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ON EMISSION TOMOGRAPHY OF INHOMOGENEOUS MEDIA

VLADIMIR A. SHARAFUTDINOV†

Abstract. The problem of finding the source distribution for particles (or radiation) in a
bounded domain D from the emitting flow through the boundary of D is considered. The particles
are supposed to move with unit velocity along geodesics of a Riemannian metric and can be absorbed
by the medium. The metric and the absorption are known. Uniqueness of the solution to this problem
and a stability estimate are obtained under a certain assumption on the absorption and curvature of
the metric.
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1. Introduction. The attenuated X-ray transform of a compactly-supported
function f is given on Rn by

(1.1) Iεf(x, ξ) =

∞∫

−∞
f(x + tξ) exp


−

∞∫

t

ε(x + sξ) ds


 dt

where x ∈ Rn, 0 6= ξ ∈ Rn. In this formula ε(x) ≥ 0 represents the absorption and is
assumed to be compactly-supported. The operator Iε arises in the study of emission
tomography. The basic problem in the mathematical theory of the attenuated X-ray
transform is whether or not for a given absorption ε the operator Iε has a non-trivial
kernel. For non-constant ε all known results include some assumptions on smallness
of ε. A review of such results is given in [1].

In (1.1) the integration is made along straight lines. Actually, in tomographic
problems the integration is to be made along rays of sounding radiation. Strictly
speaking, these rays are straight only in homogeneous media. Any inhomogeneity of
the medium implies a ray refraction. It is very small and can be ignored in X-ray
tomography. But in other fields such as acoustic, geophysic and optic tomography
the ray refraction is to be taken into account. In many important cases the rays
are geodesic lines of a Riemannian metric. We thus come to the definition of the
attenuated X-ray transform along the geodesics of a Riemannian manifold which is
formulated in the next section.

2. Formulation of the result. A compact Riemannian manifold (M, g) with
a boundary ∂M is called a compact dissipative Riemannian manifold (CDRM briefly)
if

1) the boundary is strictly convex, i.e., at every point x ∈ ∂M the second qua-
dratic form II(ξ, ξ) = 〈∇ξν, ξ〉 is positive-definite on the tangent space Tx(∂M); where
ν is the unit outer normal vector to ∂M, ∇ is the covariant derivative in the metric
g and 〈, 〉 is the scalar product in the metric g;
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2) for every point x ∈ M and every vector 0 6= ξ ∈ TxM , the maximal geodesic
γxξ(t) determined by the initial conditions γxξ(0) = x, γ̇xξ(0) = ξ is defined on the
finite segment [τ−(x, ξ), τ+(x, ξ)].

We denote by TM = {(x, ξ) |x ∈ M, ξ ∈ TxM} the space of the tangent bundle.
Let T 0M = {(x, ξ) ∈ TM | ξ 6= 0} be the manifold of non-vanishing tangent vectors.
Note that, together with the definition of CDRM, we have introduced two functions
τ+, τ− : T 0M → R.

Let ΩM = {(x, ξ) ∈ TM | |ξ|2 = 〈ξ, ξ〉 = gij(x)ξiξj = 1} be the manifold of unit
tangent vectors. Its boundary ∂ΩM is the union of the two submanifolds

∂±M = {(x, ξ) ∈ ΩM |x ∈ ∂M, ±〈ξ, ν(x)〉 ≥ 0}
of inner and outer vectors.

We fix a smooth non-negative function ε on M that will be called the absorption.
The linear operator

(2.1) Iε : C∞(M) → C∞(∂+ΩM)

defined by the equality

(2.2) Iεf(x, ξ) =

0∫

τ−(x,ξ)

f(γxξ(t)) exp


−

0∫

t

ε(γxξ(s)) ds


 dt

is called the attenuated X-ray transform on CDRM (M, g) corresponding to absorption
ε; here γxξ : [τ−(x, ξ), 0] → M is the maximal geodesic satisfying the initial conditions
γxξ(0) = x, γ̇xξ(0) = ξ.

