ l

v

∇ iϕ · v

∇j ϕ̄ d� � 2ε

∫
�M

| h

∇ϕ|2 d� + Cε

∫
�M

| v

∇r|2 d�.

Estimating the first integral on the right-hand side of (2.22) with the help of the last
inequality, we arrive at the final estimate(

1

2
− 2ε

) ∫
�M

| h

∇ϕ|2 d� + (n − 2)

∫
�M

|Hϕ|2 d� � C

∫
�M

| v

∇r|2 d� + D2‖u|∂+�M‖2
H 1 .

This gives statement of the lemma assuming ε < 1/8. �

The following statement is an analog of formula (NS.3.17).

Lemma 2.2. A trace-free tensor field f ∈ C∞(
τ 1

1 M
)

is uniquely represented as

fij (x) = (Qξf )ij (x, ξ) + ξjai(x, ξ) + ξi b̄j (x, ξ) + ξiξj c(x, ξ) + d(x, ξ)gij (x) (2.25)
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with the semibasic covector fields a and b orthogonal to ξ

aiξ
i = biξ

i = 0 (2.26)

and scalar functions c(x, ξ) and d(x, ξ). The (vector versions of the) fields a and b are
expressed through f by the formulae

a = 1

|ξ |2 πξf ξ, b = 1

|ξ |2 πξf
∗ξ (2.27)

and the functions c and d by

c = n

n − 1

〈f ξ, ξ 〉
|ξ |4 , d = − 1

n − 1

〈f ξ, ξ 〉
|ξ |2 , (2.28)

where n = dim M .

Proof. Compare with lemma 6.2.1 of [5]. We first prove the uniqueness statement. Assume
(2.25) and (2.26) to be valid. Take the contraction of (2.25) with ξ j (multiply by ξ j and take
the sum over j ). Taking (2.26) into account, we obtain

f ξ = |ξ |2a + (|ξ |2c + d)ξ, 〈a, ξ 〉 = 0.

This means that a = πξf ξ/|ξ |2 and

|ξ |2c + d = 〈f ξ, ξ 〉
|ξ |2 . (2.29)

In the same way we obtain b = πξf
∗ξ/|ξ |2. On the other hand, applying the operator tr to

equation (2.25), we see that

|ξ |2c + nd = 0. (2.30)

Equations (2.29) and (2.30) imply (2.28). This proves the uniqueness statement.
The existence is proved by reverse arguments. Define a, b, c and d by (2.27)–(2.28) and

then define Qξf by (2.25). Check that Qξf belongs to the subspace Aξ = {h|hξ = h∗ξ = 0,

tr h = 0} and the difference f − Qξf belongs to A⊥
ξ . �

The main result of the current section is the following

Theorem 2.3. For any n � 4, there exists a positive number ε = ε(n) such that, for any
n-dimensional CNTM (M, g) satisfying (2.14) and for any weights p, q ∈ C∞(

β1
1M;�M

)
satisfying (2.4) and (2.9), every trace-free tensor field f ∈ C∞(

τ 1
1 M

)
can be uniquely

recovered from the trace (2.8) of the solution to the boundary value problem (2.6) and the
stability estimate

‖f ‖L2 � D‖F [f ]‖H 1 (2.31)

holds with constant D dependent on (M, g) but not on f, p, q.

Proof. It follows approximately the same line as the proof of theorem 3.1 of [NS] by making
use of lemma 2.1 at a crucial point. We start by writing the Pestov identity for u

2 Re〈 h

∇u,
v

∇Hu〉 = | h

∇u|2 +
h

∇iv
i +

v

∇iw
i − R1[u], (2.32)

where

vi = Re
(
ξ i

h

∇jui1i2 · v

∇j ūi1i2 − ξ j
v

∇ iui1i2 · h

∇j ūi1i2

)
, (2.33)

wi = Re
(
ξ j

h

∇ iui1i2 · h

∇j ūi1i2

)
, (2.34)
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R1[u] = Rkplqξ
pξq

v

∇kui1i2 · v

∇ l ūi1i2 + Re
((

R
i1
pqju

pi2 + R
i2
pqju

i1p
)
ξq

v

∇j ūi1i2

)
. (2.35)

By (2.10), the left-hand side of the Pestov identity can be represented as

〈 h

∇u,
v

∇Hu〉 = 〈 h

∇u,
v

∇(Qξf )〉 + 〈 h

∇u,
v

∇r〉. (2.36)

We will first investigate the first term on the right-hand side of (2.36). By (2.25),

(Qξf )ij = fij − aiξj − b̄j ξi − cξiξj − dgij . (2.37)

Differentiating the last equality with respect to ξ and using the fact that f is independent of
ξ , we obtain
v

∇k(Qξf )ij = −ξj

v

∇kai − ξi

v

∇kb̄j − ξiξj

v

∇kc − gij

v

∇kd − gjkai − gikb̄j − (gikξj + gjkξi)c.

Therefore

〈 h

∇u,
v

∇(Qξf )〉 = h

∇kuij · v

∇k(Qξ f̄ )ij

= h

∇kuij
(−ξj

v

∇kāi − ξi

v

∇kbj − ξiξj

v

∇kc̄

− gij

v

∇kd̄ − gjkāi − gikbj − (gikξj + gjkξi)c̄
)
.

