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Abstract

The problem of evaluating heat invariants can be computerized. Geometric
symbol calculus of pseudodifierential operators is the main tool of such com-
puterization.

We are going to demonstrate that geometric symbol calculus can be used for
evaluating heat invariants and that the calculations can be computerized. To this
end we evaluate flrst three heat invariants. All calculations have been done manually
in the paper since the author is not good personally with a computer. Nevertheless,
we have used results of computer calculations that have been kindly done by Valery
Djepko and Michal Skokan by author’s request. We hope the paper will inspire a
young mathematician for a further progress in computing heat invariants.

1 Heat invariants

We start with a short summary of Sections 1.6 and 1.7 of book [2] by Peter Gilkey.

Let (M;g) be a closed (= compact with no boundary) Riemannian manifold of
dimension n and V be a Hermitian vector bundle over M. Let V, denote the flber of
V over x 2 M. Let EndV be the vector bundle over M whose flber over x consists
of all linear operators V, ¥ V,. The cotangent bundle of M is denoted by "M and
its points are denoted by pairs (x;»), where x 2 M and » 2 F,M.

We consider an elliptic self-adjoint difierential operator P : C1(V) ¥ C1(V)
of order ,, > 0 with a positive deflnite principle symbol. The eigenvalue spectrum
Sp(P) =F,p= ,1 =ttt =, =¢t¢ ¥ +1gis real and bounded from below. The
initial value problem for the heat equation

(@=0t+P)F(t;x) =0 for t, 0; F(0;x)="F(x)
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has a unique solution for every f 2 L2(M) which can be written as
YA

ftx)=ei™f) = Ktxy)Ffy)dM(y);
M
where dM is the Riemannian volume form. The function K(t; x;y) is the fundamental
solution to the heat equation. It is a smooth function of (t;x;y) 2 R* £M £ M
whose value is a linear operator from Vy to V. The function tr K(t; x; X) admits the
asymptotic expansion
+

tr K(t; x; X) » ao(X; P)+a (x; P)tZ™ +a,(x; P)t*+::: ast ¥ +0 (1.1)

1
(4..t)n=-

whose coe—cients are local heat invariants of the operator P. Recall that n = dimM
and ,, is the order of P. The following locality constitutes the main property of heat
invariants: ax(x;P) can be expressed ingerms of the jet of P at x of some flnite
order. The integrated invariants ax(P) = ,, ak(x; P) dM(x) are of great importance
in spectral geometry since they are determined by the eigenvalue spectrum of P:

t
(..~

trei® = eitk a(P) + a(P)t +a,(P)t*+::: as t ¥ +0:

k=0

The existence of the asymptotic expansion (1.1) is proved in Section 1.7 of [2].
Gilkey mentions also that the method of the proof can be used for computing invari-
ants. But actually he uses another approach for computing ax(x; ¢~) in the case of
the Laplacian on ”-forms. Namely, he proves that every ax(x; ¢~) is a homogeneous
polynomial in partial derivatives of the metric tensor. Then, using Weyl’s theorem on
invariants, he flnds all such polynomials invariant under the orthogonal group. This
gives a formula for ax(x; €-) up to some constant coe—cients. The coe—cients are de-
termined by considering some deflnite manifolds and using some functorial properties
of invariants, see Section 4.8 of [2].

We will compute invariants ax(X; ¢-) more explicitly using the geometric symbol
calculus developed in [3], see also Appendix below. Roughly speaking, our algorithm
follows the proof of the existence theorem.

Let I 2 C1(EndV) be the identity operator. For a complex , 2 Sp(P), the
operator ,1 j P has the bounded inverse (,1 j P)it : L2(V) ¥ L2%(V). Being
considered as a function of ,, the resolvent (,1 j P)i! is a holomorphic function in
CnSp(P). In particular, the function is holomorphic in the cut plane C.,; = Cn[C; 1),
where C = infSp(P). Let be the oriented curve in C.,; which goes over the cutset
from the point 1 + ia (with some a > 0) to the point C + ia, then rounds the point
C, and then goes under the cutset from C j iato 1 j ia. Then

Z

eitP = % eit-(,1 § P)id,: (1.2)



The resolvent (,1 j P)i! is not a pseudodifierential operator. The main idea of the
proof is to replace the factor (,1 j P)i! on (1.2) with some pseudodifierential operator
R(,) that approximates the resolvent (,1 j P)i! in an appropriate sense. The main
feature of the approximation is the right understanding the role of ,: we think of the
parameter , as being of the same order ,, as the principal symbol of P. According to
this idea, we introduce the following deflnition.