For a compact manifold N and an integer k ≥ 0, let Hk(N) be the topological
Hilbert space of functions that have generalized locally square integrable derivatives
up to order k in any local coordinate system. We denote by ‖ · ‖k one of equivalent
norms on this space. As in [3,4], one shows that operator (2.1) has some bounded
continuation

(2.3) Iε : Hk(M) → Hk(∂+ΩM)

for any integer k ≥ 0.
Let (Rijkl) be the curvature tensor of the Riemannian manifold (M, g). For a

point x ∈ M and a two-dimensional subspace σ ⊂ M we denote by

(2.4) K(x, σ) = Rijklξ
iξkηjηk/|ξ ∧ η|2

the sectional curvature of M at the point x in the direction σ; here ξ, η is a basis for
σ. For (x, ξ) ∈ T 0M , we define

(2.5) K(x, ξ) = sup
σ3ξ

K(x, σ).

For a CDRM (M, g) and a non-negative function ε ∈ C∞(M) we introduce the fol-
lowing characteristic

(2.6) κ(M, g, ε) = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)∫

0

t
[
2ε2(γxξ(t)) + K(γxξ(t), γ̇xξ(t))

]
+

dt.
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Here γxξ : [0, τ+(x, ξ)] → M is the maximal geodesic satisfying the initial conditions
γxξ(0) = x, γ̇xξ(0) = ξ; and the notation

[a]+ =
{

a, if a ≥ 0,

0, if a ≤ 0

is used.
The main result of this paper is the following
Theorem 2.1. Let a CDRM (M, g) of dimension n ≥ 2 and a non-negative

function ε ∈ C∞(M) satisfy the condition

(2.7) κ(M, g, ε) ≤ 1
2
.

Then any function f ∈ H1(M) is uniquely determined by its attenuated X-ray trans-
form Iεf and the stability estimate

(2.8) ‖f‖0 ≤ C‖Iεf‖1
holds with a constant C independent of f .

Let us make some remarks on this theorem.
It follows from (2.6) that large values of the absorption can be compensated by

negative values of the curvature so as restriction (2.7) holds.
Restriction (2.7) is of an integral nature. Roughly speaking, it means that the

values of [2ε2(x) + K(x, ξ)]+ are not to be accumulated along with geodesics. At the
same time the values of this quantity at some points can be very large.

Let us put

(2.9)

ε0 = sup
x∈M

ε(x), k(M, g) = sup
(x,ξ)∈ΩM

K(x, ξ),

diam (M, g) = sup
(x,ξ)∈∂−ΩM

τ+(x, ξ).

Condition (2.7) is satisfied if

(2.10)
[
2ε2

0 + k(M, g)
]
+

diam2(M, g) ≤ 1.

In particular, for a flat metric, i. e., such that the corresponding curvature vanishes
identically, restriction (2.10) takes the form

(2.11) ε0 diam (M, g) ≤
√

2/2.

This corollary of our theorem (the metric is flat and restriction (2.7) is replaced by
(2.11)) is stronger than the result obtained in [2]. At the same time it is weaker than
the theorem of [1] in which the constant

√
2/2 on the right side of (2.11) is replaced

with 5.37.
The proof of Theorem 2.1 is presented in Section 4. Now we only note that by

the boundedness of (2.3) one can see that it is sufficient to prove the theorem for a
real smooth f .

3. Semibasic tensor fields. Here some notions and results of tensor analysis
are exposed that are needed for proving Theorem 2.1. We give the formulations of all
definitions and statements but do not present the proofs. The latter can be found in
[3] and [5].
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The modern mathematical style presumes that invariant (independent of the
choice of coordinates) notions are introduced by invariant definitions. Risking to
look old-fashioned, here the author consciously chooses the opposite approach. The
notions under considerations will be introduced with the help of local coordinates.
We will pay the particular attention to the rules of transformation of the quantities
under definition with respect to the change of coordinates. Invariant definitions are
also possible but they require some more preliminary notions.

