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Abstract

Let f be a matrix function on a bounded domain D C R" furnished with
a Riemannian metric. For a unit speed geodesic y : [0,/] — D between
boundary points, let ®[f](y) = U(), where U(¢) is the solution to the
Cauchy problem DU/dt = (Qyi f(y(®))U,U(0) = E, E being the unit
matrix. Here Q¢ is an orthogonal projection onto the space {h € gl(C")|h& =
h*¢ = 0,trh = 0}. We consider the inverse problem of recovering the
function f from the data ®[f] known on the manifold of all unit speed
geodesics between boundary points. The problem arises in optical tomography
of weakly anisotropic media. The local uniqueness theorem is proved: a
C'-small function f can be recovered from the data uniquely up to a natural
obstruction.

1. Introduction

This paper is a continuation of [4] that is referred to as [NS]. The reference (NS.1.1) stands for
formula (1.1) of [NS]. Here, we consider the problem posed at the end of section 2 of [NS].
We start with the physical motivation of the problem.

Let us consider propagation of time-harmonic electromagnetic waves of frequency w in a
medium with the zero conductivity, unit magnetic permeability and the dielectric permittivity
tensor of the form

2 1
gij =n 3ij+EXij, (1.1)

where k = w/c is the wave number, ¢ being the light velocity. Here n > 0 is a function of
a point x € R*, and the tensor x; j = Xij(x) determines a small anisotropy of the medium.
The smallness is emphasized by the factor 1/k. The tensor x is assumed to be Hermitian,
Xij = Xji-

In the scope of the zero approximation of geometric optics, propagation of electromagnetic
waves in such media is described as follows. Exactly as in the background isotropic medium,

! Partially supported by CRDF grant KAM1-2851-AL-07.

0266-5611/08/035010+21$30.00  © 2008 IOP Publishing Ltd  Printed in the UK 1


http://dx.doi.org/10.1088/0266-5611/24/3/035010
mailto:sharaf@math.nsc.ru
http://stacks.iop.org/ IP/24/035010

Inverse Problems 24 (2008) 035010 V Sharafutdinov

€2
b [
« e
a
Figure 1. Polarization ellipse.
light rays are geodesics of the Riemannian metric
dr? = n®(x)|dx|*; (1.2)

the electric vector E(x) and magnetic vector H (x) are orthogonal to each other as well as to
the ray, and the polarization vector n = n~!| E| ! E satisfies the equation (generalized Rytov’s
law)

Dn i

=z L 1.3
& o2 X1 (1.3)

along a geodesic ray y(¢). Here m; is the orthogonal projection onto the plane v+, and
D/dt = y*Vj is the covariant derivative along y in metric (1.2).

For a fixed unit speed geodesic y (¢), let (e1(¢), e2(t), e3(t) = y(¢)) be an orthonormal
basis parallel along y in the sense of metric (1.2). Let n(¢) = n(t)e;(t) + n2(t)ex(t) be the
representation of the polarization vector in this basis, and y;; be the components of the tensor
x in this basis. Equation (1.3) is equivalent to the system

dn; i

e W(X”m + X1212),

dn, ; (1.4)
e W(Xﬂﬂl + X2212).

The vectors 1 and E are complex. It is the real vector
&E(t,T) =Re[n(t) ei(ktfwT)]

that has a physical meaning. We fix a point ¢ = #j on the ray. With time 7', the end of the
vector

£(T) = Re[(n1e] + mrey) e *0T)]

runs an ellipse in the plane of vectors ey, e;; it is called the polarization ellipse. The shape
and disposition of the ellipse are determined by the angles « and v shown in figure 1. The
sign of 1 depends on whether the polarization is right or left. The angle « is not defined if
Y = £ /4 (the case of circular polarization).
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Only the angles « and i are measured in practical polarimetry. Simple arguments
presented in section 6.1 of [5] lead to the following conclusion: the complex ratio 1n,/n; of
the components of the vector n is in one-to-one correspondence with the pair of the angles
(a0, ) that determine the shape and disposition of the polarization ellipse. Note also that
711> + |172]> = const. on the ray since (1.4) is a system with a skew-Hermitian matrix.

Let us now consider the inverse problem. Assume a medium under investigation to be
contained in a bounded domain D C R® with a smooth boundary. The background isotropic
medium is assumed to be known, i.e., metric (1.2) is given. The domain D is assumed to be
convex with respect to the metric, i.e., for any two boundary points xo, x; € d D, there exists
a unique unit speed geodesic y : [0, /] — D such that y (0) = xo, ¥ (/) = x;. We consider the
inverse problem of determining the anisotropic part x;; of the dielectric permittivity tensor.
The data for the inverse problem are the angles « and v that are measured for outcoming light
along every unit speed geodesic y : [0, /] — D with the endpoints on the boundary of D. We
denote by U (1) the fundamental matrix of system (1.4), i.e.,

ni(D) uyp up 0\ /110 uyp up 0
m) | =|uau un 0] |n0)], Ul)={uy uxn O
0 0 0 1 0 0 0 1

In [NS], studying the inverse problem, we assumed the matrix U (/) to be completely known.
Now, by the above conclusion, we assume that the ratio 1, (/) /n; (/) is known as a function of
the ratio 17, (0)/n;(0), for all solutions to system (1.4). As one can easily see, this is equivalent
to the fact that the matrix U () is known up to a factor

e 0 0
0 e* 0 (1.5)
0 0 1

with a real 1. If the tensor field x /n? is sufficiently small, A on (1.5) can be assumed to satisfy
A < /2 (1.6)

since the fundamental matrix U (I) is sufficiently close to the unit matrix. In other words, the
results of the measurement do not change if a solution (1 (¢), n2(¢)) is multiplied by elh®),
where A(#) is a real function satisfying A(0) = 0 and |A(¢)| < 7 /2.

Using the last observation, we change the variables in system (1.4) as follows:

i i [
=X = - + dr [ n.
f 2k ¢ exp|: 4n2/0 (X1 + x22) :|77
Then the system is transformed to the following one:
dg; 1
— == (fi1 — f22) &1 + f282,
dr 2 (17
dg,

1
i S8+ 3 (f2 — f11) &o.

Let us observe that the structure of this system coincides with that of system (1.22) of [1].

As compared with (1.4), system (1.7) has the next advantage: the results of the
measurements allow us to determine completely the fundamental matrix U (l) of system
(1.7). Indeed, note that the trace of the matrix of this system is equal to zero. Therefore the
fundamental matrix of the system satisfies the condition

detU(l) = 1. (1.8)
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Assume that, for every solution ¢ (¢) to system (1.7), the ratio £, (1) /&1 (I) is known as a function
of £,(0)/¢1(0). As above, this allows us to determine the matrix U (/) up to a factor (1.5).
Under assumption (1.6), the factor is uniquely determined by condition (1.8).