The tensor
h

∇kuij is orthogonal to ξ in the indices i and j as follows from (2.7). Therefore the
last formula is simplified to the following one:

〈 h

∇u,
v

∇(Qξf )〉 = − h

∇puip · āi − h

∇pupi · bi − h

∇k(giju
ij ) · v

∇kd̄.

Introducing the semibasic covector fields
h

δ1u and
h

δ2u by the equalities

(
h

δ1u)i = h

∇puip, (
h

δ2u)i = h

∇pupi, (2.38)

we write the result in the form

〈 h

∇u,
v

∇(Qξf )〉 = −〈h

δ1u, a〉 − 〈h

δ2u, b̄〉 − 〈 h

∇(tr u),
v

∇d〉. (2.39)

This implies the estimate

2 Re〈 h

∇u,
v

∇(Qξf )〉 � β

2
(|hδ1u|2 + |hδ2u|2) +

2

β
(|a|2 + |b|2) +

1

ε
| h

∇(tr u)|2 + ε| v

∇d|2, (2.40)

where β is an arbitrary positive number.
The first term on the right-hand side of (2.40) is estimated exactly as in [NS], we just

reproduce (NS.3.35)

|hδ1u|2 + |hδ2u|2 � 2|z|2 +
h

∇i ṽ
i + R4[u], (2.41)

where terms on the right-hand side are defined in [NS].
Let us estimate the last term on the right-hand side of (2.40). Differentiating the second

of equalities (2.28) with respect to ξ and taking the independence f of ξ into account, we
obtain

v

∇d = − 1

n − 1

(
1

|ξ |2 f ξ +
1

|ξ |2 f̄ ∗ξ − 2〈f ξ, ξ 〉
|ξ |4 ξ

)
.

This implies the estimate

| v

∇d|2 � 9

(n − 1)2

|f |2
|ξ |2 . (2.42)

10
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We substitute values (2.27) for a and b into (2.40) and then use (2.41) and (2.42) to obtain
the following analog of (NS.3.36)

2 Re〈 h

∇u,
v

∇(Qξf )〉 � β|z|2 +
2

β|ξ |4 (|πξf ξ |2 + |πξf
∗ξ |2)

+
9ε

(n − 1)2|ξ |2 |f |2 +
1

ε
| h

∇(tr u)|2 +
β

2

h

∇i ṽ
i +

β

2
R4[u]. (2.43)

The second term on the right-hand side of (2.36) is estimated as in [NS], we just reproduce
(NS.3.37)

2 Re〈 h

∇u,
v

∇r〉 � Cε

(
| h

∇u|2 +
1

|ξ |2 |f |2
)

. (2.44)

Let us recall that we denote different constants dependent only on n = dim M by the
same letter C. Combining (2.43) and (2.44), we obtain from (2.36)

2 Re〈 h

∇u,
v

∇Hu〉 � β|z|2 +
2

β|ξ |4 (|πξf ξ |2 + |πξf
∗ξ |2) +

β

2

h

∇i ṽ
i

+ Cε

(
| h

∇u|2 +
1

|ξ |2 |f |2
)

+
β

2
R4[u] +

1

ε
| h

∇(tr u)|2. (2.45)

Estimating the left-hand side of the Pestov identity (2.32) by (2.45), we obtain for |ξ | = 1

| h

∇u|2 +
v

∇iw
i − β|z|2 − 2

β
(|πξf ξ |2 + |πξf

∗ξ |2) − Cε(| h

∇u|2 + |f |2)

�
h

∇i

(
β

2
ṽi − vi

)
+ R[u] +

1

ε
| h

∇(tr u)|2, (2.46)

where R[u] = R1[u] + β

2 R4[u]. We multiply inequality (2.46) by the volume form d�,
integrate over �M , and transform the integrals of divergent terms by Gauss–Ostrogradskii
formulae. In such a way we obtain the following analog of (NS.3.40):∫

�M

[
| h

∇u|2 + (n − 2)|Hu|2 − β|z|2 − 2

β
(|πξf ξ |2 + |πξf

∗ξ |2) − Cε(| h

∇u|2 + |f |2)
]

d�

�
∫

∂�M

〈
β

2
ṽ − v, ν

〉
d�2n−2 +

∫
�M

R[u] d� +
1

ε

∫
∂�M

| h

∇(tr u)|2 d�. (2.47)

The first integral on the right-hand side of (2.47) can be estimated as follows,∣∣∣∣
∫

∂�M

〈
β

2
ṽ − v, ν

〉
d�2n−2

∣∣∣∣ � D′′‖u|∂+�M‖2
H 1 (2.48)

with constant D′′ in (2.48) depending on (M, g). Indeed, analyzing the integrand by the same
arguments as that used for proving (5.5.14) of [5], we show that the integrand is the value on
u|∂�M of some first-order quadratic differential operator.

The second integral on the right-hand side of (2.47) is estimated as follows:∫
�M

R[u] d� � Cε

∫
�M

| h

∇u|2 d�. (2.49)

In [NS], we have written the corresponding estimate (NS.3.42) with no proof just saying that
the estimate can be proved exactly as in [5]. The letter statement is not quite right. So, let us
discuss the proof of (2.49) in more detail.

