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1 Introduction

The paper is devoted to the proof of the following

Theorem 1.1 Let M be an open (= complete, connected, noncompact, with no boundary)
Riemannian manifold of nonnegative sectional curvature and S, a soul of M . Then M is
diffeomorphic to the space ν(S) of the normal bundle of the soul.

The theorem was first stated by Cheeger and Gromoll in [2]. The homeomorphism
is proved in [3]. As far as I know, the proof of the diffeomorphism is not published yet.
Some results on convex sets (Theorems 2.3, 4.6, 5.3) obtained in the proof are of some
independent interest.

Throughout the paper, smooth manifold means a C∞-manifold. A Riemannian man-
ifold is a smooth manifold with a smooth Riemannian metric.

2 Convex sets in a Riemannian manifold

Let M be a Riemannian manifold. For p, q ∈ M , we denote the distance between p and q
either by ρ(p, q) or by pq. A minimal geodesic between p and q is sometimes also denoted
by pq. For A ⊂ M , we denote by Ā, ∂A, and int A the closure, boundary, and interior of
A respectively. For ε > 0, the ε-neighborhood of A is the set

O(A, ε) = {p ∈ M | ρ(p,A) < ε}.
In particular, for p ∈ M , the open ball of radius r > 0 centered at p is Br(p) = O({p}, r).

We start with a local estimate for small triangles. Locally, in a small neighborhood of
a point p ∈ M , geometry of the manifold is approximated by the Euclidean geometry of
the tangent space Mp. There are many specifications of the last nonrigourous statement.
Probably, the following lemma is the most precise of such specifications.

Lemma 2.1 Let C be a compact set in a Riemannian manifold M . There exist positive
numbers δ and κ such that, for any geodesic triangle p0p1p2 with vertices pi ∈ C (i =
0, 1, 2) and side lengths ai = pi+1pi+2 (indices are taken modulo 3) satisfying ai < δ, the
equality

a2
0 = a2

1 + a2
2 − 2a1a2 cos α0 + Ka2

1a
2
2
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holds with some K satisfying |K| < κ, where α0 is the angle of the triangle at the vertex
p0.

This statement belongs to E. Cartan [1]. But Cartan’s proof is not quite rigorous
from the modern viewpoint. A modern proof can be obtained as follows. We first prove
the statement for the model spaces Rn, Sn, Hn of constant sectional curvature. There
is the corresponding cosine law in each of the spaces which implies the statement easily.
In the general case, let κ be the maximum of |K(p, σ)| over all points p ∈ C and all
two-dimensional subspaces σ ⊂ Mp, where K(p, σ) is the sectional curvature at the point
p in the direction σ. For a small triangle p0p1p2, we construct the triangle p−0 p−1 p−2 in the
model space of the constant curvature −κ and the triangle p+

0 p+
1 p+

2 in the model space of
the constant curvature κ such that

a1 = p2p3 = p−2 p−3 = p+
2 p+

3 , a2 = p3p1 = p−3 p−1 = p+
3 p+

1 , α0 = α−0 = α+
0 .

Then by Rauch’s comparison theorem

a+
0 ≤ a0 ≤ a−0 .

Since the statement of the lemma holds for a−0 and for a+
0 , the last inequalities imply the

statement for a0.

Definition. A set A in a Riemannian manifold is said to be convex (totally convex) if,
for any p, q ∈ A, every minimal geodesics (every geodesic) joining p and q lies completely
in A. A is said to be locally convex if every point p ∈ A has a neighborhood U such that
U ∩ A is convex.

The topological structure of closed convex sets is described by the following

Theorem 2.2 Let C be a closed connected locally convex set in a Riemannian manifold
M . Then C, considered with the induced from M topology, is a topological manifold with
(nonsmooth, possibly empty) boundary bC. The set C \ bC is a smooth totally geodesic
submanifold of M .

Let us remind that a submanifold N of a Riemannian manifold M is said to be totally
geodesic if every geodesic in N (which is considered as a Riemannian manifold with the
metric induced from M) is also the geodesic in the ambient M . This is equivalent to
the following statement: the second fundamental form of N is identically equal to zero.
Theorem 2.2 is proved in [3]. The proof is pretty easy but rather technical. One can prove
Theorem 2.2 by him/herself starting with considering the case of M = Rn and expanding
then the arguments to the general case.

The following observation plays the crucial role in our proof of Theorem 1.1.