Let g/(C?) be the space of all linear operators on C>. Equations (1.7) are written in a basis
(e1(t), ex(t), es(t) = y(t)) related to the ray y. To find an invariant form of the equations, we
note that the matrix of the system

10— f2) Ji2 0
O,f = bis 3(f2—fi) 0
0 0 0

considered as the linear operator on C° is the orthogonal projection of the tensor f onto the
subspace

{h € gl(C>H|hy =h*y =0,trh = 0.

Thus system (1.7) takes the invariant form

D¢

— =(0y . 1.9

o =@y ¢ (1.9)
Instead of (1.9), we will consider the corresponding operator equation

DU

T=(Q;‘/f)U- (1.10)

Equation (1.10) has a unique solution satisfying the initial condition U (0) = E, where E is the
identity operator. Since Q;, f is a trace-free skew-Hermitian operator satisfying (Q; f)y =0,
the solution U(¢) belongs to SU (3) and satisfies U (t)y (t) = y(¢). The final value of the
solution

QLfIy) =UD)

is the data for the inverse problem. Given the function ®[f] on the set of unit speed
geodesics between boundary points, we have to determine the tensor field f = (f;;(x)) on the
domain D.

We consider the inverse problem in a more general setting. Instead of a domain D C R?
with metric (1.2), we will consider a convex non-trapping manifold (CNTM in brief, see the
definition in [NS]) (M, g) of an arbitrary dimension n > 3 and an arbitrary complex tensor
field f = (fi;) on M. In such a setting, equation (1.10) makes sense along a geodesic y .

Quite similarly to section 2 of [NS], the inverse problem can be equivalently posed as
follows. Given a tensor field f € C*(t{ M) ona CNTM (M, g), let us consider the boundary
value problem

HU = (Q:f)U on QM, Ulyau = E. (1.11)

The inverse problem is now posed as follows: one has to recover the tensor field f given the
trace

[ f]=Uls,am

of the solution to (1.11). In the same way as in [NS], this nonlinear inverse problem is reduced
to the linear problem of recovering f from the data

FLf]1=uls.am,
where u is the solution to the boundary value problem
Hu = p(Q¢ f)q, ulo_am =0
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with some weights p and ¢ that are semibasic tensor fields. The linear problem is studied
in sections 2 and 3. In section 4, we present our main result on the local uniqueness in the
nonlinear inverse problem.

The problem under consideration is of some applied interest for photoelasticity [2, 6] and
for other kinds of optical tomography [3]. As the authors of [2] insist, the nonlinear problem
is important for photoelasticity in the case of testing solid objects with big point loads.

2. The linear problem in dimensions greater than 3

First we are going to correct some inaccuracy made in [NS]. Let us recall that a number k(M g)
has been defined by formula (NS.3.6) for a CNTM (M, g). Unfortunately, the definition given
in [NS] is wrong and must be replaced with the following one:

T (x,6)
k(M,g) = sup / 1K (yre () dt, (2.1)
x.5)ed_am Jo

where K (x) is the supremum of the absolute values of sectional curvatures at the point x over
all two-dimensional subspaces of 7, M. This coincides with definition (5.2.8) of [5].

Let us recall that, for a point x of a Riemannian manifold (M, g) and a vector
0 # & € T.M, we have introduced the linear operator Qs : gl(T*M) — gl(TEM) as
the orthogonal projection onto the subspace {f € gl(TxCM)|fE = ff =0,tr f = O}.
Obviously, Q:g = 0, g being the metric tensor. If f is a scalar multiple of the metric tensor,
ie., f = Ag with A € C*®(M), equation (1.11) gives no information on f. Therefore we
will consider the inverse problem on the subspace of C* (‘L’ll M ) consisting of trace-free tensor
fields, i.e., f will always be assumed to satisfy

trf = f =0. (2.2)

The quadratic form |, onlQ:ef | dw, (£) is positive definite on the space of second-rank tensors
at x satisfying (2.2). Therefore the estimate

fEI < Cf Qe f (1) dwy (8) (23)
QM
holds for a trace-free f € C* (‘L'll M ) with constant C depending only on n = dim M.

We start with studying the corresponding linear inverse problem.

Let (M, g) be a CNTM. Choose two semibasic tensor fields p,q € C®(B{M; QM)
satisfying

pr(x,6)§ =&, q(x,§)§ =§. (2.4)
We can also assume these fields to satisfy
detp =detg =1, (2.5)

but this assumption has not been used so far. For a trace-free tensor field f € C*(t| M),
consider the boundary value problem on QM

Hu = p(Q:¢ f)q, uls_om =0. (2.6)

The problem has a unique solution u € C(B{M; QM) and, by virtue of (2.4), the solution
satisfies

u(x,§)§ =u*(x,6)5 = 0. (2.7)
In this section, we consider the inverse problem of recovering the tensor field f from the data
FIf]1=uls.am. (2.8)
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In the case of a real symmetric f and unit weights, the problem was considered in chapter 6 of
[5], see theorem 6.2.2 of [5]. Compared with [5], the main difficulty of our case relates to the
trace tru of the solution u to (2.6). Indeed, tru = 0 in the case of p = ¢ = E, and this fact
plays a crucial role in the proof of theorem 6.2.2 of [5]. Therefore we start with estimating
tru.

The factors p and g on (2.6) are considered as weights. We will assume the weights to
be close to the unit weight E in the following sense: the inequalities

v v
lp— E| <e, lg — E| <e, IVpl <e, Vgl < ¢ (2.9

hold uniformly on QM. The value of ¢ will be specified later.

Equation (2.6) is initially considered on QM. To get some freedom in treating the
equation, we extend it to the manifold T°M = {(x, £) € TM|£ # 0} of nonzero vectors. The
weights are assumed to be positively homogeneous of zero degree in &

p(x,t§) = p(x, §), q(x,t8) = q(x, &) for 7> 0.

