
Pogorelov — Klingenberg theorem
for manifolds homeomorphic to Rn

(translated from [4])

Vladimir Sharafutdinov

January 2006, Seattle

1 Introduction

The paper is devoted to the proof of the following

Theorem 1.1 Let M be a complete Riemannian manifold homeomorphic to the Euclidean
space. Let the sectional curvature of M satisfy 0 ≤ K ≤ 1 at any point and any two-
dimensional direction. Then every geodesic in M of length ≤ π is minimal.

This statement was proved by Toponogov in the case 0 < K ≤ 1 [5]. In the same paper,
Toponogov proves that, if 0 ≤ K ≤ 1 (not assuming the manifold to be homeomorphic to
Rn), then the injectivity radius of M is positive, i.e., there exists δ > 0 such that every
geodesic of length ≤ δ is minimal. Actually we will prove a more general statement, see
Theorem 3.1 below, which generalizes both Toponogov’s results.

Theorem 1.1 was proved by Veiner [6] in the case when M is a hypersurface in Rn+1.
Veiner’s proof is based on the Buzemann — Feller theorem. The latter theorem says that,
given a convex set C ⊂ Rn, the metric projection ϕ : Rn → C sending a point p to the
nearest point of C does not increase lengths of curves. For a convex set C in a Riemannian
manifold, the metric projection ϕ : U → C is still defined in some neighborhood of C, but
can increase distances as simple examples show. Nevertheless, if C is the level surface of
some convex function defined in U , the metric projection can be slightly corrected in such
a way that the corrected map satisfies the Buzemann — Feller theorem. This construction
is presented in Section 2. Theorem 1.1 is proved in Section 3.

Pogorelov and Klingenberg are mentioned in the title of the paper because the corre-
sponding theorem for compact manifolds is proved by Pogorelov in the two-dimensional
case and by Klingenberg, in any dimension.

2 Integral curves of the gradient of a convex function

Let M be a Riemannian manifold. A set C ⊂ M is said to be convex (totally convex) if,
for any two points p, q ∈ C, every minimal geodesic (every geodesic) between p and q lies
completely in C. The set C is locally convex if every p ∈ C has a neighborhood U such
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that U ∩C is convex. Let us remind [1] that a closed connected locally convex set C ⊂ M
is a topological manifold with boundary ∂C.

Let C ⊂ M be a connected locally convex set. For p, q ∈ C, by ρC(p, q) we denote the
infimum of lengths of curves joining p and q in C. Then ρC(p, q) ≥ ρM(p, q) (where ρM is
the metric of M) and ρC(p, q) = ρM(p, q) for sufficiently close p and q. In particular, ρC

and ρM define the same topology on C.

Lemma 2.1 Let C ⊂ M be a connected closed locally convex set. For any p, q ∈ C, there
exists a geodesic of the length ρC(p, q) joining p and q in C.

The proof is obvious.
A function f : C → R is said to be convex if, for any geodesic γ : [0, 1] → C, the

function f ◦ γ is convex, i.e., f(γ(α1t1 + α2t2)) ≥ α1f(γ(t1)) + α2f(γ(t2)) for t1, t2 ∈
[0, 1], α1, α2 ≥ 0, α1 + α2 = 1.

Let now C ⊂ M be a compact connected locally convex set with nonemty boundary
and f : C → R be a function satisfying the following hypotheses:

(i) f is a convex function;
(ii) f |∂C = 0;
(iii) f is Lipschitz-continuous, i.e., there exists a constant K such that

|f(p)− f(q)| ≤ KρC(p, q)

for any p, q ∈ C;
(iv) m = max{f(p) | p ∈ C} > 0.

The set C and function f are fixed in this Section. Let us agree to write ρ(p, q) instead
of ρC(p, q). The latter will be sometimes abbreviated to pq. The minimal geodesic as in
Lemma 2.1 will be sometimes also denoted by pq.

Given p ∈ C, denote Cp = {x ∈ Mp | expptx ∈ C for sufficiently small t > 0}.
The closure Cp is a convex cone in Mp. By ∂Cp we denote the boundary of Cp with

respect to its linear span in Mp. If p ∈ C \ ∂C, then ∂Cp = ∅. Set
◦
Cp = Cp \ ∂Cp.