Theorem 2.3 Let C be a compact locally convex set in a Riemannian manifold M . There
exists an open neighborhood U of C such that the function f(p) = ρ(p, C) is a C1-function
in U \ C and ‖grad f‖ = 1.

We will first prove the following statement.
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Lemma 2.4 Let C be a compact locally convex set in a Riemannian manifold M . There
exists an open neighborhood U of C such that, for every point p ∈ C, there exists a unique
nearest to p point of C, i.e., such q ∈ C that

ρ(p, q) = inf
q′∈C

ρ(q′, C),

and p 7→ q is the continuous map U → C.

Definition. The closure Ū of an open set U ⊂ M is said to be strongly convex if,
for any p, q ∈ Ū , all inner points of a minimal geodesic between p and q belong to U .
Let us remind [7] that, for a Riemannian manifold M , there exists a continuous function
r : M → (0,∞], the convexity radius, such that the closed ball Bε(p) is strongly convex
for any p ∈ M and 0 < ε < r(p).

Proof of Lemma 2.4. Choose ε > 0 such that O(C, ε) is compact and r(p) > ε for
any p ∈ O(C, ε). Set U = O(C, ε). Let p ∈ U \ C and q ∈ C be the nearest point of
C to p. Then 0 < d = ρ(p, C) = ρ(p, q) < ε. Assume that there exists another point
q 6= q′ ∈ C nearest to p, i.e., d = ρ(p, q′). Any inner point q′′ of the minimal geodesic qq′

belongs to C because of the convexity of C and belongs to Bd(p) because of the strong
convexity of Bd(p). Therefore ρ(p, C) ≤ ρ(p, q′′) < d. This contradicts to d = f(p).

So, for any p ∈ U , there exists a unique nearest to p point n(p) in C. If the map
n : U → C is discontinuous at some p ∈ U , there exists a sequence of points pk ∈ U (k =
1, 2, . . .) converging to p and such that

ρ(n(pk), n(p)) ≥ δ > 0.

The sequence n(pk) has a limit point q since C is compact. Passing to the limit in the
last inequality, we see that ρ(q, n(p)) ≥ δ, i.e., the points n(p) and q are different. On the
other hand,

ρ(p, q) = lim
k→∞

ρ(pk, C) = ρ(p, C).

Thus, q is the nearest point from C to p and does not coincide with n(p). This contradicts
to the first statement of the lemma.

Corollary 2.5 Let C be as in Lemma 2.4. C is the strong deformation retract of O(C, ε)
for any sufficiently small ε.

Proof of Theorem 2.3. We will use the following obvious statement which is some-
times called Lemma on two policemen:

Let f be a continuous function in a neighborhood W of a pont p0 of a manifold. If
there exist two smooth functions g1 and g2 in W satisfying

g1 ≤ f ≤ g2, g1(p0) = f(p0) = g2(p0),

then f is differentiable at p0.
We are going to prove that the function f(p) = ρ(p, C) is differentiable at every point

p0 ∈ U \ C, where U = O(C, ε) with sufficiently small ε > 0. Let d = f(p0), q0 ∈ C be
the nearest point to p0, and W = Bd(p0). The function g2(p) = ρ(p, q0) is smooth in W
and satisfies

f(p) ≤ g2(p) for p ∈ W, f(p0) = g2(p0).

3



To construct the second policeman, we consider the hypersurface N ⊂ M formed by
all geodesics of length d starting from q0 perpendicular to the radius p0q0. It is easy to
see that N does not intersect the interior C \ bC because otherwise there would exist a
point q′ ∈ C satisfying ρ(p, q′) < d; the letter inequality contradicts to the definition of
d. Any short geodesic from p ∈ W to C must intersect N . Therfore the smooth function
g1 : W → R, g1(p) = ρ(p,N), satisfies

g1(p) ≤ f(p) for p ∈ W, g1(p0) = f(p0).

Applying Lemma on two policemen, we see that f is differentiable at every point p0 ∈ U .
The gradient of f at p0 coincides with −v, where v ∈ Mp0 is the unit vector tangent to
the radius p0q0. The vector v depends continously on p0 ∈ U \ C by Lemma 2.2.