Let W be a vector bundle over M and ,, > 0. Fix a domain C.,; % C. For a
real k, the space S]f('IVM;W; ») of symbols of order = k depending on the complex
parameter , 2 C consists of functions q: M £ C.,c ¥ W satisfying
(@) q(x;»; ,) 2 Wy is smooth in (x;»;,) 2 M £ C and is holomorphic in ,;

(b) For all (fi;fl; ) the estimate

JDXD]D q(%;»;,)i = i, (L+Jpj +J, 7)< 1iME-1 ]

holds with some constant Cy.5. uniformly in any compact belonging to the domain
of a local coordinate system.

Compare this with the deflnition of SK(F"M; W) in Appendix below. We say that
q(x;»; ,) is homogeneous of order k in (»;,) if q(x;t»; t>,) = tkq(x;»;,) for t, 1
We think of the parameter , as being of order ,,. It is clear if q is homogeneous in
(»; ,), then it satisfles the decay condition (b).

Let V be a vector bundle over M furnished with a connection rV. The latter,
together with the Levi-Chivita connection r of the Riemannian manifold M, allows
us to deflne the covariant derivative r : C1(V) ¥ C1(V > F'M): More generally,
if ;&M is the bundle of (r;s)-tensors, the covariant derivative r : C1(V > (/M) ¥
CL(V > ¢l M) is well deflned. Now, a difierential operator P : C1(V) ¥ C1(V)
of order ,, is uniquely written in the form P = p(X; jir), where p(x;») 2 EndVy is a
polynomial of order ,, in ». The polynomial p(x;») is called the full geometric symbol
of the difierential operator P. We will write p = P. See Section 7 of [3] for details.

Next, we deflne the space “E(M; r;V,; ,) of pseudodifierential operators with full
geometric symbols in Sff('IVM; EndV; ,) in the complete analogy with deflnition (8.1)
of [3], see also Appendix below. For Q(,) 2 “':(M; r;V;,), we denote the full
geometric symbol by q(,) = Q 2 SK(F'M;EndV;,). The new feature arises from
the dependence on the parameter ,. All facts of the geometric symbol calculus are
obviously generalized to the class “E(M; r;V,; ,) of operators depending on ,, with
the only one exception: given a sequence g; 2 S]fij('lVM; EndV;,), in tllaf general
case there is no operator Q(,) 2 “E(M; r;V;,) with the symbol Q(,) = j1:0 a;(5)
since the sum of the series gan be not holomorphic in ,. Nevertheless, there is no
problem with a flnite sum }OZO 0j(,). Thus, in constructing an approximation for
the resolvent, we will always restrict to a flnite sum rather than an inflnite series.

We wish to solve the equation

RGIGHEP))» I (1.3)



Standard arguments of symbol calculus show that, for an arbitrary elliptic P of order
,», the equation has a unique solution R(,) with the geometric symbol r = ro+r;+:::,
where ry = r(x;»;,) 2 S} »iK(F"M;EndV; ,) is homogeneous of degree j,, i K in
(»; ,). Then the asymptotic expansion (1.1) holds with

2 202
ac(x;P) = "'2 i et-trndx;»; ,)d,d», (1.4)
M

as is proved in Section 1.7 of [2].

Our algorithm for computing the heat invariants ax(X; P) is as follows. First we
have to fInd the full geometric symbol r(x;»; ,) = ro(X;»; ,) + ry(X;»;,) +::: of the
operator R(,) by solving equation (1.3). Then the invariants are computed by formula
(1.4). We emphasize that the algorithm does not involve any ambiguity unlike the
corresponding procedure of [2]. Indeed, since we use geometric symbol calculus, (1.3)
is a coordinate free equation or, to be more precise, the equation does not change
its form under a coordinate change. The difierence between the geometric version of
equation (1.3) and classical one can be illustrated in the case of P = ¢, the Laplacian
on ”-forms. In the latter case, the classical version of equation (1.3) strongly depends
on higher order derivatives of the metric tensor while the geometric version of the
equation involves only the curvature tensor and its covariant derivatives.