Repeating arguments in the beginning of section 5.5 of [5], we prove the estimate∫
�M

R[u] d� � Ck(M, g)

∫
�M

(|Hu|2 + | v

∇Hu|2) d�, (2.50)
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where k(M, g) < ε is defined by (2.1). The inequality |Hu|2 � | h

∇u|2 for |ξ | = 1 holds since

Hu = ξ i
h

∇iu. To derive (2.49) from (2.50), we have thus to estimate
∫
�M

| v

∇Hu|2 d� through∫
�M

| h

∇u|2 d�. To this end we apply the operator
v

∇ to equation (2.10)
v

∇Hu = v

∇(Qξf ) +
v

∇r.

Therefore

| v

∇Hu|2 � 2| v

∇(Qξf )|2 + 2| v

∇r|2 � C|f |2 + 2| v

∇r|2. (2.51)

The second inequality holds since f is independent of ξ . Estimating the second term with the
help of (2.12), we obtain from (2.51)

| v

∇Hu|2 � C|f |2
Together with (2.13), this gives∫

�M

| v

∇Hu|2 d� � C

∫
�M

| h

∇u|2 d�.

We emphasize that (2.49) has been proved with the help of estimates (2.12). This remark
will be important in the next section where the remainder r will be arbitrary.

Estimating integrals on the right-hand side of (2.47) by (2.48), (2.49) and (2.16)
respectively, we obtain∫

�M

[
(1 − Cε)| h

∇u|2 + (n − 2)|Hu|2 − β|z|2 − 2

β
(|πξf ξ |2 + |πξf

∗ξ |2) − Cε|f |2
]

d�

� Cε‖f ‖2
L2 + (D′′ + D′/ε)‖u|∂+�M‖2

H 1 .

Using the relation | h

∇u|2 = |z|2 + |Hu|2, the last inequality is transformed to the following
analog of (NS.3.44)∫

�M

[
(1 − β − Cε)|z|2 + (n − 1 − Cε)|Hu|2 − 2

β
(|πξf ξ |2 + |πξf

∗ξ |2) − Cε|f |2
]

d�

� D‖u|∂+�M‖2
H 1 ,

where

D = D′′ + D′/ε. (2.52)

Then, using the inequality |Hu|2 � |Qξf |2 − Cε|f |2 we transform our estimate to the final
form∫

M

∫
�xM

[
(1 − β − Cε)|z|2 + (n − 1 − Cε)|Qξf |2

− 2

β
(|πξf ξ |2 + |πξf

∗ξ |2) − Cε|f |2
]

dωx(ξ)dV n(x) � D‖u|∂+�M‖2
H 1 .

(2.53)

Let us recall that β is an arbitrary number satisfying 0 < β � 1.

Lemma 2.4. For every Riemannian manifold (M, g) of dimension n � 4 and every point
x ∈ M , the Hermitian form

A(f, f ) =
∫

�xM

[(n − 1)|Qξf |2 − 2(|πξf ξ |2 + |πξf
∗ξ |2)] dωx(ξ)

12
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is positive definite on the space of trace-free second-rank tensors at x. Moreover, the estimate

A(f, f ) � c|f |2

holds with positive constant c depending only on n. In the case of n = 3, the form A is
identically equal to zero on the space of trace-free symmetric tensors at x.

With the help of the lemma, the proof of theorem 2.3 is finished as in [NS]. As far as the
proof of the lemma is concerned, we first observe that it suffices to prove it for a real tensor f .
Again, as in [NS], symmetric and skew-symmetric tensors are orthogonal to each other with
respect to the quadratic form A. Therefore, it suffices to prove the positiveness of A on the
spaces of real symmetric and skew-symmetric tensors separately.

The positiveness of A on the space of real trace-free symmetric tensors
in the case of n � 4 is proved in lemma 6.3.1 of [5], as well as A = 0 on real trace-
free symmetric tensors in the case of n = 3. On skew-symmetric tensors, projections Pξ and
Qξ coincide and therefore the quadratic form A coincides with the form B of lemma NS.3.2.
The form B is positive in the case of n � 4.

Remark. The dependence of the coefficient D on ε is a little bit strange. According to (2.52),
D grows to infinity as ε approaches zero. On the other hand, formula (2.52) is replaced with
D = D′′ in the case of ε = 0. Indeed, ε = 0 means that weights p and q coincide with E, the
remainder r is identically equal to zero, and tr u = 0.

3. The linear problem in the 3D case

Since the projections Pξ and Qξ coincide on skew-symmetric tensors, the same
counterexamples as in section 4 of [NS] are valid in our case for both linear and nonlinear
problems. Here, we will prove the uniqueness for the linear problem under the same closeness
condition on f as in section 4 of [NS].

Theorem 3.1. There exists ε > 0 such that, for any three-dimensional CNTM (M, g) satisfying
(2.14) and for any weights p, q ∈ C∞(

β1
1M;�M

)
satisfying (2.4) and (2.9), every closed

trace-free tensor field f ∈ C∞(
τ 1

1 M
)

can be uniquely recovered from the trace (2.8) of the
solution to the boundary value problem (2.6) and the stability estimate

‖f ‖2
L2 � D

(‖F [f ]‖2
H 1 + ‖f |∂M‖L2‖F [f ]‖2

L2

)
(3.1)

holds with constant D independent of f, p, q.