Obviously,
◦
Cp = {x ∈ Mp | expptx ∈ C \ ∂C for sufficiently small t > 0}. Set also

TC = ∪p∈CCp,
◦
TC = ∪p∈C

◦
Cp. TC is the subset of TM , and we endow TC with the

induced topology. Then
◦
TC is the open subset of TC.

Let p ∈ C, x ∈ Cp. Set fx(t) = f(expptx). The function fx is defined, convex, and
Lipschitz-continuous on some interval [0, ε) and hence has a finite right-hand derivative
at any point of the interval. Let f ′(p, x) denote the value of the right-hand derivative of
fx at t = 0. Extend the function f ′(p, ·) to the closure Cp of Cp by setting f ′(p, x) = 0
for x ∈ Cp \ Cp. The following lemma contains all properties of f ′(p, x) we need.

Lemma 2.2 For any p ∈ C, the function f ′(p, ·) : Cp → R is Lipschitz-continuous,
convex, and positively homogeneous, i.e., f ′(p, tx) = tf ′(p, x) for t ≥ 0; f ′(p, x) = 0 if
x ∈ ∂Cp. If f(p) < m, then the function f ′(p, ·) reaches the positive maximal value on
the set Cp ∩ Sp (Sp is the unit sphere in Mp) in a unique point of the set. The function

f ′ :
◦
TC → R is lower semicontinuous.

All these statements are well known in the case M = Rn, see [3]. In the general case,
the proofs differ in minor details that are omitted. By the Lemma, given p ∈ C such that
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f(p) < m, there exists a unique vector x ∈ Cp∩Sp such that 0 < f ′(p, x) = max{f ′(p, x′) |
x′ ∈ Cp ∩ Sp}. The vector f ′(p, x)x ∈ Mp will be called the (generalized) gradient of the
function f at the point p and will be denoted by ∇f(p).

Lemma 2.3 For every x ∈ Cp, the inequality holds

f ′(p, x) ≤ 〈x,∇f(p)〉.
Proof. ∇f(p) + λx ∈ Cp for any λ > 0. By the definition of ∇f(p),

f ′(p,∇f(p) + λx) = |∇f(p) + λx| · f ′(p, (∇f(p) + λx)/|∇f(p) + λx|) ≤
≤ |∇f(p)| · |∇f(p) + λx|.

On the other hand, by the convexity of f ′(p, ·),
f ′(p,∇f(p) + λx) ≥ f ′(p,∇f(p)) + λf ′(p, x) = |∇f(p)|2 + λf ′(p, x).

Comparing two last inequalities, we obtain

|∇f(p)|2 + λf ′(p, x) ≤ |∇f(p)| · |∇f(p) + λx| = |∇f(p)|2 + λ〈x,∇f(p)〉+ o(λ).

This implies the desired inequality. The lemma is proved.

Corollary 2.4 Let p, q ∈ C be such that f(p) < m and f(p) ≤ f(q). Then the angle at
the point p between the vector ∇f(p) and the minimal geodesic pq is not greater than π/2.

Proof. Let γ : [0, 1] → C be the geodesic parameterization of the curve pq. Then
f ◦ γ is the convex function on [0, 1] and f(γ(0)) ≤ f(γ(1)). Therefore f ′(p, γ̇(0) ≥ 0.

Let ϕ : [a, b] → M be a continuous curve, t ∈ [a, b), and x ∈ Mϕ(t). We say that x is
the right-hand tangent vector to the curve ϕ at the point t and write this fact as x = ϕ̇+(t)
if, for any g ∈ C∞(M), the function g ◦ϕ has the right-hand derivative at t which is equal
to xg.

Lemma 2.5 Let ϕ : [a, b] → M be a continuous curve and t ∈ [a, b). For τ > 0, let
cτ : [0, 1] → M be the geodesic parameterization of the minimal geodesic ϕ(t)ϕ(t+ τ). Set
x(τ) = ċτ (0). A vector x ∈ Mϕ(t) is the right-hand tangent to ϕ at t if and only if

lim
τ↓0

x(τ)/τ = x.

The proof is obvious.