Then the right-hand side of (2.6) is positively homogeneous in & of zero degree because f is
independent of £. The solution # must be extended to T°M as a homogeneous function of
degree —1

u(x,t&) =t 'u(x, &) for t>0

because the operator H increases the degree of homogeneity by 1.
Exactly as in [NS], the solution u to (2.6) is continuous on 7°M and C* smooth on

TOM\ T(OM).
We rewrite the boundary value problem (2.6) in the form
Hu=Q:f+r on T°M, ula,am =0, (2.10)
where
r={p-E)Q:f+pQ:flqg—E). (2.11)
By (2.9), the remainder r satisfies
< Celfl, IVl < E—Tm (2.12)

with constant C dependent only on n = dim M. In what follows in this section, we denote
different constants dependent only on n by the same letter C.
For sufficiently small ¢, equation (2.10) and inequalities (2.12) imply the estimate

P < c/ |Hul dooy 8) < c/ Vil ooy &). 2.13)

M Qx

Indeed, from (2.3) and (2.10)

P < c/

QM

10c £ (P doos 8) =c/ \Hu — r do (€)

QM

<c/ |Hu|2dwx<s>+c/ 12 doox ).
QM M

X

Estimating the last integral on the right-hand side with the help of (2.12), we obtain

(1—C82)|f(x)I2<C/ |Hu|2dwx<é)<c/ VP deoy ).

M Qy

This implies (2.13) under the assumption Ce? < 1/2.
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Lemma 2.1. Let a CNTM (M, g) satisfy
kM, g) <e<1/8 (2.14)
For every tensor field f € COO(TIIM) and for every semibasic tensor field r €

c>® (ﬂllM; TOM), if the solution u € C(ﬂllM; TOM) to the boundary value problem (2.10) is
positively homogeneous of degree —1 in &, then the estimate

h v
/ IV (tru)|* dE < c/ |Vr > dS + D'||uly,omll 3 (2.15)
QM QM

holds with constant C dependent only on n = dim M and constant D' dependent on (M, g)
but noton f andr.

Let us emphasize that no estimate for the remainder r is assumed in the lemma. If the
remainder satisfies (2.12), then (2.15) implies

h
/ IV(tru)|*dE < Ce?| fII72 + D'llula,amllF:- (2.16)
QM

v
Before proving the lemma, let us give a remark. Estimates for |tru| and |V (tr )| in terms

of | f| can be easily derived from (2.9)—(2.11). But the corresponding estimate for |$(tr u)|
will involve |V f|. Such an estimate does not fit our approach since the norm |V f| does not
participate in the Pestov identity. The more tricky estimate (2.16) involves | | but does not
involve |V f|.

Proof of lemma 2.1. Let us denote ¢ = tru. Since operators tr and H commute,
equation (2.10) implies
Hp =trr. 2.17)
We write the Pestov identity for the function ¢
h v h 5 h i v kel i v
2Re(Ve, VH@) = |[Vo|” + Viv' + Viw' — RyjiE"E'V'p - V/ , (2.18)
where
. cho. v LV h
v' =Re(§'V/p-V;p —§'V'e-V;p), (2.19)
. ch. h
w' =Re(E’'V'e- V). (2.20)

By (2.17), the left-hand side of the Pestov identity admits the estimate

h v h v 1 h 2 v 2 1 h 2 LI
2Re(Vg, VH@) = 2Re(Vy, V(trr) < Lvel? +2|v(wr)® < HvelP + Clvr .

Therefore, the Pestov identity implies

RTINS LI B kel i L)

sIVol+ viw' < C|Vr|” — Viv' + Ry i§"§'Vip - V/ g
for |£] = 1. We multiply the inequality by the volume form dX, integrate over QM, and
transform the integrals of divergent terms by Gauss—Ostrogradskii

Lo, 2
5IVol + (= 2)|Hl | 45
QM
<C f VrlPds — / (v,0)dZ¥ 7% + f RujE“E'Vip - Vipds. (2.21)
QM QM QM

7



Inverse Problems 24 (2008) 035010 V Sharafutdinov

The integrand (v, v) of the boundary integral on (2.21) is equal to zero on d_QM as is
seen from (2.19) and boundary condition u|;_qp = 0. On 0,Q2M, the integrand is the value
on ¢ of some quadratic first-order differential operator, as is shown at the end of section 4.6
of [5]. Therefore the boundary integral admits the estimate

2 2
< Dillols,amllzn < Dalluls,omllz

/ (v,v)d=?2| <
QM
with some constant D, dependent on (M, g). Inequality (2.21) takes the form

Ln s 2
§|V<P| + (1 —2)|Hp|"|dX
oM

V. v . v
< / RijiE* €'V - VIigdE + C / |Vr[>dZ + Dallula.om - (2.22)
QM QM

The first integral on the right-hand side of (2.22) is estimated with the help of the Poincaré
inequality (see section 4.5 of [5]) like in section 4.7 of [5]. Namely, the integrand admits the
estimate

kel Gi Vi + v 2
Riji§"§'Vigp - Vg < K™ (x, §)|Ve(x, 87, (2.23)

where K*(x, &) is defined by formula (4.3.2) of [5]. The vector field %(p vanishes on 0_QM,
so the Poincaré inequality can be applied and gives

V. v . v
/ Riji§*E'V'p - Vg dE < k(M. g) / |HVg|* dE,
oM oM
where k*(M, g) is defined by (4.3.3) of [5]. This gives with the help of (2.14)
f RujiE*E'Vip - Vg dE < e f |HVp| dz. (2.24)
oM QM
We have thus to estimate |H V<p| To this end we apply the operator V to equation (2.17)
and use the commutator formula VH H V + V
v v
Hvyp = —V<p +V(trr).
This implies the estimate
v h v
|HVo|* <2|Vgl* +C|vr?
for |£] = 1. Combining this inequality with (2.24), we obtain
v, v . h v
/ Rijig“€'Vip - Vg dxE < 2¢ / V@2 dE + Cs / IVr?ds.
oM QM QM

Estimating the first integral on the right-hand side of (2.22) with the help of the last
inequality, we arrive at the final estimate

1 h v
(— - 2e>/ IVelPdE + (n —2) | |Hel*dE < Cf |Vr > dS + Dalluly,omll3:-
2 oM oM oM

This gives statement of the lemma assuming ¢ < 1/8. (]

The following statement is an analog of formula (NS.3.17).

Lemma 2.2. A trace-free tensor field f € C* (tllM ) is uniquely represented as
fij () = (Qe )ij(x, &) + &jai(x, &) + Ebj(x, &) + & je(x, &) +d(x, £)gij (x) (2.25)

8
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with the semibasic covector fields a and b orthogonal to &
aE =bE =0 (2.26)
and scalar functions c(x, &) and d(x, ). The (vector versions of the) fields a and b are
expressed through f by the formulae
1 1
a=—m: f§, b=—
gL €2

and the functions c and d by
n (f§.§) d— 1 (f§.8)

Ta—1 g T -1 R
where n = dim M.

me & (2.27)

(2.28)

Proof. Compare with lemma 6.2.1 of [5]. We first prove the uniqueness statement. Assume

(2.25) and (2.26) to be valid. Take the contraction of (2.25) with &£/ (multiply by &/ and take

the sum over j). Taking (2.26) into account, we obtain
fE=EPa+ (€ c+a)E, (a, &) =0.