While proving this theorem, we would like to separate the cases of a symmetric and
skew-symmetric f . Such a separation was already used implicitly in the proof of theorem
NS.4.2, see formula (NS.4.29). The complete separation is impossible since the weights p

and q in equation (2.6) mix the symmetric and skew-symmetric parts of f . Therefore we will
apply the separation to equation (2.10) with a remainder. In the separated equation, we cannot
use estimates of the remainder like (2.44).

For a semibasic tensor field h, we will use the notation

‖h‖2 =
∫

�M

|h(x, ξ)|2 d�(x, ξ).

Actually, this formula defines a norm on the subspace of C∞(
βr

s M; T 0M
)

consisting of
fields h satisfying the homogeneity condition h(x, tξ) = tλh(x, ξ)(t > 0) for a fixed λ. All

13
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semibasic tensor fields under consideration will be of this kind but for different values of λ.
In particular, for f ∈ C∞(

τ 1
1 M

)
(dim M = 3),

‖f ‖2 =
∫

�M

|f (x)|2 d�(x, ξ) = C‖f ‖2
L2 ,

where C is the volume of the unit sphere in R
3. In the current section, we denote different

universal constants by the same letter C, while D denotes different constants depending on
(M, g) and probably on ε.

First of all we will demonstrate that theorem 3.1 can be derived from the following two
lemmas.

Lemma 3.2. There exists ε0 > 0 such that the following statement is valid for any positive
ε < ε0. Let a three-dimensional CNTM (M, g) satisfy (2.14). For every trace-free symmetric
tensor field f ∈ C∞(

τ 1
1 M

)
and every symmetric semibasic tensor field r ∈ C∞(

β1
1M; T 0M

)
satisfying

r(x, ξ)ξ = 0, (3.2)

r(x, tξ) = r(x, ξ)(t > 0), (3.3)

if the solution u ∈ C
(
β1

1M; T 0M
)

to the boundary value problem

Hu = Qξf + r, u|∂−�M = 0 (3.4)

is positively homogeneous in ξ of degree −1

u(x, tξ) = t−1u(x, ξ) for t > 0, (3.5)

then the estimate

‖ h

∇u‖2 � Cε−3/2(‖r‖2 + ‖ v

∇r‖2) + D‖u|∂+�M‖2
H 1 (3.6)

holds with some universal constant C and some constant D depending on (M, g) but not on
f and r .

Lemma 3.3. There exists ε0 > 0 such that the following statement is valid for any positive
ε < ε0. Let a three-dimensional CNTM (M, g) satisfy (2.14). For every closed skew-
symmetric tensor field f ∈ C∞(

τ 1
1 M

)
and every skew-symmetric semibasic tensor field

r ∈ C∞(
β1

1M; T 0M
)

satisfying (3.2)–(3.3), if the solution u ∈ C
(
β1

1M; T 0M
)

to the
boundary value problem (3.4) is positively homogeneous in ξ of degree −1, then the estimate

‖ h

∇u‖2 � Cε−3/2(‖r‖2 + ‖ v

∇r‖2) + D
(‖u|∂+�M‖2

H 1 + ‖f |∂M‖L2‖u|∂+�M‖L2

)
(3.7)

holds with some universal constant C and some constant D depending on (M, g) but not on
f and r .

Proof of theorem 3.1. We write equation (2.6) in form (2.10) with the remainder r defined
by (2.11). The remainder satisfies r(x, ξ)ξ = r∗(x, ξ)ξ = 0 and estimates (2.12).

We decompose each of the fields f, u, r into the sum of symmetric and skew-symmetric
tensors

f = f + + f −, u = u+ + u−, r = r+ + r−.

The field f + is trace-free, and f − is a closed field. The fields u± are solutions to the boundary
value problems

Hu± = Qξf
± + r±, u±|∂−�M = 0.

14
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Thus, the triple (f +, r+, u+) satisfies all hypotheses of lemma 3.2, and (f −, r−, u−)

satisfies hypotheses of lemma 3.3. Let us emphasize that we have estimates (2.12) for
‖r‖2 = ‖r+‖2 + ‖r−‖2 through ‖f ‖2 = ‖f +‖2 + ‖f −‖2 but we have no estimate for ‖r±‖
through ‖f ±‖. Applying lemmas 3.2 and 3.3, we obtain the estimates

‖ h

∇u+‖2 � Cε−3/2(‖r+‖2 + ‖ v

∇r+‖2) + D‖u+|∂+�M‖2
H 1 ,

‖ h

∇u−‖2 � Cε−3/2(‖r−‖2 + ‖ v

∇r−‖2) + D
(‖u−|∂+�M‖2

H 1 + ‖f −|∂M‖L2‖u−|∂+�M‖L2

)
.

Taking the sum of these inequalities, we arrive at the estimate

‖ h

∇u‖2 � Cε−3/2(‖r‖2 + ‖ v

∇r‖2) + D
(‖u|∂+�M‖2

H 1 + ‖f |∂M‖L2‖u|∂+�M‖L2

)
which gives together with (2.12)

‖ h

∇u‖2 � Cε1/2‖f ‖2 + D
(‖F [f ]‖2

H 1 + ‖f |∂M‖L2‖F [f ]‖L2

)
. (3.8)

By (2.13), ‖ h

∇u‖2 � ‖f ‖2
L2

/
C. Estimating the left-hand side of (3.8) with the help of the

last inequality, we obtain

(1/C − Cε1/2)‖f ‖2
L2 � D

(‖F [f ]‖2
H 1 + ‖f |∂M‖L2‖F [f ]‖L2

)
.