Let M be a manifold of dimension n and τM = (TM, p,M) be its tangent bundle.
Points of the manifolds TM are designated by the pairs (x, ξ) where x ∈ M, ξ ∈ TxM .
If (x1, . . . , xn) is a local coordinate system defined in a domain U ⊂ M , then by ∂i =
∂/∂xi ∈ C∞(τM ;U) we mean the coordinate vector fields and by dxi ∈ C∞(τ ′M ;U) we
mean the coordinate covector fields. Recall that the coordinates of a vector ξ ∈ TxM
are the coefficients of the expansion ξ = ξi∂/∂xi. On the domain p−1(U) ⊂ TM the
family of the functions (x1, . . . , xn, ξ1, . . . , ξn) constitutes a local coordinate system
(strictly speaking, we have to write xi◦p; nevertheless we will use a more brief notation
xi, hoping that it will not lead to misunderstanding) which is called associated with
the system (x1, . . . , xn). From now on we will use only such coordinate systems on
TM . If (x′1, . . . , x′n) is another coordinate system defined in a domain U ′ ⊂ M ,
then in p−1(U ∩ U ′) the associated coordinates are connected by the transformation
formulas

(3.1) x′i = x′i(x1, . . . , xn); ξ′i =
∂x′i

∂xj
ξj .

Unlike the case of general coordinates, these formulas have the next peculiarity: the
first n transformation functions are independent of ξi while the last n functions depend
linearly on these variables. This peculiarity is the base of all further constructions in
the current section.

The algebra of tensor fields of the manifold TM is generated locally by the co-
ordinate fields ∂/∂xi, ∂/∂ξi, dxi, dξi. Differentiating (3.1), we obtain the next rules
for transforming the fields with respect to change of associated coordinates:

(3.2)
∂

∂ξi
=

∂x′j

∂xi

∂

∂ξ′j
, dx′i =

∂x′i

∂xj
dxj ,

(3.3)
∂

∂xi
=

∂x′j

∂xi

∂

∂x′j
+

∂2x′j

∂xi∂xk
ξk ∂

∂ξ′j
, dξ′i =

∂2x′i

∂xj∂xk
ξkdxj +

∂x′i

∂xj
dξj .

We note that formulas (3.2) contain only the first-order derivatives of the transforma-
tion functions and take the observation as the basis for the next definition.

A tensor u ∈ T r
s,(x,ξ)(TM) of degree (r, s) at a point (x, ξ) of the manifold TM is

called semibasic if in some (and, consequently, in any) associated coordinate system
it can be represented as:

(3.4) u = ui1...ir
j1...js

∂

∂ξi1
⊗ · · · ⊗ ∂

∂ξir
⊗ dxj1 ⊗ · · · ⊗ dxjs .

The numbers ui1...ir
j1...js

are called the coordinates (or components) of the tensor u. As-
suming the choice of the associated coordinate system to be clear from the context
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(or arbitrary), we will abbreviate equality (3.4) to the next one:

(3.5) u =
(
ui1...ir

j1...js

)
.

It follows from (3.2) that, under change of associated coordinates, the components of
a semibasic tensor are transformed by the formulas

(3.6) u′i1...ir

j1...js
=

∂x′i1

∂xk1
. . .

∂x′ir

∂xkr

∂xl1

∂x′j1
. . .

∂xls

∂x′js
uk1...kr

l1...ls

which are identical in form with formulas for transforming components of an ordinary
tensor on M . The set of all semibasic tensors of degree (r, s) constitutes the subbundle
in τ r

s (TM). We shall denote the subbundle by βr
sM = (Br

sM, pr
s, TM). Sections

of this bundle are called semibasic tensor fields of degree (r, s). For such a field
u ∈ C∞(βr

sM), equalities (3.4) and (3.5) are valid in the domain p−1(U) in which an
associated coordinate system acts; here ui1...ir

j1...js
∈ C∞(p−1(U)). Note that C∞(β0

0M) =
C∞(TM), i.e., semibasic tensor fields of degree (0, 0) are just smooth functions on TM .
The elements of C∞(β1

0M) are called the semibasic vector fields, and the elements of
C∞(β0

1M) are called semibasic covector fields.
The set C∞(βr

sM) is a C∞(TM)-module, i.e., the semibasic tensor fields of the
same degree can be summed and multiplied by functions ϕ(x, ξ) depending smoothly
on (x, ξ) ∈ TM . Using the formal analogy between ordinary tensors and semibasic
ones that is established by formula (3.6), one introduces the usual algebraic operations
on semibasic tensors: the tensor product, transpositions of indices and convolutions
with respect to two indices. Note also that ordinary tensor fields on M can be identified
with semibasic tensor fields whose components do not depend on ξ.