In the case of a general elliptic P, solution of equation (1.3) is a very hard busi-
ness since the geometric symbol of the product is expressed by a rather complicated
formula, see formula (A.3) in Appendix below. In the next section, we will solve the
equation in the case of P = j rPr;, + A with an algebraic operator A. The Laplacian
on forms is of this kind.

2 Recurrent formula for ry

Let (V; rv) be a vector bundle with connection over a Riemannian manifold (M;g).
As we have mentioned in the previous section, the covariant derivative r is well
deflned on V -valued tensor flelds. In particular, the operator r°r, = girir; :
CL(v) ¥ C*(V) is well deflned. Hereafter, r' = glr; and (g") is the inverse
matrix of (gjj). We use Einstein’s rule: the summation from 1 to n = dimM s
assumed over an index repeated in upper and low position in a monomial.

We flx a self-adjoint algebraic operator A 2 C1(EndV) and consider the second
order difierential operator on the bundle V

P=Pa=ir’rp,+A:Ct(v) 1 Cch() (2.1)
The full geometric symbol of the operator is

( P)(;») = PPl + A(X) = g (v | + AX):
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Therefore (L1 i P)=(, i )l i A.

We proceed to solving equation (1.3). Let r = r(x;»;,) be the full geometric
symbol of R(,). By formula (A.3) for the symbol of a product, equation (1.3) is
written as

X1v, X1 il
rrl 8 i
fi! !

fi ) fl;

IUND Loy _
(|||") r (:I i) | |A)¢%0ﬁiﬂ; » I:

We use the central dot in our formulas to avoid extra Qarentheses For example
the expression (|Ir)ﬂr A ¢ %5 means the same as (||r)f'r A %i;n: . See

h
Appendix below for the deflnition of the vertical and horizontal derivatives r and r.
These operators commute. Since

hoo =1;  Yefio = loi =0 for jflj > 0; (22)

the equation can be rewritten in the form

., XK 1vg X1 ﬂ'” v
rG1 i pjsl i A)+ rr , (lll") GUi PPl i A) thrgn, > 1
jfiji>0 fl,
We distinguish terms corresponding to fl = 0 and rewrite the equation once more as
> h><

- . 1 1 o
rGli PPl i A+ ﬁ:‘f'r _|¥' G P21 A) 6,
jfij=0 T : - s
XX1 fi'v h g - i )
N g ¥V AINGCHT I A) hrign, > 1
jflji=0 '

Of course, the parameter , is considered as a constant with respect to the both
h h
difierentiations, i.e., -, = r-, = 0. Therefore GIPD'"GLipPliA=iGIin'A
for jflj > 0. Observe also that :’A = 0 since A is independent of ». Therefore the
summation over in the second line of (2.3) is reduced to = 0. Taking also (2.2)
into account, we see that the summation over fl in the second line of (2.3) is reduced
to fl = fi. Equation (2.3) is thus simplifled to
X 1 :t X 1 Vv T
rGULipPLEA)+ o't S GLiPPLE A i GINTA > 12 (24)
jfij>0 " ji>0
The summation over is restricted to j j > 0 in virtue of (2.2). Actually the sum-
mation can be restricted to j j =1 and j j = 2 since (, i j»j)I i A is the second
order polynomial in ». Namely,

V. o V.o o - V.V, o .
FGLiPPLTA =irpPRtl=i2'; PG P2l i A)=i29"1:
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Substitute these values into (2.4) to obtain

r(,1 i pi%l i A) i ﬁ\r/‘f'm(g”%oﬁ;hiji + Qbiii»' + (§iX)TA) » I
ifij=0

See Appendix below for the notation hj ::: jmi for multi-indices. Let us remind that

Nevertheless, we use also contravariant coordinates »' = g'»;. After introducing the
notation