This gives the statement (3.1) of the theorem under the assumption C2ε1/2 < 1/2. �

Proof of lemma 3.2. The field u is symmetric and orthogonal to ξ , i.e., uij ξ
j = 0 as follows

from (3.2) and (3.4). We write the Pestov identity (2.32) for u with terms defined by (2.33)–
(2.35). We represent the left-hand side of the Pestov identity in form (2.36). For a symmetric
f , formula (2.37) takes the form

(Qξf )ij = fij − aiξj − aj ξi − cξiξj − dgij

since b = ā as is seen from (2.27). The terms a, c and d are defined by formulae (2.27) and
(2.28). Treating the last formula as before, we obtain the following analog of (2.39)

〈 h

∇u,
v

∇(Qξf )〉 = −2〈h

δu, a〉 − 〈 h

∇(tr u),
v

∇d〉, (3.9)

where

(
h

δu)i = h

∇puip (3.10)

This implies the estimate

2 Re〈 h

∇u,
v

∇(Qξf )〉 � |hδu|2 + 4|a|2 +
1

ε
| h

∇(tr u)|2 + ε| v

∇d|2. (3.11)

Like in the proof of theorem NS.3.1, we distinguish a divergent term from |hδu|2 and obtain
the following analog of formula (NS.3.31),

|hδu|2 = h

∇ iujk · h

∇j ūik +
h

∇i ṽ
i + R4[u], (3.12)

where

ṽi = Re(uij
h

∇kūjk − ujk

h

∇kūij ) (3.13)

and

R4[u] = Re
(
u

p

i

(
Rk

jpqξ
j

v

∇kū
qi − R

q

jpq ū
ji − Ri

jpq ū
qi

))
. (3.14)
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We introduce the semibasic tensor field z by the formula

h

∇iujk = ξi

|ξ |2 (Hu)jk + zijk. (3.15)

The summands on the right-hand side of (3.15) are orthogonal to each other, therefore

| h

∇u|2 = 1

|ξ |2 |Hu|2 + |z|2. (3.16)

Then we represent z in the form

z = z+ + z−, (3.17)

where

z+
ijk = 1

2 (zijk + zjik), z−
ijk = 1

2 (zijk − zjik).

The summands on the right-hand side of (3.17) are orthogonal to each other, therefore

|z|2 = |z+|2 + |z−|2.
It follows from (3.15) and (3.17) that

h

∇ iujk · h

∇j ūik = zijkz̄j ik = |z+|2 − |z−|2.
Therefore formulae (3.12) and (3.16) take the form

|hδu|2 = |z+|2 − |z−|2 +
h

∇i ṽ
i + R4[u], (3.18)

| h

∇u|2 = 1

|ξ |2 |Hu|2 + |z+|2 + |z−|2. (3.19)

Substituting expressions (3.18) and (2.27) into (3.11) and estimating the last term of
(3.11) by (2.42), we arrive at the inequality

2 Re〈 h

∇u,
v

∇(Qξf )〉 � |z+|2 − |z−|2 +
4

|ξ |4 |πξf ξ |2 +
9ε

4|ξ |2 |f |2 +
1

ε
| h

∇(tr u)|2 +
h

∇i ṽ
i + R4[u].

The second term on the right-hand side of (2.36) can be estimated as

2 Re〈 h

∇u,
v

∇r〉 � ε| h

∇u|2 +
1

ε
| v

∇r|2.
Taking the sum of two last inequalities and using (2.36), we obtain

2 Re〈 h

∇u,
v

∇Hu〉 � |z+|2 − |z−|2 +
4

|ξ |4 |πξf ξ |2 +
9ε

4|ξ |2 |f |2 +
1

ε
| h

∇(tr u)|2

+ ε| h

∇u|2 +
1

ε
| v

∇r|2 +
h

∇i ṽ
i + R4[u]. (3.20)

Estimating the left-hand side of the Pestov identity (2.32) by (3.20), we arrive at the
inequality for |ξ | = 1

| h

∇u|2 +
v

∇iw
i − |z+|2 + |z−|2 − 4|πξf ξ |2 � ε| h

∇u|2 +
h

∇i (ṽ
i − vi) + R[u]

+
9ε

4
|f |2 +

1

ε
| h

∇(tr u)|2 +
1

ε
| v

∇r|2, (3.21)

where

R[u] = R1[u] + R4[u].
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We multiply (3.21) by the volume form d�, integrate the result over �M , and transform the
integrals of divergent terms by Gauss–Ostrogradskii formulae. In such a way, we obtain

‖ h

∇u‖2 + ‖Hu‖2 − ‖z+‖2 + ‖z−‖2 − 4‖πξf ξ‖2

� ε‖ h

∇u‖2 +
∫

∂�M

〈ν, ṽ − v〉 d�′ +
∫

�M

R[u] d� +
9ε

4
‖f ‖2

+
1

ε
‖ h

∇(tr u)‖2 +
1

ε
‖ v

∇r‖2. (3.22)

The first integral on the right-hand side of (3.22) can be estimated as∣∣∣∣
∫

∂�M

〈ν, ṽ − v〉 d�′
∣∣∣∣ � D‖u|∂+�M‖2

H 1 (3.23)

since the integrand is the value on u|∂�M of some quadratic first-order differential operator.
Let us demonstrate that the curvature-dependent integral on (3.22) admits the estimate∫

�M

R[u] d� � Cε(‖ h

∇u‖2 + ‖f ‖2 + ‖ v

∇r‖2). (3.24)

Indeed, repeating the corresponding arguments from the proof of theorem 2.3, we derive
estimates (2.50) and (2.51) which imply (3.24).