Let a point p ∈ C and number T be such that f(p) = t0 < T ≤ m. A continuous
curve ϕp : [t0, T ] → C will be called the integral curve of the field ∇f starting from the
point p if it satisfies the following three conditions:

(1) ϕp(t0) = p;
(2) ϕp is locally Lipschitz-continuous on [t0, T ), i.e., for any t ∈ [t0, T ) there exist such

K and ε > 0 that

ρ(ϕp(t
′), ϕp(t

′′)) ≤ K|t′ − t′′| if |t′ − t| < ε, |t′′ − t| < ε;

(3) f(ϕp(t)) < m and ϕ̇p+(t) = ∇f(ϕp(t))/|∇f(ϕp(t))|2 for every t ∈ [t0, T ).
If additionally T = m, then ϕp is called the maximal integral curve of the field ∇f starting
from p.
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Theorem 2.6 For every point p ∈ C satisfying f(p) < m, there exists a unique maximal
integral curve of the field ∇f starting from p.

The proof of the theorem is presented below as a sequence of lemmas.

Lemma 2.7 Let p ∈ C, f(p) = t0 < T ≤ m, and ϕp : [t0, T ] → C be an integral curve of
the field ∇f starting from p. Then f(ϕp(t)) = t for all t ∈ [t0, T ].

Proof. The function g(t) = f(ϕp(t)) is locally Lipschitz-continuous on [t0, T ) as the
composition of two Lipschitz-continuous functions. Therefore g is differentiable almost at
all t and

g(t2)− g(t1) =

t2∫

t1

g′(t)dt for t1, t2 ∈ [t0, T ].

Thus, it suffices to prove that g′(t) = 1 under the assumption of the existence of g′(t). If
the derivative g′(t) exists for some t ∈ [t0, T ), it coincides with the right-hand derivative
g′+(t). We will prove that the right-hand derivative exists and is equal to 1 for any
t ∈ [t0, T ).

Fix t ∈ [t0, T ) and set x = ∇f(ϕp(t))/|∇f(ϕp(t))|2. By Lemma 2.5,

ρ(ϕp(t + τ), expϕp(t)τx) = o(τ) for τ > 0.

Using the Lipschitz-continuity of f , this implies

g(t + τ) = f(ϕp(t + τ)) = f(expϕp(t)τx) + o(τ).

Therefore g′+(t) exists and is equal to 1. The lemma is proved.

Lemma 2.8 Let points p0, p1 ∈ C and number T be such that f(p0) = f(p1) = t0 < T ≤
m. Let ϕpi

: [t0, T ] → C (i = 0, 1) be integral curves of the field ∇f starting from p0 and
p1 respectively. Then g(t) = ρ(ϕp0(t), ϕp1(t)) is the nonincreasing function on [t0, T ].

Proof. By the same arguments as in the previous lemma, it suffices to prove that the
right-hand derivative g′+(t) is nonpositive if it exists. By Lemma 2.1, there exists a geo-
desic c : [0, 1] → C of the length g(t) such that c(i) = ϕpi

(t) (i = 0, 1). Let αi (i = 0, 1) be
the angle at the point pi between the geodesic c and vector xi = ∇f(ϕpi

(t))/|∇f(ϕpi
(t))|2.

By Lemma 2.6 and Corollary 2.4,

αi ≤ π/2 (i = 0, 1). (2.1)

Let x(s) ∈ Cc(s) (0 ≤ s ≤ 1) be a smooth vector field along c satisfying x(i) = xi (i =
0, 1). For τ ≥ 0, let l(τ) be the length of the curve cτ : [0, 1] → C, cτ (s) = expc(s)τx(s).
The function l(τ) is smooth, l(0) = g(t), and by the formula for the first variation of
length, l′(0) = −(|x0| cos α0 + |x1| cos α1). This implies with the help of (2.1)

l(τ) ≤ g(t) + o(τ). (2.2)

By Lemma 2.5,
ρ(ϕpi

(t + τ), cτ (i)) = o(τ) (i = 0, 1). (2.3)
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From (2.2) and (2.3)

g(t + τ)− g(t) = ρ(ϕp0(t + τ), ϕp1(t + τ))− g(t) ≤

≤ ρ(ϕp0(t + τ), cτ (0)) + ρ(cτ (0), cτ (1)) + ρ(cτ (1), ϕp1(t + τ))− g(t) ≤
≤ l(τ)− g(t) + o(τ) ≤ o(τ),

i.e., g(t + τ)− g(t) ≤ o(τ). Hence g′+(t) ≤ 0. The lemma is proved.
Applying this lemma for p0 = p1, we obtain

Corollary 2.9 There exists at most one maximal integral curve of the field ∇f starting
from any point p ∈ C such that f(p) < m.