This means that a = 7¢ f&€/1£1? and

(f§.8)

HE

In the same way we obtain b = m; f*£/|& |>. On the other hand, applying the operator tr to
equation (2.25), we see that

IE)*c +nd = 0. (2.30)

1E)%c+d = (2.29)

Equations (2.29) and (2.30) imply (2.28). This proves the uniqueness statement.

The existence is proved by reverse arguments. Define a, b, ¢ and d by (2.27)—(2.28) and
then define Q¢ f by (2.25). Check that Q¢ f belongs to the subspace Ag = {h|h§ = h*§ =0,
trh = 0} and the difference f — Q¢ f belongs to A?. ]

The main result of the current section is the following

Theorem 2.3. For any n > 4, there exists a positive number ¢ = €(n) such that, for any
n-dimensional CNTM (M, g) satisfying (2.14) and for any weights p,q € C°°(,311M; QM)
satisfying (2.4) and (2.9), every trace-free tensor field f € C*™ (rllM) can be uniquely
recovered from the trace (2.8) of the solution to the boundary value problem (2.6) and the
stability estimate

I fll2 < DIFLf1ll (2.31)
holds with constant D dependent on (M, g) but not on f, p, q.

Proof. It follows approximately the same line as the proof of theorem 3.1 of [NS] by making
use of lemma 2.1 at a crucial point. We start by writing the Pestov identity for u

h v h h . v .
2Re(Vu, VHu) = |Vul*> + Viv' + Viw' — Ry[ul, (2.32)
where
. . ho.oL . v V. L h
vt = Re(S’V/u"’Z . Vjﬁhiz — é’V’u"” . le/_ii]iz), (2.33)
. .h.oL. h
w = Re(éjvlu”lz . leziliz)’ (2.34)

9
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Rulu] = RipigEPEIV U - Vlity , + Re((R}) ;uP™ + R u"'P)&¢ Vi) (2.35)

By (2.10), the left-hand side of the Pestov identity can be represented as

h v h v h v
(Vu, VHu) = (Vu, V(Qe f)) + (Vu, vr). (2.36)
We will first investigate the first term on the right-hand side of (2.36). By (2.25),
(Qe f)ij = fij — ai&j — bj& — c&&; — dgij. (2.37)

Differentiating the last equality with respect to £ and using the fact that f is independent of
&, we obtain

v v v o v v -
Vi(Qs ij = —§;Vika; — §Vikbj — §i&;Vike — gijVid — gjvai — gikb; — (8ir§j + gjri)c.
Therefore
h v h ..o _
(Vu, V(Q: ) = Viu" - Vi(Qe i
hk ii vo_ v vo_
= Vu'l (=& Vi@ — &Vibj — &§;ViT
— 8i;Vikd — gjka; — gikbj — (gikkj + gjk&)T).

h, o
The tensor V¥u'/ is orthogonal to & in the indices i and j as follows from (2.7). Therefore the
last formula is simplified to the following one:

h v h _i h i h P ii v
(Vu,V(Q: f)) = =VPuj, - a' — VPu,; - b' — V" (giju’) - Vid.
h h
Introducing the semibasic covector fields §;u and §,u by the equalities

h h h h
($1u)i = VPu;p, (82u)i = VVup;, (2.38)

we write the result in the form

(Vit, V(e f)) = — (811, @) — (Sau, BY — (V(tru), V). (2.39)

This implies the estimate
h v h h 2 1 & v
2Re(Vu, V(Q: f)) < gualuﬁ +18oul?) + E“‘"z +1b]%) + gwarunz +e|Vd|?,  (2.40)

where $ is an arbitrary positive number.
The first term on the right-hand side of (2.40) is estimated exactly as in [NS], we just
reproduce (NS.3.35)

hoon o 2
[S1ul™ + |8ou|” < 2|z|” + ViD' + Ralul, (2.41)

where terms on the right-hand side are defined in [NS].
Let us estimate the last term on the right-hand side of (2.40). Differentiating the second
of equalities (2.28) with respect to £ and taking the independence f of £ into account, we

obtain
. Lo/ - 2<fé,s>)
d=—— (— e+ — e - 550
v n—l(l(s|2f‘§+|s|2fS e -

This implies the estimate

9 IfP

. 2.42
(n — 1? [§]? 24

IVdP? <

10
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We substitute values (2.27) for a and b into (2.40) and then use (2.41) and (2.42) to obtain
the following analog of (NS.3.36)

2Re(Vit, V(Qe f)) < Blel + (e fEP + e £5E17)

PN
(n — 1721

The second term on the rlght-hand side of (2.36) is estimated as in [NS], we just reproduce
(NS.3.37)

ﬁlél“
P+ 2P+ £+ Erata (2.43)

2Re(Vu, Vr) < Ce <|§u|2+ /] ) (2.44)

Let us recall that we denote different constants dependent only on n = dim M by the
same letter C. Combining (2. 43) and (2.44), we obtain from (2.36)

ﬁ|é|4(|”sf$| + |7 fHE| )+ﬂV1~l
B

+Ce <|3u|2+ ! >+ =Ralul + g|V(tru)|2. (2.45)

h v
2Re(Vu, VHu) < Blz|* +

Estimating the left-hand side of the Pestov identity (2.32) by (2.45), we obtain for |§]| = 1

v 2
Vul? + Vo' — Blzf — S £ P e 18 P) Ce(Vul® + 1 1P)

(57 ) +muas ¥
V, =9 —v +R[u]+g|V(tru)|, (2.46)

where Rlu] = Ri[u] + §R4[u]. We multiply inequality (2.46) by the volume form dX,
integrate over 2M, and transform the integrals of divergent terms by Gauss—Ostrogradskii
formulae. In such a way we obtain the following analog of (NS.3.40):

2
/QM [|3u|2 +(n—2)|Hul> — Blz|* — E(|7Tsf§|2 +|me f1E)D) — Ce(Vul* + |f|2>} dx

ﬂ ~ 2n—2 1 h 2
< —v—v,v)dX + RluldX + — [V(tru)|~dX. (2.47)
QM QM & Joam

The first integral on the right-hand side of (2.47) can be estimated as follows,

/ <éf) -, v> dx?—2
aam \2

with constant D" in (2.48) depending on (M, g). Indeed, analyzing the integrand by the same
arguments as that used for proving (5.5.14) of [5], we show that the integrand is the value on
u|squ of some first-order quadratic differential operator.