Estimating integrals on the right-hand side of (3.22) by (3.23) and (3.24), we obtain

‖ h

∇u‖2 + ‖Hu‖2 − ‖z+‖2 + ‖z−‖2 − 4‖πξf ξ‖2

� Cε‖ h

∇u‖2 + D‖u|∂+�M‖2
H 1 + Cε‖f ‖2 +

1

ε
‖ h

∇(tr u)‖2 +
C

ε
‖ v

∇r‖2.

Substituting the value ‖ h

∇u‖2 = ‖Hu‖2 + ‖z+‖2 + ‖z−‖2 which follows from (3.16) into the
left-hand side of the last inequality, we obtain

2‖Hu‖2 + 2‖z−‖2 − 4‖πξf ξ‖2 � Cε‖ h

∇u‖2 + D‖u|∂+�M‖2
H 1

+ Cε‖f ‖2 +
1

ε
‖ h

∇(tr u)‖2 +
C

ε
‖ v

∇r‖2.

Combining this estimate with the inequality

‖Hu‖2 = ‖Qξf + r‖2 � ‖Qξf ‖2 − 2‖Qξf ‖ · ‖r‖ � ‖Qξf ‖2 − 2‖f ‖ · ‖r‖
� ‖Qξf ‖2 − ε‖f ‖2 − 1

ε
‖r‖2

which follows from (3.4), we obtain

2‖Qξf ‖2 − 4‖πξf ξ‖2 + 2‖z−‖2 � Cε‖ h

∇u‖2 + D‖u|∂+�M‖2
H 1

+ Cε‖f ‖2 +
1

ε
‖ h

∇(tr u)‖2 +
1

ε
(‖r‖2 + ‖ v

∇r‖2).

By lemma 2.4, the sum of the first two terms on the left-hand side is equal to zero, and the
inequality takes the form

2‖z−‖2 � Cε‖ h

∇u‖2 + Cε‖f ‖2 + D‖u|∂+�M‖2
H 1 +

1

ε
(‖r‖2 + ‖ v

∇r‖2) +
1

ε
‖ h

∇(tr u)‖2.

Estimating the last term on the right-hand side with the help of lemma 2.1, we arrive at the
inequality

2‖z−‖2 � Cε‖ h

∇u‖2 + Cε‖f ‖2 +
C

ε
(‖r‖2 + ‖ v

∇r‖2) + D‖u|∂+�M‖2
H 1 . (3.25)
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Now, following arguments presented at the end of section 6.3 of [5], we estimate ‖ h

∇u‖2

through ‖f ‖ · ‖z−‖. To this end we write the equality

z−
ijk = 1

2

(
h

∇iujk − 1

|ξ |2 ξi(Hu)jk − h

∇juik +
1

|ξ |2 ξj (Hu)ik

)

which follows from (3.15). Multiplying this equality by gjk and performing the summation
over j and k

z−
ijkg

jk = 1

2

(
h

∇i (tr u) − 1

|ξ |2 ξi tr(Hu) − h

∇kuik +
1

|ξ |2 ξk(Hu)ik

)
.

The last term on the right-hand side is equal to zero since Hu is orthogonal to ξ , the third term

is equal to (
h

δu)i , and the second term coincides with ξi tr r/|ξ |2 as is seen from (3.4). We thus
obtain

(
h

δu)i = −2z−
ijkg

jk +
h

∇i (tr u) − 1

|ξ |2 ξi tr r.

Substituting this expression into (3.9) and using 〈a, ξ 〉 = 0, we obtain

〈 h

∇u,
v

∇(Qξf )〉 = 4z−
ijkā

igjk − 2āi
h

∇i (tr u) − 〈 h

∇(tr u),
v

∇d〉.
Together with (2.36), this gives

〈 h

∇u,
v

∇Hu〉 = 4z−
ijkā

igjk − 2āi
h

∇i (tr u) − 〈 h

∇(tr u),
v

∇d〉 + 〈 h

∇(tr u),
v

∇r〉.
This implies the estimate

2 Re〈 h

∇u,
v

∇Hu〉 � C|z−| · |a| +
3

ε
| h

∇(tr u)|2 + ε| v

∇d|2 +
1

2
| h

∇u|2 + 2| v

∇r|2.

Since |a| � |f | and | v

∇d| � 3
2 |f | for |ξ | = 1 as follows from (2.27) and (2.42), the estimate

can be written as

2 Re〈 h

∇u,
v

∇Hu〉 � C|f | · |z−| +
9ε

4
|f |2 +

3

ε
| h

∇(tr u)|2 +
1

2
| h

∇u|2 + 2| v

∇r|2.
Estimating the left-hand side of the Pestov identity (2.32) with the help of the last

inequality, we obtain for |ξ | = 1

1

2
| h

∇u|2 +
v

∇iw
i � C|f | · |z−| + Cε|f |2 +

C

ε
| h

∇(tr u)|2 + 2| v

∇r|2 − h

∇iv
i + R1[u].