"6 = 9V hfiniji + brinii»; (2.5)
the equation takes the form
. <1 v, i
rGLipPLiA) T et Cat+ (N A) » I: (2.6)
fij=0

Every function % (X; ») is @ polynomial of degree = jflj in ». Therefore "¢ is a
second degree polynomial in » and can be written in the form
EE (e e 2 @7
where " is a homogeneous polynomial of degree p in » for p = 0;1; 2. Introduce the
similar notation %O]Eﬁ}, for homogeneous parts of %s.q. Formula (2.5) implies
']giO) = qig©@ . @) = iigD

© i. @) — 4iig@ @ i
eihijic i fihiji T finii” 9= J%ofi;hiji + o> - (2.8)

Ofizhii” 1

We are looking for the solution to equation (2.6) in the form r = ro+ry +:::;
where r, = r(x;»;,) 2 SI2iK(P"M;EndV; ,). Substitute this expression and (2.7)
into (2.6) to obtain

>
(o4 )GHPF AT i (ot O+ P P+ N A) » 1
jfij=0
(2.9)
Let us remind that , is considered as a variable of the second degree of homo-
geneity. The derivative ;Lﬁrj is homogeneous of degree §2 i j i jfij in (,;»). The
operator A is of the zero degree of homogeneity while P of degree p. Equating the
homogeneous terms of the zero degree on the left- and right-hand sides of (2.9), we
obtain
ro=( i i)™ (2.10)
Equating to zero the sum of homogeneous terms of degree j1 on the left-hand side

of (2.9), we obtain
. lve o
nG i P+ Frit P =0
jfij=1
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By formula (A.18) of the Appendix below, @ = 0 for jfij = 1. Therefore the
previous formula gives r; = 0. Finally, equating to zero the sum of homogeneous
terms of degree jk (k , 2), we obtain the recurrent relation

1 :t % X 1 Vg -2
= —"— = rki2A+ fl"lrj(t lgi)
> 1)) NP (|
J=0 jfij=kjj
XX v g SR T SN A
j=0 jfij=kijil i=0 jfij=kiji2

The summation limits of the flrst sum can be restricted to 0 = j = k j 2 since “P=0
for jfij = 1, as we have already mentioned. Thus, the formula takes the form

k= —— - rki2A+ —_lrf'rj ¢(iir)ﬂA+ —_lrf'rj ¢,§i2)
dLhit 3=0 ffi=kijiz §=0 jfij=ki
x X 1vg (1) x X Lvg @
+ e P+ e
i=0 jfij=kiji1 i=0 jfij=kiji2

The term ry; A coincides with the summand of the flrst sum for j =k j 2. Observe
also that summation limits of the last sum can be changed to 0 = j « k j 2 since
’(()0) =0, see (A.17). In such the way, the recurrent formula takes its flnal form: for
k, 2,

1 BRI X 1v, o X X Lve oo
e ar hGin" A+ e iR (2.11)
k4 j:0

g = .
o ! o fil
jfii=kiji2 p=0 jfij=kijip

The formula has two important specifics. First, there is no term with j = 1 on the

but we do not need ry;1.

Formula (2.11) implies in particular that ry(X;»; ,) depends on , through factors
(, i j»j>)T™ with difierent values of m. More precisely, the representation

b o Tiem(X;»)
G i ppHm

holds for every k where, moreover, fi.(X;») are polynomials in ». In virtue of this
fact, both integrations of (1.4) become trivial procedures. Indeed, the integration
over reduces to the formula
z ] ]
17 etd,  _GD™
2.0 GipP™ (mjl)!

trrg(x;»;,) =
m=1

(2.12)



The formula is obviously true since the left-hand side is just the residue of the inte-
grand at the point , = j»j2. Now, the integration over FM in (1.4) reduces with the
help of an orthonormal basis to the evaluation of the integral
Z
LAR2 ipPyfi gy

RN

for difierent values of the multi-index fi. The integral is obviously equal to zero if fi
is not even. For an even multi-index,

Z yal v
SN2 eibP Mgy — i1 ifikgp = 20Ifl  (fj § DI
RN k=1 i1 k=1

where 2m j D' = (2m j 1)(2m j 3):::1 with the standard agreement (j1)!! = 1.
In this paper, we will use this equality for jfij = 2 only in the following tensor form:

Lemma 2.1 If C = (C;;) and D = (Djj«) are tensor flelds on an n-dimensional
Riemannian manifold (M;g), then

z
in=2 eili? dy = 1;
7 M
_in=2 eij»jzcij»i))j d» = %gijcij;
7 =M
T2 D b = ()M Dy
M

where 1
(@)™ = (ijkI)(gUg") = 5(9"9“ +g'™gl' + g''g*):

3 Computing the invariants ag and a,

For a Riemannian manifold (M;g), let R = (Rjj«) be the curvature tensor of the
Levi-Chivita connection r. The Ricci curvature tensor Ric = (R;j;) is deflned by
Rij = g™ Ripjq and the scalar curvature is S = g¥R;;. We normalize the curvature
tensor such that the scalar curvature of the unit two-dimensional sphere is equal to
+1. This difiers by the sign from Gilkey’s choice [2]. Let ¢S = j rPr,S.

Now, let (V; r") be a Hermitian vector bundle with connection over M. We denote
the curvature tensor of the connection r¥ by R = (R;j;). Thus, Rjj(x) 2 End Vy
for x 2 M, R;j is skew symmetric in (i; J) and behaves like an ordinary second rank
tensor under a coordinate change.



Theorem 3.1 Let (V;rY) be a Hermitian vector bundle with connection over a
closed Riemannian manifold (M;g). Denote the dimension of the flber of V by d.
Assume the curvature tensor of the connection rV to satisfy

tr Rij =0 (31)

Fix a self-adjoint operator A 2 C1(EndV) and deflne the second order difierential
operator P = P on V by formula (2.1). Then flrst three heat invariants of P are as

follows: () ao(x;P) = d:
(b) & (xP)= gS i trA;

©  a(xP)= %(i 12¢S + 552 j 2jRici + 2jR}?)

1 o
+ Etr(g'ng'RinH i 2r°r,A +6A% j 2SA):

Of course the result is not new, compare with Theorem 4.8.16 of [2]. The main
news is about the proof. Our proof consists of explicit calculations strictly following
the algorithm presented above, with no extra argument. In our opinion, this approach
can be computerized in order to obtain similar formulas for ax(x;P) (k =6;8;:::).

Let us give a couple of remarks about hypothesis (3.1). It deflnitely holds if the
connection rV is compatible with the Hermitian inner product on V. In particular,
it holds in the case of the Laplacian on forms. The hypothesis is not used in our
proof of statements (a) and (b) of the theorem. As far as the proof of statement (c)
is concerned, we use the hypothesis to abbreviate some of our calculations. Namely,
condition (3.1) allows us to ignore terms depending linearly on R in any formula if
we are going to apply the operator tr to the formula. Most probably, hypothesis (3.1)
can be removed from Theorem 3.1, but some of our calculations would become much
longer. No such hypothesis is mentioned in the statement of Theorem 4.8.16 of [2].

We start with evaluating aqg(x; P). By formulas (1.4) and (2.10),

minzzzz_ __Zilzei’d'
a(x;P) = N el-trro(x;»;,)d,d» =d.. in=2 o s j»}z d»:
FM Toe™M
Applying (2.12) and Lemma 2.1, we obtain ;he desired result
ao(x;P) =d..i"2  eiPigy =g
M

We use the abbreviated notation for higher order derivatives it = i ik
Find the derivatives of ro up to the fourth order by difierentiating (2.10)
V. 2»1 v 294 8»inl

+

'fro= ——— Ury = — —
T i i) N N A O T D




V.. glj »k + gik»j + gjk»i ))i))j ))k
ik, = 8 = +4 —; 3.3
0 G, i »P)3 G 1P G
Fikg = 8 o399 +gg! +g'lgl) + A-zs”i»j»k»'
) (i pi) (3.4)
8 |

()