Definition. For a compact locally convex set in a Riemannian manifold M , we define
the regularity radius r(C) as the supremum of such ε > 0 that

(1) O(C, ε) is compact;
(2) C ∩B(p, ε′) is convex for any p ∈ C and any 0 < ε′ < ε;
(3) for any p ∈ O(C, ε) there exists a unique nearest point q ∈ C and the map p 7→ q

is continuous;
(4) f(p) = ρ(p, C) is a C1-function in O(C, ε) \ C.
Theorem 2.3 and Lemma 2.4 guarantee the positiveness of r(C).

3 Continuous families of sets

Here we define continuous families of sets and list some properties of such families. Proofs
are omitted because they are very elementary.

Definition. Let M be a Riemannian manifold; α, β ∈ R; α ≤ β. We say that an
increasing family is defined on [α, β] if, for every t ∈ [α, β], a compact set C(t) ⊂ M is
defined such that C(t1) ⊂ C(t2) for t1 ≤ t2. The family is said to be uniformly locally
convex if every point p ∈ M has a neighborhood U such that U ∩ C(t) is convex for any
t. In the latter case, the number r(C|[α,β]) = inft∈[α,β]r(C(t)) is positive as one can see by
revising the proof of Theorem 2.3.

An increasing family C(t) on [α, β] is said to be continuous if, for every t ∈ [α, β] and
for every ε > 0, there exists τ > 0 such that

C(t + τ) \ C(t) ⊂ O(∂C(t), ε); C(t) \ C(t− τ) ⊂ O(∂C(t), ε).

The family is said to be uniformly right-hand continuous if, for any ε > 0, there exists
τ > 0 such that

C(t′) ⊂ O(C(t), ε)

for any t, t′ ∈ [α, β] satisfying 0 < t′ − t < τ .

Lemma 3.1 Let a continuous increasing family C(t) be defined on a finite segment [α, β].
Assume C(α) to be nonempty and C(t) = intC(t) for any t > α. Then the family is
uniformly right-hand continuous on [α, β].
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Definition. For C ⊂ M and t ≥ 0, the closed set

int (C, t) = {p ∈ C | ρ(p, ∂C) ≥ t}
is called the t-interior of C.

Lemma 3.2 int (int (C, t), t′) = int (C, t + t′).

Lemma 3.3 For a compact set C in a Riemannian manifold, the map t 7→ int (C,−t)
defines a continuous increasing family on (−∞, 0].

4 Basic construction

In this section, we continue studying convex sets (Theorem 4.6) and prove Lemmas 4.8 and
4.9 which allow us to reduce the problem of constructing a diffeomorphism to the problem
of finding continuous families of convex sets. We start with recalling some elementary facts
of cobordism theory.

Definition. A cobordism (W ; V0, V1) is a smooth compact manifold W whose bound-
ary ∂W = V1 ∪ V2 is represented as the union of two disjoint manifolds. Two cobordisms
(W ; V0, V1) and (W ′; V ′

0 , V
′
1) are equivalent if there exists a diffeomorphism h : W → W ′

such that h(V0) = V ′
0 and h(V1) = V ′

1 . A cobordism is trivial if it is equivalent to
(V × [0, 1]; V × 0, V × 1).

Let (W ; V0, V1) and (W ′; V ′
1 , V

′
2) be two cobordisms. Given a diffeomorphism h : V1 →

V ′
1 , let W∪hW

′ be the space obtained from W and W ′ by the h-identification of V1 and
V ′

1 . The following statement is a partial case of Theorem 1.4 of [8].

Lemma 4.1 There exists a smooth structure L on W∪hW
′ which is agreed with the given

smooth structures, i.e., such that the both embeddings W → W∪hW
′ and W ′ → W∪hW

′

are diffeomorphisms onto their ranges. The structure L is unique up to a diffeomorphism
identical in some neighborhood of V0 ∪ V ′

2 .

The following statement can be proved by some modification of the proof of Theorem
3.4 of [8].

Lemma 4.2 Let (W ; V0, V1) be a cobordism. Assume that there exist a smooth Rie-
mannian metric on W and a smooth function g : W → R such that

(1) grad g does not vanish in W ;
(2) 〈ν, grad g〉 < 0 in V1;
(3) 〈ν, grad g〉 > 0 in V0,

where ν is the inner normal to the boundary. Then the cobordism is trivial.

Of course, the proof of this lemma consists in fibering the manifold W to integral
curves of the vector field grad g.

Definition. Let V be a manifold with no boundary. A compact set D ⊂ V is said
to be a smooth compact if D is a smooth submanifold (with boundary) of V and the
dimension of D is the same as the dimension of V .