Let now (M, g) be a Riemannian manifold. In this case βr
sM is furnished by

structure of a Riemannian bundle. Thus for u, v ∈ C∞(βr
sM), the scalar product

〈u, v〉 = gi1k1 . . . girkrg
j1l1 . . . gjslsui1...ir

j1...js
vk1...kr

l1...ls

is a smooth function on TM .
A Riemannian metric establishes the canonical isomorphism βr

sM ∼= βr+sM ∼=
βr+sM . For this reason we do not distinguish co- and contravariant tensors and say
about co- and contravariant components of the same tensor. In coordinate form this
fact is expressed by the well-known rule of raising and lowering of indices, and we will
use it.

For u ∈ C∞(βr
sM), we define two semibasic tensor fields

v

∇u =
(

v

∇kui1...ir
j1...js

)
and

h

∇u =
(

h

∇kui1...ir
j1...js

)
by the formulas

v

∇kui1...ir
j1...js

=
∂

∂ξk
ui1...ir

j1...js
,(3.7)

h

∇kui1...ir
j1...js

=
∂

∂xk
ui1...ir

j1...js
− Γp

kqξ
q ∂

∂ξp
ui1...ir

j1...js
+(3.8)

+
r∑

m=1

Γim

kp u
i1...im−1pim+1...ir

j1...js
−

s∑
m=1

Γp
kjm

ui1...ir
j1...jm−1pjm+1...js

where Γi
jk are the Christoffel symbols. Pay attention to a formal analogy between (3.8)
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and the formula for the covariant derivative of an ordinary tensor field: comparing
with the latter, the right-hand side of (3.8) contains one additional summand related

to dependence of the field u on the coordinates ξi. One can verify that
v

∇u and
h

∇u
defined by (3.8) and (3.9) are really semibasic tensor fields, i.e., that their components
are transformed according to (3.6) under change of associated coordinates. We thus

obtain two well-defined differential operators
v

∇,
h

∇ : C∞(βr
sM) → C∞(βr

s+1M) that
are called the vertical and horizontal covariant derivatives respectively. One can
also show that they are derivatives with respect to tensor product, commute with
convolutions and satisfy the next commutation formulas

(3.9)
v

∇k

v

∇l −
v

∇l

v

∇k = 0,

(3.10)
v

∇k

h

∇l −
h

∇l

v

∇k = 0,

(
h

∇k

h

∇l −
h

∇l

h

∇k

)
ui1...ir

j1...js
= −Rp

qklξ
q

v

∇pu
i1...ir
j1...js

+(3.11)

+
r∑

m=1

Rim
pklu

i1...im−1pim+1...ir

j1...js
−

s∑
m=1

Rp
jmklu

i1...ir
j1...jm−1pjm+1...js

.

where (Ri
jkl) is the curvature tensor. We again pay attention to an analogy between

(3.11) and the corresponding formula for ordinary tensor fields. The next relations
are valid:

v

∇kgij =
h

∇kgij = 0,
v

∇kδi
j =

h

∇kδi
j = 0,

h

∇kξi = 0,
v

∇kξi = δi
k.

In what follows we will also use the notations:
v

∇i = gij
v

∇j ,
h

∇i = gij
h

∇j .

The operator H : C∞(βr
sM) → C∞(βr

sM) is defined by the equality H = ξi
h

∇i.
In the case r = s = 0 this operator H : C∞(TM) → C∞(TM) = C∞(β0

0M) is
expressed in coordinate form as

H = ξi ∂

∂xi
− Γi

jkξjξk ∂

∂ξi

and is called the geodesic vector field on TM . This vector field generates the one-
parameter group, of diffeomorphisms of TM , which is called the geodesic flow.

With the help of commutation formulas (3.9)–(3.11), the next claim can be ob-
tained that plays a crucial role in treating integral geometry problems on Riemannian
manifolds.

Lemma 3.1 (Pestov’s identity). For a real function u ∈ C∞(TM), the iden-
tity

(3.12) 2〈
h

∇u,
v

∇(Hu)〉 = |
h

∇u|2 +
h

∇iv
i +

v

∇iw
i −Rijklξ

iξk
v

∇ju ·
v

∇lu

holds where semibasic vector fields v and w are defined by the equalities

(3.13) vi = ξi
h

∇ju ·
v

∇ju− ξj
v

∇iu ·
h

∇ju,
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(3.14) wi = ξj
h

∇iu ·
h

∇ju.