The second integral on the right-hand side of (2.47) is estimated as follows:

< D" lluly,oumll: (2.48)

h
Ru]dE < Ce/ |Vul>dx. (2.49)
QM QM

In [NS], we have written the corresponding estimate (NS.3.42) with no proof just saying that
the estimate can be proved exactly as in [5]. The letter statement is not quite right. So, let us
discuss the proof of (2.49) in more detail.

Repeating arguments in the beginning of section 5.5 of [5], we prove the estimate

R[u]dE < Ck(M, g)/ (|Hul? +|VHul?) dz, (2.50)
QM QM

11
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h
where k(M, g) < ¢ is defined by (2.1). The inequality | Hu|?> < |Vu|? for |£] = 1 holds since
. h v
Hu = §'V;u. To derive (2.49) from (2.50), we have thus to estimate [, |V Hu|*dX through
h v
fQ u Vi |>dX. To this end we apply the operator V to equation (2.10)

%Hu = %(ng) + %r.
Therefore

VHuP < 2IV(Qe )P +2/Vr? < CIf12 +2|vr[ 251)
The second inequality holds since f is independent of £. Estimating the second term with the
help of (2.12), we obtain from (2.51)

VHul? < CIfP?
Together with (2.13), this gives

v h
/ IVHu|? d < C/ |Vul>dx.
QM QM

We emphasize that (2.49) has been proved with the help of estimates (2.12). This remark
will be important in the next section where the remainder r will be arbitrary.

Estimating integrals on the right-hand side of (2.47) by (2.48), (2.49) and (2.16)
respectively, we obtain

2
fQM [(1 —Co)Vul + (n — )| Hul? — BlzP — E(Iﬂsfélz +|me fREPP) — Cslflz} dx

< Cell fl: + (D" + D' /&) |lula,omlFy-

h
Using the relation |Vu|> = |z|? + |Hu/|?, the last inequality is transformed to the following
analog of (NS.3.44)

2
/QM [(1 —B=Colzl*+(n—1—Ce)|Hul* — E(mfsﬁ + e fREID) — Ce|f|2] dz

< Dlluly.omllz,
where
D=D"+D/e. (2.52)

Then, using the inequality |Hu|> > Qs f |> — Ce| f|* we transform our estimate to the final
form

f / [(1 B Co)el (= 1= Ce)| 0 I
M JQM
2

3 (e FEI* + |7 f*E1) — Cslflz} dwy (£)dV"™(x) < Dlula.oumll?-

(2.53)

Let us recall that g is an arbitrary number satisfying 0 < g < 1.

Lemma 2.4. For every Riemannian manifold (M, g) of dimension n > 4 and every point
x € M, the Hermitian form

A(f, f)=f [(n — D] Q¢ fI* — 2(I7e fEI* + |7 £ £ 1) ] ooy (8)

QM

12
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is positive definite on the space of trace-free second-rank tensors at x. Moreover, the estimate

A(f, f) = el f?

holds with positive constant ¢ depending only on n. In the case of n = 3, the form A is
identically equal to zero on the space of trace-free symmetric tensors at x.

With the help of the lemma, the proof of theorem 2.3 is finished as in [NS]. As far as the
proof of the lemma is concerned, we first observe that it suffices to prove it for a real tensor f.
Again, as in [NS], symmetric and skew-symmetric tensors are orthogonal to each other with
respect to the quadratic form A. Therefore, it suffices to prove the positiveness of A on the
spaces of real symmetric and skew-symmetric tensors separately.

The positiveness of A on the space of real trace-free symmetric tensors
in the case of n > 4 is proved in lemma 6.3.1 of [5], as well as A = 0 on real trace-
free symmetric tensors in the case of n = 3. On skew-symmetric tensors, projections P: and
Q¢ coincide and therefore the quadratic form A coincides with the form B of lemma NS.3.2.
The form B is positive in the case of n > 4.

Remark. The dependence of the coefficient D on ¢ is a little bit strange. According to (2.52),
D grows to infinity as & approaches zero. On the other hand, formula (2.52) is replaced with
D = D” in the case of ¢ = 0. Indeed, ¢ = 0 means that weights p and ¢ coincide with E, the
remainder r is identically equal to zero, and tru = 0.

3. The linear problem in the 3D case

Since the projections Pz and Qg coincide on skew-symmetric tensors, the same
counterexamples as in section 4 of [NS] are valid in our case for both linear and nonlinear
problems. Here, we will prove the uniqueness for the linear problem under the same closeness
condition on f as in section 4 of [NS].

Theorem 3.1. There exists ¢ > 0 such that, for any three-dimensional CNTM (M, g) satisfying
(2.14) and for any weights p,q € C‘X’(,BIIM; SZM) satisfying (2.4) and (2.9), every closed
trace-free tensor field f € C °°(r11 M ) can be uniquely recovered from the trace (2.8) of the
solution to the boundary value problem (2.6) and the stability estimate

LA 172 < DOFLANG + 1 F lamll 2 I FLATIZ2) 3.1
holds with constant D independent of f, p, q.

While proving this theorem, we would like to separate the cases of a symmetric and
skew-symmetric f. Such a separation was already used implicitly in the proof of theorem
NS.4.2, see formula (NS.4.29). The complete separation is impossible since the weights p
and g in equation (2.6) mix the symmetric and skew-symmetric parts of f. Therefore we will
apply the separation to equation (2.10) with a remainder. In the separated equation, we cannot
use estimates of the remainder like (2.44).

For a semibasic tensor field 4, we will use the notation

||h||2=/ |h(x, &)*dE(x, &).
QM

Actually, this formula defines a norm on the subspace of C°°(;3§ M; TOM) consisting of
fields & satisfying the homogeneity condition h(x, t€) = t*h(x, £)(t > 0) for a fixed 1. All

13
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semibasic tensor fields under consideration will be of this kind but for different values of A.
In particular, for f € C*® (rf M) (dim M = 3),

IFI? = / |fO)IPAE(x, &) = Cll fII7.,
QM

where C is the volume of the unit sphere in R®. In the current section, we denote different
universal constants by the same letter C, while D denotes different constants depending on
(M, g) and probably on ¢.

First of all we will demonstrate that theorem 3.1 can be derived from the following two
lemmas.