All cobordisms considered below are obtained in the following way. Let D0, D1 ⊂ V be
two smooth compacts such that D0 ⊂ int D1. Then (D2 \D0; ∂D0, ∂D1) is the cobordism
which will be denoted by (D0, D1) for brevity. Lemma 4.1 implies
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Lemma 4.3 Let a smooth compact Di ⊂ V be defined for every i = 0, 1, . . . such that

Di ⊂ intDi+1, ∪iDi = V.

Assume the cobordism (Di−1, Di) to be trivial for every i = 1, 2, . . .. Then there exists a
diffeomorphism

F : V \ intD0 → ∂D0 × [0, 1).

Basic construction. Let C be a compact locally convex set in a Riemannian manifold
M and r(C) be the regularity radius of C. Choose 0 < ε′ < ε < r(C) and set K =
O(C, ε) \O(C, ε′). A function g : K → R is said to be a C1-function if it admits a
C1-extention to some open neighborhood of K. Let C1(K) be the linear space of all such
functions endowed with the norm

‖g‖C1 = sup
K
|g|+ sup

K
‖grad g‖.

The space C∞(K) of smooth functions is dense in C1(K). Define the function f : K → R
by

f(p) = ρ(p, C).

By Theorem 2.3, f ∈ C1(K) and
‖grad f‖ = 1. (4.1)

Choose g ∈ C∞(K) such that

‖f − g‖C1 < (ε− ε′)/2 (4.2)

and set
D = O(C, ε′) ∪ g−1([0, (ε + ε′)/2]).

(4.1) and (4.2) imply that D is a smooth compact and

O(C, ε′) ⊂ D ⊂ O(C, ε). (4.3)

Definition. A smooth compact D obtained by the construction above is called the
smooth (ε′, ε)-approximation of the set C.

The nonuniqueness in the construction of D consists only in the choice of the approx-
imation g ∈ C∞(K) of the function f .

Lemma 4.4 Let C be a compact locally convex set in a Riemannian manifold M and
r(C), the regularity radius of C. Choose 0 < ε′1 < ε1 ≤ ε′2 < ε2 < r(C). Let D1 and D2

be smooth (ε′1, ε1)- and (ε′2, ε2)-approximations of C respectively. Then D1 ⊂ intD2 and
the cobordism (D1, D2) is trivial.

Proof. The inclusion D1 ⊂ int D2 follows from (4.3). Set

Ki = O(C, εi) \O(C, ε′i) (i = 1, 2); K0 = O(C, ε2) \O(C, ε′1).

Define the functions fi : Ki → R by

fi = ρ(p, C) (p ∈ Ki; i = 0, 1, 2).
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Then fi ∈ C1(Ki) and
‖grad fi‖ = 1 (i = 0, 1, 2). (4.4)

By the definition of Di (i = 1, 2), there exist gi ∈ C∞(Ki) such that

‖fi − gi‖C1 < (εi − ε′i)/2, (4.5)

Di = O(C, ε′i) ∪ g−1
i ([0, (εi + ε′i)/2]). (4.6)

Choose g0 ∈ C∞(K0) satisfying

‖f0 − g0‖C1 < ε1/2. (4.7)

To prove the triviality of (D1, D2), we will show that the restriction of g0 to D2 \D1

satisfies all hypotheses of Lemma 4.2. Indeed, the first hypothesis, grad g0 6= 0, follows
from (4.4), (4.5), and (4.7). To check the second hypothesis, we observe that 〈ν, grad g2〉 =
−‖grad g2‖ on ∂D2 = g−1

2 ((ε2 + ε′2)/2). This implies, with the help of (4.4)–(4.7), that
〈ν, grad g0〉 < 0 on ∂D2. The third hypothesis of Lemma 4.2 is checked in the same way.
The application of Lemma 4.2 finishes the proof.

Lemmas 4.3 and 4.4 imply

Lemma 4.5 Let C be a compact locally convex set in a Riemannian manifold M and
0 < ε0 < ε1 < ε < r(C). Let D be a smooth (ε0, ε1)-approximation of C. Then there
exists a diffeomorphism

F : O(C, ε) \ intD → ∂D × [0, 1).

Theorem 4.6 Let C be a compact locally convex set in a Riemannian manifold. For any
ε, ε′ satisfying 0 < ε, ε′ < r(C), there exists a diffeomorphism

F : O(C, ε) → O(C, ε′)

identical on C.