The following statement is proved along the same line as Lemma 2.8.

Lemma 2.10 Let points p0, p1 ∈ C be such that f(p0) = t0 < m, t0 ≤ f(p1) = t1. Let
ϕp0 : [t0, t1] → C be the integral curve of the field ∇f starting from p0. Then the function
g(t) = ρ(ϕp0(t), p1) does not increase on [t0, t1].

Let p ∈ C and t > 0 be such that f(p) + t ≤ m. By pt we denote the nearest to p
point of the set {q ∈ C | f(q) ≥ f(p) + t}. If there are several such points, let pt denote
one of them.

Lemma 2.11 Let p0 ∈ C, f(p0) < m. For any ε > 0, there exist a neighborhood U of
p0 and t0 > 0 such that the inequality t/ppt ≥ |∇f(p0)| − ε holds for any p ∈ U ∩ C and
0 < t < t0.

Proof. The vector x0 = ∇f(p0)/|∇f(p0)| belongs to
◦
Cp0 , |x0| = 1, and f ′(p0, x0) =

|∇f(p0)|. Choose ε′ > 0 such that (|∇f(p0)| − ε′)/(1 + ε′) > |∇f(p0)| − ε.

Since f ′ is lower semicontinuous on
◦
TC, we can find an open neighborhood W of the

point (p0, x0) in
◦
TC such that

f ′(p, x) ≥ |∇f(p0)| − ε′ (2.4)

for (p, x) ∈ W . Let us now choose a compact neighborhood U of the point p0 in C and

a continuous section x(p) of the bundle
◦
TC over U whose value at p0 coincides with x0.

By decreasing U , we can assume that x(p) ∈ W and

|x(p)| < 1 + ε′ (p ∈ U). (2.5)

For p ∈ W , we set

h(p) = sup{s | d(expps
′x(p))/ds′(s′) ∈ W for 0 ≤ s′ ≤ s}.

The function h is positive and lower semicontinuous on the compact set U as one can
easily show. Therefore

t′0 = inf{h(p) | p ∈ U} > 0.
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Let now p ∈ U and 0 < t′ < t′0. The function g(s) = f(exppsx(p)) is convex on [0, t′]
and, by (2.4),

g′+(s) = f ′(exppsx(p), d(exppsx(p))/ds(s)) ≥ |∇f(p0)| − ε′.

Hence

f(exppt
′x(p))− f(p) =

t′∫

0

g′+(s)ds ≥ t′(|∇f(p0)| − ε′). (2.6)

On the other hand, (2.5) implies

ρ(p, exppt
′x(p)) = t′|x(p)| ≤ t′(1 + ε′). (2.7)

Comparing (2.6) and (2.7), we see that

ppt′(|∇f(p0)|−ε′) ≤ t′(1 + ε′).

The last inequality holds for any t′ satisfying 0 < t′ < t′0. Setting t′(|∇f(p0)| − ε′) = t,
we obtain

t/ppt ≥ (|∇f(p0)| − ε′)/(1 + ε′) ≥ |∇f(p0)| − ε.

The latter inequality holds for any t satisfying 0 < t < t′0/(|∇f(p0)|−ε′) = t0. The lemma
is proved.

Let a point p ∈ C and number T be such that f(p) = t0 < T < m. For a partition
α = {t0 < t1 < . . . < tn = T} of the segment [t0, T ], let L(p, α) denote the broken
geodesic p0p1 . . . pn, where p0 = p, pi = p

ti−ti−1

i−1 (i = 1, . . . , n). Introduce the parame-
terization L(p, α) : [t0, T ] → C of the broken geodesic by setting L(p, α)(t) = ci(t) for
t ∈ [ti−1, ti] (i = 1, . . . , n), where ci : [ti−1, ti] :→ C is the geodesic parameterization of
the minimal geodesic pi−1pi.