Lemma 3.2. There exists ¢y > 0 such that the following statement is valid for any positive
& < g&o. Let a three-dimensional CNTM (M, g) satisfy (2.14). For every trace-free symmetric
tensor field f € C*® (tll M) and every symmetric semibasic tensor field r € C*™ (,311 M, TOM)

satisfying

rx.§)% =0, ©2)

r(x,1§) =rx,§)( > 0), (3.3)
if the solution u € C(ﬁll M, TOM) to the boundary value problem

Hu = Q¢f +r, uly oy =0 (3.4)
is positively homogeneous in & of degree —1

u(x,t&) =t 'u(x, &) for t>0, (3.5)

then the estimate

h v
[Vull* < Ce2(||r 1> + V7 1?) + Dllula.oum 3 (3.6)

holds with some universal constant C and some constant D depending on (M, g) but not on
fandr.

Lemma 3.3. There exists ¢y > 0 such that the following statement is valid for any positive
& < go. Let a three-dimensional CNTM (M, g) satisfy (2.14). For every closed skew-

symmetric tensor field f € C D"(IllM) and every skew-symmetric semibasic tensor field
r € COO(,BIIM; TOM) satisfying (3.2)—~(3.3), if the solution u € C(,BIIM; TOM) to the
boundary value problem (3.4) is positively homogeneous in & of degree —1, then the estimate

h v
IVl < Ce2(Url® + 1vri®) + D(lula,emllz + 1 f Lol 2 lluela, 2l 22) 3.7)
holds with some universal constant C and some constant D depending on (M, g) but not on

fandr.

Proof of theorem 3.1. We write equation (2.6) in form (2.10) with the remainder r defined
by (2.11). The remainder satisfies r (x, £)§ = r*(x, £)é = 0 and estimates (2.12).

We decompose each of the fields f, u, r into the sum of symmetric and skew-symmetric
tensors

f=r+5, u=u"+u", r=r+r.

The field f* is trace-free, and f~ is a closed field. The fields u* are solutions to the boundary
value problems

Hu® = ngi+ri, uFs_am = 0.

14
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Thus, the triple (f*,r*,u™) satisfies all hypotheses of lemma 3.2, and (f~,r ,u")
satisfies hypotheses of lemma 3.3. Let us emphasize that we have estimates (2.12) for
71> = ||Ir*|1> + ||~ || through || £]I> = | f*1> + || f~|I> but we have no estimate for ||r¥||
through || f%]|. Applying lemmas 3.2 and 3.3, we obtain the estimates

h v
IVt [> < Ce (et 1> + 1IVrt 1) + Dllut o, om0
h v
-2 —3/2 11— 112 -2 - 2 - -
IV~ > < Ce2(rIIP + Ivr 1) + Dl Lo, om0 + 1 lon 2l Lo, omll22).
Taking the sum of these inequalities, we arrive at the estimate

h v
2 -3/2 2 2 2
IVul> < Ce72(Ir 1> + 1vrI?) + D(llulo.an g + 1f las Nl 22 llela,na |l 2)

which gives together with (2.12)
h
IVul> < Ce' 21 £17+ DUIFL NG + I Flos 2 I FLFI22)- (3.8)

h
By (2.13), [Vul> > || |13, /C. Estimating the left-hand side of (3.8) with the help of the
last inequality, we obtain

(1/C = Ce"™fll7. < DUFLANG + 1 flam 2 IFLEN 22).

This gives the statement (3.1) of the theorem under the assumption C?¢!/? < 1/2. O

Proof of lemma 3.2. The field u is symmetric and orthogonal to &, i.e., u;;§ J = 0 as follows
from (3.2) and (3.4). We write the Pestov identity (2.32) for u with terms defined by (2.33)-
(2.35). We represent the left-hand side of the Pestov identity in form (2.36). For a symmetric
f, formula (2.37) takes the form

(Q: ij = fij —ai§; —a;& —c&§§; — dgij

since b = a as is seen from (2.27). The terms a, ¢ and d are defined by formulae (2.27) and
(2.28). Treating the last formula as before, we obtain the following analog of (2.39)

(Vit, V(s ) = —2(6u, @) — (V(tru), Vd), (3.9)
where

h h

Su)i = V¥u;, (3.10)

This implies the estimate

h v hoo 2 1 n 2 v,
2Re(Vu, V(Q: f)) < [8ul” +4]al +E|V(tru)| +e|vd|”. (3.11)

h
Like in the proof of theorem NS.3.1, we distinguish a divergent term from |5u|?> and obtain
the following analog of formula (NS.3.31),

Wy b ho

|sul” = V'u’™ - Vjil + Viv' + Ralul, (3.12)
where

~i ik ki

v =Re(u"" Vi j —ujpV ") (3.13)
and

Ralul = Re(ul (R, &1V — R% /' — Ri, a'")). (3.14)
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We introduce the semibasic tensor field z by the formula

h &

Viuji = |€|2(Hu)]k+zljk (3.15)
The summands on the right-hand side of (3.15) are orthogonal to each other, therefore

h

IVul® = @muﬁ +zf%. (3.16)
Then we represent z in the form

z=z"+z77, 3.17)
where

i = %(Zijk +Zjik), Zijg = %(Zi_/k — Zjik)-

The summands on the right-hand side of (3.17) are orthogonal to each other, therefore
2 = 1717 + 1271
It follows from (3.15) and (3.17) that

h
viulk. Vjuk=z Ziie =121 =27

Therefore formulae (3.12) and (3.16) take the form

h .
18ul® = |<* |2 lz71* + V; 0" + Ralul, (3.18)

IVMI = —|Hul + P+ 1271 (3.19)

ISI2

Substituting expressions (3.18) and (2.27) into (3.11) and estimating the last term of
(3.11) by (2.42), we arrive at the inequality

hoo +2 2 2, 2, h 2 I
2Re(Vu, V(Qe ) < 277 — |z | +—| e fE]° + Lf1°+ |V(tfu)| + Vi 0" + Rulul.