Proof. Choose numbers εi (i = 0, 1, 2) satisfying 0 < ε0 < ε1 < ε2 < min(ε, ε′).
Let D0 and D1 be smooth (ε0, ε1)- and (ε1, ε2)-approximations of C respectively. By
Lemma 4.5, both the manifolds O(C, ε) \ int D0 and O(C, ε′) \ int D0 are diffeomorphic to
(D1 \D0)∪h(∂D1 × [0, 1)), where h(x) = (x, 0) for x ∈ ∂D1. By Lemma 4.1, there exists
a diffeomorphism F ′ : O(C, ε) \ int D0 → O(C, ε′) \ int D0 identical in some neighborhood
of ∂D0. Extending F ′ to D0 by the identical map, we obtain the desired diffeomorphism
F .

Lemma 4.7 Let M be a Riemannian manifold and C(t) ⊂ M, t ∈ [α, β], be an increasing
uniformly locally convex and uniformly right-hand continuous family of compact sets. For
any ε > 0, there exist numbers ε0, ε

′
0, ε

′′
0 satisfying 0 < ε′0 < ε0 < ε′′0 < 2ε0 < ε, smooth

(ε′0, ε0)-approximation D(α) of the set C(α), and smooth (ε′′0, 2ε0)-approximation D(β) of
C(β) such that D(α) ⊂ intD(β) and the cobordism (D(α), D(β)) is trivial.
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Proof. Set r0 = r(C|[α, β]) (see the definition in Section 3). For the compact set

O(C(β), r0/2), find positive δ and κ as in Lemma 2.1. Choose such small positive ε0 that

4ε0 < r0; 6ε0 < δ; κε2
0 < 10−4; 1− 10−3 < (1− ε0)

2. (4.8)

Since the family C(t) is uniformly right-hand continuous, we can find a sequence
α = t0 < t1 < . . . < tk = β such that

Ci = C(ti) ⊂ O(Ci−1, ε0/8). (4.9)

This implies that
O(Ci, ε0/2) ⊂ O(Ci−1, 3ε0/4). (4.10)

Choose a sequence

3ε0/4 < ε′0 < ε0 < ε′1 < ε1 < . . . < ε′k < εk = 2ε0 (4.11)

and set

K0 = O(C0, ε0) \O(C0, 3ε0/4); Ki = O(Ci, εi) \O(Ci−1, ε′i−1) (i = 1, . . . , k). (4.12)

Define the functions fi, f
′
i : Ki → R by

fi(p) = ρ(p, Ci) (i = 0, . . . , k); f ′i(p) = ρ(p, Ci−1) (i = 1, . . . , k).

(4.10)–(4.12) implies that

Ki ⊂ O(Ci, 3ε0)\O(Ci,
ε0

2
) (i = 0, . . . , k); Ki ⊂ O(Ci−1, 3ε0)\O(Ci−1,

3ε0

4
) (i = 1, . . . , k).

(4.13)
This inclusions and Theorem 2.3 imply that fi, f

′
i ∈ C1(Ki). Note that fi−1 coincides

with f ′i on Ki−1 ∩Ki.
Let us show that the inequality

‖grad (fi − f ′i)‖ <
√

2(1− ε0) (4.14)

holds on Ki. Since
‖grad fi‖ = ‖grad f ′i‖ = 1, (4.15)

the difference of the gradients satisfies

‖grad (fi − f ′i)‖2 = 2(1− cos α),

where α is the angle between the vectors grad fi and grad f ′i . Thus (4.14) is equivalent to

1− cos α < (1− ε0)
2. (4.16)

Let p ∈ Ki, q be the nearest to p point of Ci, and q′ be the nearest to p point of Ci−1.
The vector grad fi (grad f ′i) is the unit vector tangent to the minimal geodesic pq (pq′).
The angle of the triangle pqq′ at the vertex p is equal to α. Introduce the notations:
r = pq, r′ = pq′, d = qq′, β = 6 pqq′. From (4.13), we obtain
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ε0/2 ≤ r ≤ 3ε0; 3ε0/4 ≤ r′ ≤ 3ε0; 0 ≤ d ≤ 6ε0; (4.17)

and from (4.9),
r ≤ r′ ≤ r + ε0/8. (4.18)

Finally, from the convexity of Ci ∩B4ε0(p),

β ≥ π/2. (4.19)