+ — »» + iI(»j»|+ iI»j»k+ jk»i»I —+ jI»i»k+ I(I»i»j :
0L g g g g g )
We have omitted the factor I on right-hand sides of (3.2){(3.4) for brevity.
Now, we calculate ro(x;»; ,). By (2.11),
T )
_ 1 Lvij. o-@ . Vie - .
= AT o T T o Ty
We substituting values (2.10) and (3.2) for ro and its derivatives. Then we substitute

values (A.18) and (A.19) for ’}flll) and ’ﬁizj)i (see Appendix below) to obtain

A . 1h 2Rij»i»j i 8Rijk|»i»j»k»|i N 2Rij»i»j _
GipP?2 3 GipD"' GipP G i PiP)*
The last term on the right-hand side is equal to zero since R;j; is skew-symmetric in
(i;J) while the factor »'»J is symmetric in these indices. The second term in brackets
is equal to zero by the same reason. We thus obtain the flnal formula
—l - A+E—Rij).)i).)j :
GipP 3G ipP)?

Now, we evaluate a,(Xx;P). Take the trace of (3.6), multiply the result by ei-,

and integrate over the curve with the help of (2.12)
1 Z + q .
= gi-trr,d, =eiP® trA+§Rij»‘»J' :

r, =

(3.5)

roh = (36)

2.1

Integrate this equality over FyM with the help of Lemma 2.1
Z Z

ei-trrod, = itrA+gS:

in=2

2.1
M

In view of (1.4), this coincides with statement (b) of Theorem 3.1.

4 Computing the invariant a4

Since r; = 0, formula (2.11) for k = 4 gives
T
_ 1 Sy Vi -1V -0
PR AT S ot A+ iRt G+ orint oL

(4.1)

Ivij. v-@ o 1Vijk, ,-@ L Viikp ¢-@
+§r”ro¢ hiji+él’IJ ot hijki+ﬂrIJ Fo b " pijii -
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First of all we will eliminate r, from this formula. Difierentiate (3.6) with respect to
» to get

V. 1 4 RiyP R, »P»d»i
rn=——_A+_-—FP | +4 2" " ;. 4.2
T GapD 3GirDE G “-2)
v, 4V 24»'») 4 RY
R A T E A S T A @O0 “3)

ZRE)»F’»J- + ZR%»F’»i + gij Rpg»P»1 | +32 qu»p»q»i»j I-
= iyi2)4 = i%i2)5
G i %) G 1%
We substitute (3.6) and (4.2){(4.3) into (4.1) and then group all terms on the right-
hand side of the resulting formula into three clusters so that the flrst cluster contains
terms dependent on A, the second cluster contains terms independent of A but de-
pendent on ro, and the last cluster consists of all other terms. Thus, ry = r; +r2+r3;
where

+4

1 1 Vo 1 2 Rii»i»
N=i-———srirntnjA+ —— A+ -1
s iR Y TG 3G i iRy 4.4)
4yl 2q' 12»ix '
Y a2 e, 1Y e
CapP TG ppE s T ppe e
- i
S R TIPS S T DI v i - .
r‘21 = TJ»JZ Er"r()@ hiji + ér”kro@ hijki + ﬂr”k'ro@ hijkli (45)
= R 4 R w2 RI g
AP TG T BG a p .6)

8R’i)»|°»j + 294 Rpg»P» @ 16qu»p»q»i»j L@ .
CipPs W T Cappe

We flrst evaluate the term r}. Substitute value (3.2) for :"j ro into (4.4)

1 gy A 4»'») 3 1 2 g Rjj»'»]
P AT it AT G 3G )
4yl RO 2gij -@ 12»ix A” @ .

Gipr " Giapt MGy

The dependence on , is now explicitly designated in this formula. We multiply the
formula by e?- and integrate over with the help of (2.12)
z

- 1 2 i1 1 .
o ei-ryd, = eibi® Erpr‘pA+ érijA»'»J + EAZ i §ARU-»'»J

P 1@ i
i SAGTT AT

S 2, @
1 §A hii
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Next, we substitute values (A.18) and (A.19) for 'ﬁ.l.’ and 'IgiZj)i to obtain
Z
L i T 2 L1 1 o
Z e! ,rid, = elj»Jz i zr‘p I"pA + érijA»'))J + EAZ i §ARij»n»J

+ %ARij»i»j i gARij»i»j +§ARij»i»j i %ARikﬂ»i»j»k»l :