We multiply this inequality by the volume form d�, integrate the result over �M , and
transform the integrals of divergent terms by Gauss–Ostrogradskii formulae. In such a way,
we obtain
1

2
‖ h

∇u‖2 + ‖Hu‖2 � C‖f ‖ · ‖z−‖ + Cε‖f ‖2 +
C

ε
‖ h

∇(tr u)‖2 + 2‖ v

∇r‖2

−
∫

∂�M

〈ν, v〉 d�′ +
∫

�M

R1[u] d�. (3.26)

Integrals participating on (3.26) are estimated similarly to (3.23) and (3.24). Estimating also

‖ h

∇(tr u)‖2 with the help of lemma 2.1, we obtain from (3.26)

(1/2 − Cε)‖ h

∇u‖2 � C‖f ‖ · ‖z−‖ + Cε‖f ‖2 + D‖u|∂+�M‖2
H 1 + C‖ v

∇r‖2.

Assuming ε to be so small as Cε < 1/4, this implies

‖ h

∇u‖2 � 2C‖f ‖ · ‖z−‖ + Cε‖f ‖2 + C‖ v

∇r‖2 + D‖u|∂+�M‖2
H 1 . (3.27)

18



Inverse Problems 24 (2008) 035010 V Sharafutdinov

The final part of the proof consists of comparing estimates (3.25) and (3.27). Without
lost of generality, we can assume constants denoted by C in these estimates to coincide. The
same is assumed for constants denoted by D. Inequality (3.27) implies

‖ h

∇u‖2 � C√
ε
‖z−‖2 + C(

√
ε + ε)‖f ‖2 + C‖ v

∇r‖2 + D‖u|∂+�M‖2
H 1 .

Estimating the first term on the right-hand side of this inequality with the help of (3.25), we
obtain

(1 − C2√ε)‖ h

∇u‖2 � C(C
√

ε + ε)‖f ‖2 +
C2

ε3/2
‖r‖2 + C

(
C

ε3/2
+ 1

)
‖ v

∇r‖2

+ D

(
C

ε1/2
+ 1

)
‖u|∂+�M‖2

H 1 . (3.28)

Relations (2.3) and (3.4) imply the estimate

‖f ‖2 � C‖Qξf ‖2 = C‖Hu − r‖2 � C(‖Hu‖2 + ‖r‖2) � C(‖ h

∇u‖2 + ‖r‖2). (3.29)

Estimating the first term on the right-hand side of (3.28) with the help of the last inequality,
we obtain

[1 − C2(C
√

ε + 2
√

ε + ε)]‖ h

∇u‖2 � (C2ε−3/2 + C)‖r‖2 + C(Cε−3/2 + 1)‖ v

∇r‖2

+ D(Cε−1/2 + 1)‖u|∂+�M‖2
H 1 .

Assuming ε to be so small as the number in the brackets is �1/2, this inequality implies the
statement of lemma 3.2. �

Proof of lemma 3.3. We will actually repeat the proof of theorem NS.4.2 in the case of a
skew-symmetric f but without estimating terms related to the remainder r .

The closeness condition for a skew-symmetric f is as follows:
h

∇ifjk +
h

∇j fki +
h

∇kfij = 0. (3.30)

Formula (2.25) for a skew-symmetric f is simplified to the following one:

(Qξf )ij = fij + ξiaj − ξjai, (3.31)

where a = f ξ/|ξ |2. The corresponding analog of the formula (2.39) is now

〈 h

∇u,
v

∇(Qξf )〉 = −2〈h

δu, a〉 = − 2

|ξ |2 〈h

δu, f ξ 〉, (3.32)

where
h

δu is defined by formula (3.10).

Using the closeness condition (3.30), we transform the expression 〈h

δu, f ξ 〉 as follows:

〈h

δu, f ξ 〉 = h

∇puip · f̄ ikξ
k = h

∇p(ξkuipf̄ ik) − ξkuip
h

∇pf̄ ik

= h

∇p(ξkuipf̄ ik) − 1
2ξk(uip

h

∇pf̄ ik − upi
h

∇pf̄ ik)

= h

∇p(ξkuipf̄ ik) − 1
2ξk(uip

h

∇pf̄ ik − uip
h

∇i f̄ pk)

= h

∇p(ξkuipf̄ ik) − 1
2ξkuip(

h

∇pf̄ ik +
h

∇i f̄ kp)

= h

∇p(ξkuipf̄ ik) − 1
2ξkuip

h

∇kf̄ pi

= h

∇p(ξkuipf̄ ik) − h

∇k

(
1
2ξkuipf̄ pi

) − 1
2ξk

h

∇ku
ip · f̄ pi .
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The result can be written as

2〈h

δu, f ξ 〉 = 〈Hu, f 〉 +
h

∇i (ξ
iujkf̄ kj + 2ξkuji f̄ jk). (3.33)

Using (3.6) and (3.4), we transform the first term on the right-hand side of (3.33) as
follows:

〈Hu, f 〉 = 〈Qξf + r, f 〉 = (Qξf )ij f̄ ij + 〈r, f 〉
= (f ij − aiξ j + aj ξ i)f̄ ij + 〈r, f 〉 = |f |2 − 2aif̄ ij ξ

j + 〈r, f 〉
= |f |2 − 2

|ξ |2 |f ξ |2 + 〈r, f 〉.
Formula (3.33) takes now the form

2〈h

δu, f ξ 〉 = |f |2 − 2

|ξ |2 |f ξ |2 + 〈r, f 〉 +
h

∇i (ξ
iujkf̄ kj + 2ξkuji f̄ jk).