Applying Lemma 2.1, we have

r′2 = r2 + d2 − 2rd cos β + Kr2d2

with |K| ≤ κ. This implies, with the help of (4.17)–(4.19), that

d2 ≤ 3ε2
0/4 + 324κε4

0. (4.20)

Applying Lemma 2.1 again, we have

d2 = r2 + r′2 − 2rr′ cos α + K ′r2r′2

with |K ′| ≤ κ. This implies, with the help of (4.17) and (4.20), that

cos α > 1/300− 18κε2
0. (4.21)

Inequality (4.16) follows from (4.8) and (4.21). We have thus proved (4.14).
Choose gi ∈ C∞(Ki) such that

‖fi − gi‖C1 < (εi − ε′i)/2 (4.22)

and set
Di = O(Ci, ε

′
i) ∪ g−1

i ([0, (εi + ε′i)/2]) (i = 0, . . . , k).

Then Di is a smooth compact, Di−1 ⊂ int Di, and Di \Di−1 ⊂ Ki.
We will prove that the cobordism (Di−1, Di) is trivial for any i = 1, . . . , k. To this end

we will show that the restriction of g1 to Di \Di−1 satisfies the hypotheses of Lemma 4.2.
The first hypothesis, grad gi 6= 0, follows from (4.15) and (4.22). The second hypothesis,
〈ν, grad gi〉 < 0 on ∂Di, follows from the equality ∂Di = g−1

i (εi + ε′i)/2). To check
the third hypothesis, we note that 〈ν, grad gi−1〉 = ‖grad gi−1‖ on ∂Di−1 since ∂Di−1 =
g−1

i−1((εi−1 + ε′i−1)/2). From this we obtain with the help of (4.14), (4.15), and (4.22) that
〈ν, grad gi〉 > 0 on ∂Di−1.

Thus, the cobordism (Di−1, Di) is trivial for any i = 1, . . . , k. Applying Lemma
4.1, we see that (D0, Dk) is a trivial cobordism. To finish the proof, it remains to set
ε′′0 = ε′k, D(α) = D0, D(β) = Dk.
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Lemma 4.8 Let hypotheses of Lemma 4.7 be satisfied. For any sufficiently small ε > 0,
there exists a diffeomorphism

F : O(C(α), ε) → O(C(β), ε)

identical on C(α).

The proof is the same as the proof of Theorem 4.6 but we have to use Lemma 4.7
instead of using Lemma 4.4.

Lemma 4.9 Let M be a Riemannian manifold and C(t) ⊂ M be an increasing family of
compact sets defined for t ∈ [0,∞) and satisfying the following conditions:

(1) C(0) is nonempty;
(2) the family C(t) is uniformly locally convex on any finite segment [0, t0];
(3) C(t) is connected for all t ≥ 0;
(4) ∂C(t1) ∩ ∂C(t2) = ∅ for t1 6= t2;
(5) ∪tC(t) = M .
Then, for any sufficiently small ε > 0, there exists a diffeomorphism

F : M → O(C(0), ε)

identical on C(0).

Proof. First of all we note that condition (4) implies

C(t1) ⊂ int C(t2) for t1 < t2 (4.23)

and therefore
int C(t) 6= ∅ for t > 0. (4.24)

Since C(t) is connected an locally compact, it is a topological manifold (see Theorem
2.2) whose boundary is denoted by bC(t). As follows from (4.24), dim C(t) = dim M for
t > 0 and therefore bC(t) = ∂C(t). This implies that

C(t) = int C(t) for t > 0. (4.25)

Applying Lemma 3.1, we see that the family C(t) is uniformly right-hand continuous on
any finite segment [0, t0].

Choose a sequence 0 = t0 < t1 < . . . converging to infinity and set Ci = C(ti). By
(4.23), we can choose εi for any i = 0, 1, . . . such that

O(Ci, εi) ⊂ Ci+1; 0 < εi < r(Ci). (4.26)

Let Di be a smooth (εi/2, εi)-approximation of Ci. By (4.26), Di ⊂ int Di+1. Let
us prove that the cobordism (Di−1, Di) is trivial for any i = 1, 2, . . .. By Lemma 4.7,
there exist numbers δ1, δ

′
i, δ

′′
i satisfying 0 < δ′i < δi < δ′′i < 2δ′i < εi/2, 2δi < εi−1/2,

a smooth (δ′i, δi)-approximation D′
i of Ci−1, and a smooth (δ′′i , 2δi)-approximation D′′

i

of Ci such that D′
i ⊂ int D′′

i and the cobordism (D′
i, D

′′
i ) is trivial. By Lemma 4.4,

D′
i ⊂ int Di−1, D′′

i ⊂ int Di and the cobordisms (D′
i, Di−1), (D′′

i , Di) are trivial. It is easy
to show that the triviality of (D′

i, Di) and of (D′
i, Di−1) implies the triviality of (Di−1, Di).