Note that the second and third terms on the right-hand side of (3.12) are of
divergence form.

The last tools we need for proving Theorem 2.1 are the Gauss-Ostrogradskĭı
formulas for the vertical and horizontal divergences. To formulate them, we note that
the Riemannian metric induces an Euclidean structure on the tangent space TxM
which in turn induces a metric on the unit sphere ΩxM = ΩM ∩ TxM . By dωx we
denote the corresponding volume form on ΩxM . We introduce also the volume forms
dΣ2n−1 and dΣ2n−2 on the manifolds ΩM and ∂ΩM by the formulas

dΣ2n−1(x, ξ) = dωx(ξ) dV n(x), dΣ2n−2(x, ξ) = (−1)ndωx(ξ) dV n−1(x)

where dV n and dV n−1 are the Riemannian volumes on M and ∂M respectively.
Lemma 3.2. Let (M, g) be a compact n-dimensional Riemannian manifold, u =

(ui(x, ξ)) be a semibasic vector field on TM smooth for ξ 6= 0 and positively homoge-
neous in its second argument

u(x, tξ) = tλu(x, ξ) (t > 0).

Then the next Gauss-Ostrogradskĭı formulas are valid:

(3.15)
∫

ΩM

v

∇iu
i dΣ2n−1 = (λ + n− 1)

∫

ΩM

〈u, ξ〉 dΣ2n−1,

(3.16)
∫

ΩM

h

∇iu
i dΣ2n−1 =

∫

∂ΩM

〈u, ν〉 dΣ2n−2

where ν is the unit outer normal vector to ∂M .

4. Proof of Theorem 2.1. We shall consider only real tensor fields in this
section. For u, v ∈ C∞(β0

mM), we denote

〈u, v〉 = ui1...imvi1...im , |u|2 = 〈u, u〉, ‖u‖2 =
∫

ΩM

|u|2 dΣ;

here dΣ = dΣ2n−1 is the volume form on ΩM introduced above.
Lemma 4.1. Let (M, g) be a CDRM; λ ≥ 0 and µ > 0 be two continuous functions

on ΩM . If a semibasic tensor field u ∈ C∞(β0
mM) satisfies the boundary condition

(4.1) u|∂−ΩM = 0,

then the inequality

(4.2)
∫

ΩM

µ|u|2 dΣ ≤ Cλ,µ

∫

ΩM

µ|Hu|2 dΣ

is valid; here

(4.3) Cλ,µ = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)∫

0

λ(γxξ(t), γ̇xξ(t))




t∫

0

ds

µ(γxξ(s), γ̇xξ(s))
ds


 dt.
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For µ ≡ 1 this lemma was proved in [4]. In the general case the proof is similar
and, thus, omitted.

Corollary. Let (M, g) be CDRM, ε and ϕ be two non-negative continuous func-
tions on ΩM . If a semibasic tensor field u ∈ C∞(β0

mM) satisfies boundary condition
(4.1), then the estimate

(4.4)
∫

ΩM

ϕ|u|2 dΣ ≤ Dϕ‖(H + ε)u‖2

is valid; here

(4.5) Dϕ = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)∫

0

tϕ(γxξ(t), γ̇xξ(t)).

Proof. Let us define the semibasic tensor field v by the equality Hu + εu = v.
We note that it can be written in the form

(4.6) H(eEu) = eEv;

here E is a function on ΩM satisfying the equation

(4.7) HE = ε.

Applying the lemma with λ = ϕe−2E and µ = e−2E and using (4.6), we derive
∫

ΩM

ϕ|u|2 dΣ =
∫

ΩM

λ|eEu|2 dΣ ≤ Cλ,µ

∫

ΩM

µ|H(eEu)|2 dΣ =

= Cλ,µ

∫

ΩM

µ|eEv|2 dΣ = Cλ,µ‖v‖2 = Cλ,µ‖(H + ε)u‖2.