Substituting this expression into (3.32), we obtain

2 Re〈 h

∇u,
v

∇(Qξf )〉 = − 2

|ξ |2 |f |2 +
4

|ξ |4 |f ξ |2 − 2

|ξ |2 〈r, f 〉 +
h

∇i ṽ
i , (3.34)

where

ṽi = − 2

|ξ |2 Re(ξ iujkf̄ kj + 2ξkuji f̄ jk). (3.35)

From (2.36) and (3.34),

2 Re〈 h

∇u,
v

∇Hu〉 = 2 Re〈 h

∇u,
v

∇r〉 − 2

|ξ |2 |f |2 +
4

|ξ |4 |f ξ |2 − 2

|ξ |2 〈r, f 〉 +
h

∇i ṽ
i .

This admits the estimate for |ξ | = 1

2 Re〈 h

∇u,
v

∇Hu〉 � 1
2 | h

∇u|2 − 2|f |2 + 4|f ξ |2 +
h

∇i ṽ
i + 2|r| · |f | + 2| v

∇r|2.
Estimating the left-hand side of the Pestov identity (2.32) with the help of the last

inequality, we obtain for |ξ | = 1

1
2 | h

∇u|2 +
v

∇iw
i + 2|f |2 − 4|f ξ |2 �

h

∇i (ṽ
i − vi) + R1[u] + 2|r| · |f | + 2| v

∇r|2.
Integrating this inequality over �M and transforming integrals of divergent terms by Gauss–
Ostrogradskii, we obtain

1

2
‖ h

∇u‖2 + ‖Hu‖2 + 2
∫

�M

(|f |2 − 2|f ξ |2) d� � 2‖r‖ · ‖f ‖ + 2‖ v

∇r‖2

+
∫

∂�M

〈ν, ṽ − v〉 d�′ +
∫

�M

R1[u] d�. (3.36)

The integral on the left-hand side of (3.36) is non-negative as is shown at the end of the
proof of theorem NS.4.2. Integrals on the right-hand side admit the estimates
∣∣∣∣
∫

∂�M

〈ν, ṽ − v〉 d�′
∣∣∣∣ � DN(u, f ) := D

(‖u|∂+�M‖2
H 1 + ‖f |∂M‖L2‖u|∂+�M‖L2

)
, (3.37)

∫
�M

R1[u] d� � Cε(‖ h

∇u‖2 + ‖f ‖2 + ‖ v

∇r‖2). (3.38)

The second term on the right-hand side of (3.37) has appeared because of the dependence of
the integrand on f which comes from (3.35). Estimate (3.38) is derived in the same way as
(3.24).
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With the help of (3.37) and (3.38), (3.36) implies

(1/2 − Cε)‖ h

∇u‖2 � 2‖r‖ · ‖f ‖ + Cε‖f ‖2 + C‖ v

∇r‖2 + DN(u, f ).

Assuming ε to be so small as Cε < 1/4, this gives

‖ h

∇u‖2 � 2C‖r‖ · ‖f ‖ + Cε‖f ‖2 + C‖ v

∇r‖2 + DN(u, f ). (3.39)

Inequality (3.39) implies

‖ h

∇u‖2 � Cε‖f ‖2 +
C

ε
‖r‖2 + C‖ v

∇r‖2 + DN(u, f ).

Estimating the first term on the right-hand side with the help of (3.29), we obtain

(1 − C2ε)‖ h

∇u‖2 �
(

C

ε
+ C2ε

)
‖r‖2 + C‖ v

∇r‖2 + DN(u, f ).

If ε is chosen so small as C2ε < 1/2, this inequality implies the statement of lemma 3.3. �

4. The nonlinear problem

Here, we consider the inverse problem of recovering a tensor field f ∈ C∞(
τ 1

1 M
)

on a CNTM
(M, g) from the data �[f ] = U |∂+�M, where U ∈ C

(
β1

1M;�M
)

is the solution to the
boundary value problem (1.11). We will prove the uniqueness under the following smallness
assumptions on f :

|f (x)| < ε for x ∈ ∂M, (4.1)

∫ 0

τ−(x,ξ)

|f (γx,ξ (t))| dt < ε,

∫ 0

τ−(x,ξ)

|∇f (γx,ξ (t))| dt < ε for (x, ξ) ∈ ∂+�M. (4.2)

The following theorem is proved on the basis of theorems 2.3 and 3.1 in full analogy with
section 5 of [NS].

Theorem 4.1. It is possible to choose a positive number ε = ε(n) for n � 4 such that
the following statement is true for an n-dimensional CNTM (M, g) satisfying the curvature
condition (2.14). Let two trace-free tensor fields fi ∈ C∞(

τ 1
1 M

)
(i = 1, 2) satisfy (4.1) and

(4.2) and �i = �[fi] be the corresponding data. Then the estimate

‖f2 − f1‖L2 � C
∥∥�−1

1 �2 − E
∥∥

H 1

holds with constant C independent of fi . In particular, f1 = f2 if �1 = �2. In the case of
n = 3, the same statement is true under the additional assumption that f2 − f1 is a closed
tensor field.
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