Thus, the sequence Di (i = 0, 1, . . .) satisfies all hypotheses of Lemma 4.3. Applying
the lemma, we obtain the diffeomorphism

F : M \ int D0 → ∂D0 × [0, 1).

Now the proof is completed as in Theorem 4.6.
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5 Manifolds of nonnegative curvature

Let us recall (Theorem 2.2) that a closed connected locally convex set C of a Riemannian
manifold M is a topological manifold whose boundary is denoted by bC (do not mix with
∂C!). For p, q ∈ C, we denote by ρC(p, q) the infimum of lengths of curves running in
C from p to q. Since C is locally convex, ρC(p, q) = ρ(p, q) for sufficiently close p and q.
In particular, the metric ρC determines the same topology on C as the topology induced
from M .

Theorem 5.1 Let M be a Riemannian manifold of nonnegative curvature and C be a
compact connected locally convex set in M . For t ∈ [0,∞), denote C(t) = {p ∈ C |
ρC(p, bC) ≥ t}. Then t 7→ C(−t) is an increasing uniformly locally convex family on
(−∞, 0]. If C is totally convex, then C(t) is also totally convex for any t ∈ [0,∞).

The second statement is proved in [3]. The first statement can be proved in a similar
way.

Corollary 5.2 Under hypotheses of Theorem 5.1, C(t) is connected for any t ∈ [0,∞).

Proof. Denote by t0 the supremum of such t that C(t′) is connected for 0 ≤ t′ ≤ t. We
have to prove that t0 = ∞. Assume that t0 < ∞. Then, first of all, C(t0) is connected as
the intersection of a decreasing sequence of connected compact sets. Applying Theorems
5.1 and 2.2, we see that C(t) is a topological manifold with the boundary bC(t) for any
t ∈ [0, t0]. The inequality t0 < ∞ implies the existence of such t1 > t0 that C(t1)
is nonempty. From this, dim C(t) = dim C for t ∈ [0, t0]. Therefore bC(t) = ∂CC(t)
for t ∈ (0, t0], where ∂CC(t) means the boundary of C(t) considered as a subset of the
topological manifold C. The latter fact implies in the same way as in Lemma 3.2 that,
for t ∈ [0, t0] and t′ ≥ 0,

C(t + t′) = {p ∈ C(t) | ρC(p, bC(t) ≥ t′}. (5.1)

By Theorem 5.1, the family t 7→ C(−t) is uniformly locally convex. Set ε = r(C|[t0,t0+1]).
Since C(t0) is compact, there exists a finite ε/2-net in C(t0), i.e., a finite set {p1, . . . , pk}
of points of C(t0) such that, for every p ∈ C(t0), there exists pi such that ρ(p, pi) < ε/2.
For every pi choose q1 ∈ C(t0) \ bC(t0) such that ρ(pi, qi) < ε/2. Then {q1, . . . , qk} is an
ε-net in C(t0). Set ε′ = mini ρ(qi, bC(t0) and τ = min(ε, ε′). Then C(t0) ⊂ O(C(t0 +τ), ε)
as follows from (5.1). The latter inclusion implies that, for any t ∈ [t0, t0+τ ] and for every
point p ∈ C(t0), there exists a unique nearest to p point q in the set C(t) and the formula
p 7→ q defines the continuous map ϕt : C(t0) → C(t). The range of ϕt coincides with C(t)
because ϕt is the identity on C(t). Therefore C(t) is connected for any t ∈ [t0, t0 + τ ] as
the range of the connected set C(t0) under the continuous map ϕt. This contradicts to
the definition of t0.