N 4If’EI2

The second term on the right-hand side of (2.36) can be estimated as
h v hoo 1 v )
2Re(Vu, Vr) < e|Vul” + —|Vr|”.
&
Taking the sum of two last inequalities and using (2.36) we obtain
h b
—|fIP+ = IV(tru)I

h o +2 —n
2Re(Vu, VHu) < |2 — |27 P + — Ime fE1* +

ISI4 4|§|2
hoo 1 v 5 .
+e|Vul|” + —|Vr| +Viv’+R4[u]. (3.20)
€

Estimating the left-hand side of the Pestov identity (2.32) by (3.20), we arrive at the
inequality for |£| = 1

h v . .
\Vul> + Viw' — |25 + 27> — 4|7 fE)? e|Vu|+V,(v — v+ R[u]
9
2 P P+ 9 (3.21)
4 g e
where
Rlu] = Ri[u] + Ralul.
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We multiply (3.21) by the volume form d¥, integrate the result over M, and transform the
integrals of divergent terms by Gauss—Ostrogradskii formulae. In such a way, we obtain

h
2 2 2 -2 2
IVull”+ | Hull” = 12*17 + llz7 17 — 4l f€

h 9
< e||w||2+/ W T —0)d= + [ RS+ — | |2
QM oM 4

e 2y L 322
+8||V(tru)|| +8||Vr|| . (3.22)

The first integral on the right-hand side of (3.22) can be estimated as

/ (v, —v)dX’
QM

since the integrand is the value on u|yq) of some quadratic first-order differential operator.
Let us demonstrate that the curvature-dependent integral on (3.22) admits the estimate

< Dlula,om (3.23)

h v
RluldZ < Ce(|Vull® + || £1I* + [ Vr]). (3.24)
QM

Indeed, repeating the corresponding arguments from the proof of theorem 2.3, we derive
estimates (2.50) and (2.51) which imply (3.24).
Estimating integrals on the right-hand side of (3.22) by (3.23) and (3.24), we obtain

h
IVull® + | Hull> = 12117 + 27> — 4ll7e FEI
L 2 ), 1 ,, CLvo s
< Ce||[Vull® + Dllul,aumllz + Cell f1] +;||V(tru)|| +;||Vr||.
h
Substituting the value || Vu||?> = ||Hu||*> + ||z*]|> + ||z~ ||> which follows from (3.16) into the
left-hand side of the last inequality, we obtain
2 2 2 L 2
2[[Hu|l” + 2|z |I” — 4llme fEI° < CellVull” + Dlluls,em s
1 & C v
+Ce||f||2+g||varu)||2+;nwnz.

Combining this estimate with the inequality
IHull> = |Qc f +r1* 2 1Qe fI> = 20Qc 1 - Il = 1Qe f1> = 21111 - Il
1
210 fIP = el fI* = ~lIr’?
which follows from (3.4), we obtain
2 2 2 b2 2
21 Qs fII7 = 4llme fEN" + 2027117 < CellVull” + Dllula,omll g
, Lo 2 1 2 U2
+Ce| £ +EIIV(tru)|I +g(|lr|| +IVrl©).

By lemma 2.4, the sum of the first two terms on the left-hand side is equal to zero, and the
inequality takes the form

—2 hoo 2 ) 1 2 Sy, Lo 2
20z711F < Ce||lVull~+ Cell +D||M|B+S2M||H1+;(”r” +|vr| )+;||V(tru)||.

Estimating the last term on the right-hand side with the help of lemma 2.1, we arrive at the
inequality

_ h C v
202711 < Ca||Vu||2+Ce||f||2+;(||r||2+||Vr||2)+D||u|a+QM||i,l. (3.25)
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h
Now, following arguments presented at the end of section 6.3 of [5], we estimate ||Vu/||?
through || f|| - 1z7||. To this end we write the equality

— 1 [a 1 h 1
Gk = 5 | Vit = Wéi(Hu)jk — Vjux + WSj(H”)ik
which follows from (3.15). Multiplying this equality by g/* and performing the summation

over j and k

1 i -
@&' tr(Hu) — Viux + WS (Hu)ix ) .

The last term on the right-hand side is equal to zero since Hu is orthogonal to &, the third term

. 1 /h
-k
28" = 3 (Vi (tru) —

h
is equal to (§u);, and the second term coincides with &; trr/|£|? as is seen from (3.4). We thus
obtain

1

[EE

Substituting this expression into (3.9) and using (a, &) = 0, we obtain

h _ gk
Su); = —2zijkgf + V;(tru) — & trr.
h v ik —ih h v
(Vu, V(Qs ) = 4z;a' g —2a' Vi (tru) — (V(tru), Vd).
Together with (2.36), this gives

h v . . h h v h v
(Vu, VHu) = 4z5;,a g* —2a Vi (tru) — (V(tru), Vd) + (V(tru), Vr).

This implies the estimate
h v _ 3 h 5 v 1 h 5 v 2
2Re(Vu,VHu) < Clz"| - lal + EIV(tru)| +¢e|vd|™ + E|Vu| +2|Vr|-.
Since |a| < | f] and |%d| < %|f| for |£] = 1 as follows from (2.27) and (2.42), the estimate
can be written as
v 9% ., 3 2, L, LA
2Re(Vu,VHu) < C|f] -1z |+ Z'ﬂ + EIV(tru)| + §|VM| +2|Vr|-.

Estimating the left-hand side of the Pestov identity (2.32) with the help of the last
inequality, we obtain for |§| = 1

Lh o 2 - 2, C 2 LA B
SIVul™+ viw SCIfI- |27+ Cel f] + V() +2|Vr|” = Viv' + Ry [u].

We multiply this inequality by the volume form dX, integrate the result over QM, and
transform the integrals of divergent terms by Gauss—Ostrogradskii formulae. In such a way,
we obtain

1 & _ C n v
§||VM||2 +IIHul> < CIIFI - Nz~ + Cell 117 + EHV(UM)H2 +2|lvr|?

—/ (v,v)dZ' + | Ry[u]dZ. (3.26)
QM QM

Integrals participating on (3.26) are estimated similarly to (3.23) and (3.24). Estimating also
h
IV (tr u)]||? with the help of lemma 2.1, we obtain from (3.26)

h v
(172 = CollVul®> < CII £l - Iz~ I + Cell £I* + Dlluls,omllz + CIVrI*.