The rank of a partition α = {t0 < t1 < . . . < tn = T} is the maximum of ti− ti−1 (i =
1, . . . , n).

Lemma 2.12 Let p ∈ C and T be such that f(p) = t0 < T < m. The family L(p, α) of
parameterized curves, where α runs over all partitions of the segment [t0, T ], is Lipschitz
equicontinuous, i.e., there exists K such that

ρ(L(p, α)(t), L(p, α)(t′)) ≤ K|t− t′| (2.8)

for any α and t, t′ ∈ [t0, T ].

Proof. Set K = d/(m− T ), where d is the diameter of C. Let α = {t0 < t1 < . . . <
tn = T} be a partition of [t0, T ] and pi = L(p, α)(ti) (i = 0, . . . , n). Since L(p, α) coincides
with the geodesic parameterization of the minimal geodesic pi−1pi on [ti−1, ti], it suffices
to prove the inequalities

pi−1pi ≤ K(ti − ti−1) (i = 1, . . . , n). (2.9)

Fix some i = 1, . . . , n. Choose a point q satisfying f(q) = m. Let c : [0, 1] → C be the
geodesic parameterization of a minimal geodesic pi−1q. Set q′ = c((ti − ti−1)/(m− ti−1)).
Since f is convex along c,

f(q′) ≥ f(c(0))(m− ti)/(m− ti−1) + f(c(1))(ti − ti−1)/(m− ti−1).
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Taking the equalities f(c(0)) = f(pi−1) = ti−1 and f(c(1)) = m into account, we obtain
f(q′) ≥ ti. Since pi is the closest point to pi−1 among all points q′ satisfying the last
inequality, we deduce pi−1pi ≤ pi−1q

′. On the other hand,

pi−1q
′ = pi−1q · (ti − ti−1)/(m− ti−1) ≤ d(ti − ti−1)/(m− T ) = K(ti − ti−1).

Comparing two last inequalities, we obtain (2.9). The lemma is proved.
Remark. Lemma 2.12 is the only point in our arguments where the compactness of

C is used. I do not know whether Theorem 2.6 is true for a noncompact C. It is true in
the case M = Rn.

Lemma 2.13 Let p0 ∈ C and T be such that f(p0) = t0 < T < m. Let αk be a sequence
of partitions of the segment [t0, T ] such that rankαk → 0 as k →∞. Assume the sequence
L(p0, αk) to converge uniformly to some parameterized curve ϕ : [t0, T ] → C. Then

(1) ϕ(t0) = p0;
(2) ϕ is Lipschitz-continuous;
(3) f(ϕ(t)) = t for t ∈ [t0, T ];
(4) for any t ∈ [t0, T ),

lim
τ↓0

ρ(ϕ(t + τ), ϕ(t))/τ ≤ 1/|∇f(ϕ(t))|.

Proof. The first statement is obvious, the second statement follows from Lemma 2.12.
The third statement follows from the equalities f(L(p0, α)(ti)) = ti (i = 0, . . . , n) which
hold for any partition α = {t0 < t1 < . . . < tn = T}.

Let us prove the last statement. Let t ∈ [t0, T ) and ε > 0. By Lemma 2.11, there exist
a neighborhood U of the point ϕ(t) and τ0 > 0 such that

τ/ppτ ≥ |∇f(ϕ(t))| − ε (2.10)

for any p ∈ U ∩ C and 0 < τ < τ0. By decreasing τ0, we can assume that

ϕ([t, t + τ0]) ⊂ U.

Since L(p0, αk) converges uniformly to ϕ, we can find such N that rank αk < τ0 and
L(p0, αk)([t, t + τ0]) ⊂ U for k > N .