Theorem 5.3 Let M be a Riemannian manifold of nonnegative curvature and C be a
compact connected locally convex set in M . There exists a compact boundaryless totally
geodesic submanifold S of M (the soul of C) such that (1) S ⊂ C and (2) for any
sufficiently small ε > 0, there exists a diffeomorphism

F : O(C, ε) → ν(S)

identical on S, where ν(S) is the space of the normal bundle of the submanifold S. If C
is totally convex, then S is totally convex too.
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Proof. For a boundaryless compact submanifold S ⊂ M , ν(S) is diffeomorphic to
O(S, ε) with a sufficiently small ε > 0.

We prove the statement by induction on dim C (see Theorem 2.2). If bC is empty, we
can take S = C. So, we assume bC to be nonempty. Let C(t), t ∈ [0,∞), means the same
as in Theorem 5.1. Let t0 be the supremum of such t that C(t) is nonempty. Then C(t0)
is nonempty as the intersection of an increasing sequence of nonempty compact sets. By
Theorem 5.1 and Corollary 5.2, C(t0) is locally (totally) convex and connected. Obviously,
dim C(t0) < dim C. By the induction hypothesis, there exist a compact boundaryless
totally geodesic (totally convex) submanifold S ⊂ C(t0) of M and the diffeomorphism

F : O(C(t0), ε) → ν(S) (5.2)

identical on S. We will prove that all hypotheses of Lemma 4.7 are fulfilled for the
family t 7→ C(−t) t ∈ [−t0, 0]. Then the statement will follow from Lemma 4.7 and the
induction hypothesis (5.2). Indeed, the family is uniformly locally convex by Theorem
5.1. It remains to check that the family is uniformly right-hand continuous.

Let ε be an arbitrary positive number. We have to find such τ > 0 that, for any
t, t′ ∈ [0, t0] satisfying 0 < t− t′ < τ , the inclusion holds

C(t′) ⊂ O(C(t), ε). (5.3)

To this end, choose a finite ε/4-net {p1, . . . , pk} in C. For every pi, choose such qi ∈ C \bC
that ρC(pi, qi) < ε/4. Then {q1, . . . , qk} is the ε/2-net in C. Set t1 = mini ρ(qi, bC). Then
t1 > 0 and (see the definition of C(t))

C ⊂ O(C(t1), ε/2). (5.4)

Now, consider t 7→ C(−t) for t ∈ [−t0,−t1] as a family of subsets of the Riemannian
manifold C \ bC. Let us show that the family satisfies all hypotheses of Lemma 3.1.
Indeed, C(t) is connected and locally convex for any t ∈ [t1, t0] by Theorem 5.1 and
Corollary 5.2. Therefore C(t) is a topological manifold. From the latter fact and the
obvious statement C(t0) ⊂ int C(t) (the interior is taken with respect to C \ bC), we
see that C(t) = int C(t). Thus, all hypotheses of Lemma 3.1 are fulfilled. Applying the
lemma, we obtain that the family t 7→ C(−t) (t ∈ [−t0, t1]), considered as a family of
subsets of C \ bC, is uniformly right-hand continuous from. Moreover this is true for the
family considered as a family of subsets of M . The latter statement and (5.4) imply (5.3).
This finishes the proof.

Theorem 5.4 Let M be an open Riemannian manifold of nonnegative curvature. There
exists an increasing family of compact totally geodesic sets C(t) ⊂ M defined for t ∈ [0,∞)
such that

(1) C(0) is nonempty;
(2) C(t1) = {p ∈ C(t2) | ρ(p, ∂C(t2) ≥ t2 − t1 for t1 ≤ t2;
(3) ∪tC(t) = M .

See the proof in [3].
Together with Lemmas 3.3 and 4.9, Theorem 5.4 implies

Lemma 5.5 Let M be an open Riemannian manifold of nonnegative curvature. There
exists a compact totally geodesic set C ⊂ M such that, for any sufficiently small positive
ε, there exists a diffeomorphism F : M → O(C, ε) identical on C.
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Theorem 1.1 follows obviously from Theorem 5.3 and Lemma 5.5.

Final Remarks. Our approach is based on the following observation (Theorem 2.4):
the distance function f(p) = ρ(p, C) to a locally convex set C belongs to C1(U \ C)
for a sufficiently small neighborhood U and has no critical point. We approximate f
by a smooth function g with no critical point and then apply the standard techniques
of noncritical Morse theory to g. independently of [10], this approach was realized by
Poor [9] approximately at the same time. After the papers [10, 9] were published, a
more general version of noncritical Morse theory for Lipschitz continuous functions was
developed in [5, 6, 4].
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