We thus came to the inequality

(4.8)
∫

ΩM

ϕ|u|2 dΣ ≤ Cλ,µ‖(H + ε)u‖2,

where, according to (4.3),

(4.9) Cλ,µ = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)∫

0

ϕ(γxξ(t), γ̇xξ(t))

t∫

0

exp [−Exξ(t) + Exξ(s)] ds dt

and the notation Exξ(t) = 2E(γxξ(t), γ̇xξ(t)) is used for brevity. By (4.7), dExξ(t)/dt =
2ε ≥ 0; so the function in the brackets in (4.9) is non-positive. Consequently, quantities
(4.5) and (4.9) satisfy the inequality Cλ,µ ≤ Dϕ. The last inequality together with
(4.8) implies (4.4).

Proof of Theorem 2.1. Let f ∈ C∞(M) be a real function. We define the function
u : T 0M → R as

(4.10) u(x, ξ) =

0∫

τ−(x,ξ)

f(γxξ(t)) exp


−|ξ|

0∫

t

ε(γxξ(s)) ds


 dt,
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The difference between (2.2) and (4.10) is that equality (2.2) is considered for (x, ξ) ∈
∂+ΩM and (4.10) is considered for (x, ξ) ∈ T 0M . The function u is smooth on
T 0M \ T (∂M), satisfies the equation

(4.11) Hu + ε|ξ|u = f(x),

the boundary conditions

(4.12) u|∂−ΩM = 0,

(4.13) u|∂+ΩM = Iεf

and is homogeneous with respect to its second argument

(4.14) u(x, λξ) = λ−1u(x, ξ) (λ > 0).

Let us define semibasic vector fields y = (yi(x, ξ)) and z = (zi(x, ξ)) by the
equalities

(4.15)
v

∇u = − u

|ξ|2 ξ + y,

(4.16)
h

∇u =
Hu

|ξ|2 ξ + z.

The summands on the right-hand sides of (4.15) and (4.16) are orthogonal to each
other. Indeed, being multiplied by ξ these equalities imply

(4.17) 〈ξ,
v

∇u〉 = −u + 〈ξ, y〉,

(4.18) Hu = 〈ξ,
h

∇u〉 = Hu + 〈ξ, z〉.
It follows from (4.14) by the Euler equation for homogeneous functions that the left
hand side of (4.17) is equal to −u. Thus, (4.17) and (4.18) give 〈ξ, y〉 = 〈ξ, z〉 = 0.
For |ξ| = 1, (4.16) implies

(4.19) |
h

∇u|2 = |Hu|2 + |z|2.
Taking the scalar product of (4.15) and (4.16), we obtain

(4.20) 〈
h

∇u,
v

∇u〉 = − 1
|ξ|2 uHu + 〈y, z〉.

We also note that (4.12) and (4.15) imply the boundary condition

(4.21) y|∂−ΩM = 0.

Applying the operator
v

∇ to equation (4.11), we conclude

v

∇Hu + ε|ξ|
v

∇u +
εu

|ξ|ξ = 0.
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By the obvious relation
v

∇H −H
v

∇ =
h

∇, we transform the last equation to the form

H
v

∇u + ε|ξ|
v

∇u = −
h

∇u− εu

|ξ|ξ.

Substituting expressions (4.15), (4.16) for
v

∇u and
h

∇u to the last equation we infer

H

(
− u

|ξ|2 ξ + y

)
+ ε|ξ|

(
− u

|ξ|2 ξ + y

)
= −Hu

|ξ|2 ξ − z − εu

|ξ|ξ.

Since Hξ = 0, the previous relation gives

(4.22) (H + ε|ξ|)y = −z.

For the function u, we write the Pestov identity (3.12). Using (4.11) and the
independence of f and ε of ξ, we obtain

v

∇(Hu) =
v

∇(−ε|ξ|u + f) = −
v

∇(ε|ξ|u) = −εu

|ξ|ξ − ε|ξ|
v

∇u.

Consequently, the left-hand side of (3.12) can be transformed as follows:

2〈
h

∇u,
v

∇(Hu)〉 = −2ε

(
1
|ξ|uHu + |ξ|〈

h

∇u,
v

∇u〉
)

.