Assuming ¢ to be so small as Ce < 1/4, this implies
b2 - 2 Vo2 2
IVull <2CI£I -z I+ Cell f1I7 + ClIVrll” + Dllula,omll - (3.27)
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The final part of the proof consists of comparing estimates (3.25) and (3.27). Without
lost of generality, we can assume constants denoted by C in these estimates to coincide. The
same is assumed for constants denoted by D. Inequality (3.27) implies

< |
)

h v
IVul? < NG 1271+ CWe+ ) £I?+ CIVrI® + Dlluls,aumlly -

Estimating the first term on the right-hand side of this inequality with the help of (3.25), we
obtain

h C? C v
(1= Ve vull® < C(CVe+ )l fIP + =5 lIrI*+C (3—/2 + 1) Ivr|?
& &

¢ 2
+D m+1 llulo, n g - (3.28)
Relations (2.3) and (3.4) imply the estimate

2 2 2 2 2 b2 2
1/1° < ClQe fI" =CllHu — rlI” < C([Hull” + [Ir[I7) < CUIVull” + [Ir[I). (3.29)
Estimating the first term on the right-hand side of (3.28) with the help of the last inequality,
we obtain
h v
[1 = CH(CVe+2Ve+)lIVull? < (C2e 2+ O)r | + C(Ce™ 2 + D vr|?
+D(Ce™ "+ Dllula,amll7p-
Assuming ¢ to be so small as the number in the brackets is >>1/2, this inequality implies the

statement of lemma 3.2. O

Proof of lemma 3.3. We will actually repeat the proof of theorem NS.4.2 in the case of a
skew-symmetric f but without estimating terms related to the remainder r.
The closeness condition for a skew-symmetric f is as follows:

h h h
Vifik +Vjfii + Vi fij = 0. (3.30)
Formula (2.25) for a skew-symmetric f is simplified to the following one:
(Qc¢ )ij = fij +&iaj — §jai, (3.3
where a = f&/]£|%. The corresponding analog of the formula (2.39) is now
oo h 2 h
(Vu, V(Q¢ f)) = —2(8u, a) = —W(éu, f&) (3.32)

h
where §u is defined by formula (3.10).

h
Using the closeness condition (3.30), we transform the expression (§u, f&) as follows:

h h ip F k h k. ip F k iph
(Bu, f§) =vpou'" - [ §" =V u'" fip) —EUPV, fix
h k. ip F 1 £k iph r pih 7
= Vp(g u fik) - j‘i: (” foik —u foik)
h P .h . h
= Vp(E u" Fi) = 36 @V, Fi = uNi o)
bk ip 7 Lek iped 7 L& 7
= Vp(%- u fik) - EE u (foik + vifkp)
h k. ip 7 1 ¢k iph 7
= Vp(é u fik) - 55 u kapi

h L h R h . _
=V, u” f) — Vi (365 ) — SEF vt - F
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The result can be written as

h B o o

2(8u, f€) = (Hu, f)+Vi(§'u' fi; + 2%’ F ). (3.33)

Using (3.6) and (3.4), we transform the first term on the right-hand side of (3.33) as
follows:

(Hu, f) =(Qcf +r, [) = Qe /)Y fi; + (r, f)
=(f7 —a'& +d &) f+(r, fY=|f1?=2d' [,,€ +(r, f)

=1/ - |§|2|fs|2 (r, ).

Formula (3.33) takes now the form
h hoo o
2(5u, £&) = | fI* - |§|2|fas| Flr )+ Vi€ F 4 2800 ).

Substituting this expression into (3.32), we obtain

h v 2 ,.,
2Re(Vu, V(Q¢ f)) = — |s|2|f| |$|4IfEI —@< VT, (334
where
= |E|2 Re(&'u/* fi; +28"ul f ). (3.35)
From (2.36) and (3.34),
2Re(Vu, VHu) = 2Re(Vu, w)—wmz |é|4|f$|2 |§|2< )+

This admits the estimate for |£§| = 1

h v 1 h ) 5 2 h i v,
2Re(Vu, VHu) < 5|Vul” = 2| f|"+ 4| f§]" + ViD' +2|r| - | f| +2|Vr]|".

Estimating the left-hand side of the Pestov identity (2.32) with the help of the last
inequality, we obtain for |£| = 1

h v . h . . v
HVul® + viw' + 21 f1* — 4 fEF < Vi@ — o) + Rylul +2[r| - | f] + 2| Vr|*.

Integrating this inequality over QM and transforming integrals of divergent terms by Gauss—
Ostrogradskii, we obtain

Lo 2 2 2 LA
§||VM|| + | Hull” +2 (f17=21fE1H)dZ <20l - LA+ 2] vr]]
oM

+f W, —v)dx + | Riuldz. (3.36)
IQM QM

The integral on the left-hand side of (3.36) is non-negative as is shown at the end of the
proof of theorem NS.4.2. Integrals on the right-hand side admit the estimates

f (v, ? —v)dx’
QM

h v
RiluldE < Ce([Vull* + I £1* + I1Vr]?). (3.38)
QM

< DN, f) := D(lulo.om iy + 1 flonll 2 lluels.oull2), (3.37)

The second term on the right-hand side of (3.37) has appeared because of the dependence of
the integrand on f which comes from (3.35). Estimate (3.38) is derived in the same way as
(3.24).
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With the help of (3.37) and (3.38), (3.36) implies

h v
(172 = Co)llvull® < 2|l - | Il + Cell fII* + CIIVrI* + DN (u, f).

Assuming ¢ to be so small as Ce < 1/4, this gives

h v
IVul> <2CIrl- L £1L+ Cell £ + CUIVrEI? + DN (u, ). (3.39)
Inequality (3.39) implies

h C v
[Vul* < Ce|l fI* + ;nru2 +C|Vrl*+ DN, f).

Estimating the first term on the right-hand side with the help of (3.29), we obtain
h C v
(1= C%)||Vull* < <— + C%) I7II* + ClIvVrI* + DN (u, f).
e

If & is chosen so small as C%¢ < 1/2, this inequality implies the statement of lemma 3.3. [

4. The nonlinear problem

Here, we consider the inverse problem of recovering a tensor field f € C* (1:11 M ) ona CNTM
(M, g) from the data ®[f] = Uly,qom, where U € C(,BIIM; SZM) is the solution to the
boundary value problem (1.11). We will prove the uniqueness under the following smallness
assumptions on f:

|[f(x)] <e for x € aM, “.1)

0 0
/ [ f(Yee@)|dt < e, / IVFf(yee@)|dt <e for (x,§) €0.QM. (4.2)
T (x,§) T (x,§)

The following theorem is proved on the basis of theorems 2.3 and 3.1 in full analogy with
section 5 of [NS].

Theorem 4.1. It is possible to choose a positive number ¢ = e(n) for n > 4 such that
the following statement is true for an n-dimensional CNTM (M, g) satisfying the curvature
condition (2.14). Let two trace-free tensor fields f; € C"O(ﬂcl1 M) (i = 1,2) satisfy (4.1) and
(4.2) and ®; = D[ f;] be the corresponding data. Then the estimate

If— fille < C|| @7 02— E

holds with constant C independent of f;. In particular, fi = f> if &1 = &,. In the case of
n = 3, the same statement is true under the additional assumption that f, — f| is a closed
tensor field.
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