Let 0 < τ < τ0. Fix k > N and consider the partition αk = {t0 < t1 < . . . < tn = T}.
Set

r = r(k) = min{i | t ≤ ti}; s = s(k) = max{i | ti ≤ t + τ}.
Let r < i ≤ s, pi = L(p0, αk)(ti), pi−1 = L(p0, αk)(ti−1). Since pi = p

t1−ti−1

i−1 , (2.10) implies
that

pi−1pi ≤ (ti − ti−1)/(|∇f(ϕ(t))− ε) (i = r + 1, . . . , s).

Taking the sum of these inequalities, we obtain

ρ(L(p, αk)(tr(k)), L(p, αk)(ts(k))) ≤ (ts(k) − tr(k))/(|∇f(ϕ(t))− ε).

Passing to the limit as k →∞, we arrive to the inequality

ρ(ϕ(t), ϕ(t + τ)) ≤ τ/(|∇f(ϕ(t))− ε)

which proves the desired statement because ε is arbitrary. The lemma is proved.
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Lemma 2.14 Let a point p ∈ C be such that f(p) = t0 < m. Given any T satisfying
t0 < T < m, there exists an integral curve ϕp : [t0, T ] → C of the field ∇f starting from
p.

Proof. Lemma 2.12 implies that the family {L(p, α)}, where α runs over all partitions
of the segment [t0, T ], is equicontinuous and uniformly bounded. Therefore any sequence
of the family contains a uniformly converging subsequence. Let αk be such a sequence
that L(p, αk) converges uniformly to a curve ϕp : [t0, T ] → C and rank αk → 0.

By Lemma 2.13, the curve ϕp satisfies two first conditions of the definition of an
integral curve. Let us check the third condition. To this end, by Lemma 2.5, it suffices
to show that

lim
τ↓0

x(τ)/τ = ∇f(ϕp(t))/|∇f(ϕp(t))|2 (2.11)

for any t ∈ [t0, T ), where x(τ) = ċτ (0) and cτ : [0, 1] → C is the geodesic parameterization
of the minimal geodesic ϕp(t)ϕp(t + τ).

By Lemma 2.13,

lim
τ↓0
|x(τ)|/τ = lim

τ↓0
ρ(ϕp(t), ϕp(t + τ))/τ ≤ 1/|∇f(ϕp(t))|. (2.12)

In particular, the function x(τ)/τ is bounded. Let x0 be a partial limit of the function as
τ ↓ 0, and τn > 0 be a sequence converging to zero such that x(τn)/τn converges to x0.
Then

|x0| ≤ 1/|∇f(ϕp(t))|. (2.13)

The condition x(τn)/τn → x0 can be rewritten as:

x(τn) = τnx0 + o(τn).

This implies that

ρ(ϕp(t + τn), expϕp(t)τnx0) = ρ(expϕp(t)x(τn), expϕp(t)τnx0) = o(τn).

On using the Lipschitz continuity of f , we obtain

f(ϕp(t + τn))− f(expϕp(t)τnx0) = o(τn).

Since f(ϕp(t + τn)) = t + τn = f(ϕp(t)) + τn by Lemma 2.13, the previous formula can be
rewritten as

f(expϕp(t)τnx0)− f(ϕp(t)) = τn + o(τn).

Dividing this equality by τn and passing to the limit as τn ↓ 0, we obtain f ′(ϕp(t), x0) = 1.
This implies with the help of (2.13) and the homogeneity of f ′(ϕp(t), ·) that

f ′(ϕp(t), x0/|x0|) = 1/|x0| ≥ |∇f(ϕp(t))|.
By Lemma 2.2, this implies that

1/|x0| = |∇f(ϕp(t))| and x0/|x0| = ∇f(ϕp(t))/|∇f(ϕp(t))|,
i.e., that x0 = ∇f(ϕp(t))/|∇f(ϕp(t))|2. We have thus proved that every partial limit of
the left-hand side of (2.11) coincides with the right-hand side. This proves (2.11) and the
lemma.
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Proof of Theorem 2.6. Let p ∈ C, f(p) = t0 < m. The uniqueness of the maximal
integral curve of the field ∇f starting from p is stated in Corollary 2.9. Let us prove the
existence.