Substituting expression (4.20) into the right-hand side of the last equality, we obtain

2〈
h

∇u,
v

∇(Hu)〉 = −2ε|ξ|〈y, z〉.
By the inequality between the arithmetic and geometric means, the last formula gives
the estimate

(4.23) 2
∣∣∣∣〈

h

∇u,
v

∇(Hu)〉
∣∣∣∣ ≤ 2(

√
2ε|ξ| |y|) (

√
2

2
|z|) ≤ 2ε2|ξ|2|y|2 +

1
2
|z|2.

Using the known symmetries of the curvature tensor and expression (4.15) for
v

∇u, we transform the last summand on the right hand side of (3.12) as follows

Rijklξ
iξk

v

∇ju·
v

∇lu = Rijkl(ξ∧
v

∇u)ij(ξ∧
v

∇u)kl = Rijkl(ξ∧y)ij(ξ∧y)kl = Rijklξ
iξkyjyl.

The last equality and (2.4), (2.5) imply the estimate

(4.24) Rijklξ
iξk

v

∇ju ·
v

∇lu ≤ K(x, ξ)|ξ|2 |y|2.

For |ξ| = 1, using estimates (4.23), (4.24) and expression (4.19) for |
h

∇u|2, from
(3.12) we obtain

(4.25) |Hu|2 +
1
2
|z|2 ≤ (2ε2 + K)|y|2 −

h

∇iv
i −

w

∇iw
i.

We multiply (4.25) by the volume element dΣ = dΣ2n−1, integrate it over ΩM and
transform the last two integrals on the right hand side of the so-obtained inequality by
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Gauss-Ostrogradskĭı formulas (3.15) and (3.16). In such a way we obtain the inequality

(4.26)

‖Hu‖2 +
1
2
‖z‖2 ≤

∫

ΩM

(2ε2 + K)|y|2 dΣ−
∫

∂ΩM

〈v, ν〉 dΣ2n−2−

− (n− 2)
∫

ΩM

〈w, ξ〉 dΣ.

where ν is the unit outer normal to ∂M . The coefficient n− 2 at the last integral in
(4.26) is written with the homogeneity of w that follows from (4.14) and (3.14) taken
into account.

The second integral from (4.26) can be estimated as follows

(4.27)

∣∣∣∣∣∣

∫

∂ΩM

〈v, ν〉 dΣ2n−2

∣∣∣∣∣∣
≤ C‖Iεf‖21,

where C is a constant depending on (M, g). This estimate can be obtained from (3.13)
and boundary conditions (4.12), (4.13) in complete analogy with [3] and thus we omit
its proof. We also note that 〈w, ξ〉 = |Hu|2 according to (3.14). Thus, (4.26) and
(4.27) imply the inequality

(4.28) (n− 1)‖Hu‖2 +
1
2
‖z‖2 ≤

∫

ΩM

(2ε2 + K)|y|2 dΣ + C‖Iεf‖21.

The field y satisfies the equation (4.22) and boundary condition (4.21). Applying
the corollary of Lemma 4.1 with ϕ = [2ε2 + K]+, we obtain the estimate

(4.29)
∫

ΩM

(2ε2 + K)|y|2 dΣ ≤ κ‖z‖2

where κ = κ(M, g) is defined by (2.6). It follows from (4.28) and (4.29) that

(n− 1)‖Hu‖2 +
(

1
2
− κ

)
‖z‖2 ≤ C‖Iεf‖21.

If condition (2.7) holds, the last inequality gives

(4.30) ‖Hu‖2 ≤ C1‖Iεf‖21.
To finish the proof we have to estimate the norm ‖f‖ from above by ‖Hu‖. To

this end, we note that equation (4.11) implies the inequality

(4.31) ‖f‖ ≤ ‖Hu‖+ ε0‖u‖,
where the constant ε0 is defined by (2.9). By (4.12), the function u satisfies the
conditions of Lemma 4.1. Applying the lemma with λ ≡ µ ≡ 1, we obtain the
estimate

(4.32) ‖u‖ ≤
√

2
2

diam (M, g)‖Hu‖
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where the constant diam (M, g) is defined by (2.9). By combining (4.31) and (4.32),
we conclude

(4.33) ‖f‖ ≤
(

1 +
√

2
2

ε0 diam (M, g)

)
‖Hu‖.

Finally, (4.30) and (4.33) imply

‖f‖2 ≤ C2‖Iεf‖21
and the theorem is proved.
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