Let t0 < t1 < t2 < . . . be a sequence converging to m. Using Lemma 2.14, we
construct by induction on n a curve ϕn : [tn−1, tn] → C for every n = 1, 2, . . . such that
ϕ1 is the integral curve of ∇f starting from p and ϕn is the integral curve starting from
ϕn−1(tn−1) (n = 2, 3, . . .). Define the curve ϕp : [t0,m) → C by setting ϕp(t) = ϕn(t) for
t ∈ [tn−1, tn]. The restriction of ϕp to any segment [t0, T ] with t0 < T < m is the integral
curve of ∇f . To finish the proof, we have to show that ϕp(t) converges to some point as
t → m.

Let q′ ∈ C be such that f(q′) = m. By Lemma 2.10, ρ(ϕp(t), q
′) is a nonincreasing

function. Hence, the curve ϕp is bounded and ϕp(t) has at least one limit point q as t → m.
By the same Lemma 2.10, ρ(ϕp(t), q) is a nonincreasing function. Hence ϕp(t) → q as
t → m, and we can extend ϕp to [t0,m] by setting ϕp(m) = q. The theorem is proved.

Now, we present the following analogue of the Buzemann — Feller theorem.

Theorem 2.15 Let Ct = {p ∈ C | f(p) ≥ t} for 0 ≤ t ≤ m. Define the map Rt : C → Ct

as follows: Rt(p) = p if f(p) ≥ t and Rt(p) = ϕp(t) if f(p) = t0 < t, where ϕp : [t0,m] →
C is the maximal integral curve of the field ∇f starting from p. Then

(1) the map Rt does not increase lengths of curves, i.e.,

L(γ) ≥ L(Rt ◦ γ)

for any curve γ : [0, 1] → C;
(2) the map R : C × [0,m] → C, R(p, t) = Rt(p) is continuous.

Thus, Rt : C → Ct is a deformation retraction.

Proof. The first statement is equivalent to the following one: Rt does not increase
distances, i.e.,

ρ(Rt(p0), Rt(p1)) ≤ ρ(p0, p1) (p0, p1 ∈ C). (2.14)

For definiteness, let f(p0) = t0 ≤ t1 = f(p1). Consider three possible cases.
(a) t ≤ t0. (2.14) holds since Rt(p0) = p0 and Rt(p1) = p1.
(b) t0 ≤ t ≤ t1. In this case Rt(p1) = p1 and, by Lemma 2.10,

ρ(Rt(p0), Rt(p1)) = ρ(ϕp0(t), p1) ≤ ρ(ϕp0(t0), p1) = ρ(p0, p1).

(c) t1 ≤ t. By Lemma 2.9,

ρ(Rt(p0), Rt(p1)) = ρ(ϕϕp0 (t1)(t), ϕp1(t)) ≤ ρ(ϕp0(t1), p1)

and
ρ(ϕp0(t1), p1) ≤ ρ(p0, p1)

by Lemma 2.10. Comparing two last inequality, we obtain (2.14).
Let us prove the second statement of the theorem. Let (p0, t0) ∈ C × [0,m]. For

t ∈ [0,m], R(p0, t) = p0 if t ≤ f(p0), and R(p0, t) = ϕp0(t) if f(p0) ≤ t. So, the
map R(p0, ·) : [0,m] → C is continuous. Given ε > 0, we can find δ > 0 such that
ρ(R(p0, t0), R(p0, t)) < ε/2 if |t − t0| < δ. Let now (p, t) be such that ρ(p, p0) < ε/2 and
|t− t0| < δ. Then

ρ(R(p0, t0), R(p, t)) ≤ ρ(R(p0, t0), R(p0, t)) + ρ(Rt(p0), Rt(p)) < ε/2 + ρ(p0, p1) < ε.

The theorem is proved.
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3 Proof of Theorem 1.1

We will prove a more general statement.
Let C be a compact convex set in a Riemannian manifold M . If ∂C is not empty, we

set Ct = {p ∈ C | ρ(p, ∂C) ≥ t} for any t ≥ 0. Let tmax = max{t | Ct 6= ∅}. The set Ctmax

will be denoted by Cmax.
Let now M be an open (= complete, connected, noncompact, with no boundary)

manifold of nonnegative curvature. Recall [1] that there exists a finite sequence

C1 ⊃ C2 ⊃ . . . ⊃ Cn+1 = S (3.1)

of compact totally convex sets such that Ci+1 = C i
max (i = 1, . . . , n) and S is a totally

geodesic submanifold (soul) of M with no boundary. Additionally, given a compact set
A ⊂ M , the set C1 can be chosen such that A ⊂ C1 without changing other sets Ci of
the sequence. M is homeomorphic to the Euclidean space if and only if the soul S is a
one-point set.

Recall also that the injectivity radius r(M) of a Riemannian manifold M is the supre-
mum of such s > 0 that every geodesic of length s is minimizing. In the case of dim M = 0,
the injectivity radius of M is assumed to be equal to ∞.

Theorem 3.1 Let M be an open Riemannian manifold whose sectional curvature satisfies
0 ≤ K ≤ 1 at any point and any two-dimensional direction. Let S be a soul of M . The
injectivity radii of M and S satisfy the relation

r(M) ≥ min{π, r(S)}.
Proof. Assume the statement to be wrong, and let c0 be a geodesic in M of the length

s0 < π, s0 < r(S) which is not minimizing. Join the ends of c0 by a minimal geodesic c0,
and denote by γ0 the geodesic biangle formed by c0 and c0. The biangle is nondegenerate
and its length is less then 2s0.

Let (3.1) be such a sequence of compact totally convex sets that γ0 ⊂ C1. Consider the
family of all nondegenerate geodesic biangles in C1, and let s be the infimum of lengths
of such biangles. Then s < 2s0 and s > 0 because of the compactness of C1.

Choose a sequence γk of nondegenerate geodesic biangles in C1 whose lengths converge
to s. Using the total convexity of C1 and the inequality s < π, one can show [2] that
there exists a limit biangle γ for some subsequence of the sequence and that γ is a closed
geodesic of length s. Let γ : [0, 1] → C1 be a parameterization of the geodesic.

For every i = 1, . . . , n, define the function f i : Ci → R by f i(p) = ρ(p, ∂C i). As is
shown in [1], f i is a convex function. Besides this, f i|∂Ci = 0 and f i is Lipschitz-continuous

|f i(p)− f i(q)| ≤ ρ(p, q) (p, q ∈ Ci).

Thus, for every i = 1, . . . , n, the set Ci and functions f i satisfy conditions (i)–(iv) listed
at the beginning of Section 2, and our results from Section 2 can be applied.

Let us set

mi = max{f i(p) | p ∈ Ci} (i = 1, . . . , n); m = m1 + . . . + mn,

So, Ci+1 = Ci
mi

. For every i = 1, . . . , n and for every t ∈ [0,mi], let Ri
t : Ci → Ci

t be the
retraction constructed in Theorem 2.15 with the help of the function f i.
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Now, for every t ∈ [0,m], define the curve γt : [0, 1] → C1 by

γt = R1
t ◦ γ for t ∈ [0,m1];

γm1+...+mi−1+t = Ri
t ◦ γm1+...+mi−1

for t ∈ [0,mi] (i = 1, . . . , n).

By Theorem 2.15, γt is a closed curve for any t ∈ [0,m], γ0 = γ, the length of γt is not
greater than s, and the map (t, τ) 7→ γt(τ) is continuous on [0, m]× [0, 1]. The curve γm

lies in S.
Let t0 be the supremum of those t ∈ [0,m] for which γt is a nondegenerate closed

geodesic. Then the curve c = γt0 is a closed geodesic of the length s.
Observe that t0 < m since s < 2r(S). Choose a sequence tk ∈ (t0,m) converging to

t0. The sequence γtk converges uniformly to c.
Since γtk is not a geodesic, its length can be decreased by a small deformation. More

precisely, there exists a closed curve ck : [0, 1] → C1 whose length is less than the length
of γtk and such that

sup{ρ(ck(τ), γtk(τ)) | 0 ≤ τ ≤ 1} < 1/k (k = 1, 2, . . .).

The sequence ck converges uniformly to c. We have thus found a closed geodesic c of
length s and a uniformly converging to c sequence of closed curves ck whose lengths are
less than s. Now, the proof is finished by repeating the arguments of [2].

The author is grateful to V. Toponogov who has read the paper and made some
remarks.
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