The flfth and last terms in parentheses are equal to zero and the formula takes the

form
Z

% ei-rid, =eili® %r‘pr‘pA+§rijA»i»j + %AZ i %ARij»i»j :

We integrate this relation over F;M with the help of Lemma 2.1 and obtain the flnal
formula for r}

in=2 Z Z i s 1 1 1 -
m2...i ei-trrid,d» = tr j érprpA+ §A2 i SA (4.7)
M

Next, we evaluate r;. The dependence on , is explicitly designated in formula
(4.6) since ~ are independent of ,. We multiply (4.6) by ei- and integrate over
with the help of (2.12)

z
1 ¥ 2

. o F .
o ei-rid, = gibl® équ»p»q»' 1)

. 1 ..
hii §R;)»p'(l) i SR

hii 1 9 hiji

1 Coo " 2 2 o
+ E(4R;)»|°»J + gYRp»P»Y) r(1ij)i i 1_5qu»p»q»l»J ﬁij)' :

Substitute values (A.18) and (A.19) for ) and ~ 2. In the resulting formula, some
terms will be equal to zero because of the skew-symmetry of curvature tensors. After
canceling such terms and grouping similar terms, the formula takes the form

z

15 ot . L1 e
2 ei-rid, =eilr’ E(sR?Rp,— iZR;)Rij+quRiquI)»'»J+ERU—RK|»'»J»"»'I ;

We apply the operator tr to this equality and integrate over FyM with the help of

Lemma 2.1. The flrst term on the right-hand side will give the zero contribution to

the integral since RY is symmetric in (i;j) while R;; is skew-symmetric. We thus

obtain

Z Z t 1 _ 1 ) .
el-tr I’i d,d» =d ﬁgu( i ZRLRpj + quRiqu) + ﬂ(gz)uklRij R

jn=2

2.1
KM
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Since

" . . . 1 2. ..
9" (i 2RIRy; + RPRipjq) = ijRici%  (0°)"RjjRi = 2S* + ZjRicj;

3 3
the formula takes its flnal form
. 1N=2 z ¢z - d
5 ei-trrid,d» = E(C%S2 i 2jRicj?): (4.8)
FM

Next, we evaluate r?. Substitute values (3.2){(3.4) for derivatives of ry into (4.5)

o 91 o S 49" &L )

= (G i pj)3 M, § pj2)d M, jpjR)s ki + G i pj2)s ik
ij gkl TN ikl
G PR LB St (3

We multiply this by ei- and integrate over with the help of (2.12)

z t
% e"rfd, = pili? E ij- (@ g'@.»i»j : ggij'(l) »K
ol

2 hiji 1 3 hiji 1 3 hijki
(4.9
1. P 1 - 1 .. 2 . P )
+ 3 r(lilj)ki»l»J»k i égugkl ﬁizj)kli +§gIJ r(1i2j)k|i»k»| i G r(1i2j)k|i»l»J»k»l :
Let us calculate separately each term on the right-hand side. Using formula (A.19)
for ~ ., we obtain
ji
1 .. 1 .
507 i = 700" Ry R + 101 (4.10)
-2'(0) ij_-lpq [
i3 w2 = gg RipRj»™ + 1115 (4.11)

where dots mean some operator depending linearly on R. It is a trace free operator
by hypothesis (3.1).
Using formula (A.20) for '}filj)ki, we obtain
-2ij'(l) k — 1:1: . 0D . dep-D . = qer
'§g ijki” = 135 27rirjRep + Trir'Rpjkg + 2r ' iRpjkq i 4F€¢U—¢F{qur
i 12R{ Rorkg i 16R{Rpjkq (§7»*5P + g™oDoP + gloinP) + 1

For brevity, we do not write the factor I in this and several further formulas. After

13



opening the parentheses

i %gij'ﬁilj)ki»k = % 2T R P + 27r I Rip» »P + 27 r*Ryp»'»P
+7r) qupjkq»k»p + 7r«re Rpjkq»j»p +7r; rq(gijpjkq)»i»p
+2rip) Rpjkq»k»p + 21 r'kRpj kq»j »P +2rir; (gijpjkq)»i»P

4(g" Rﬁi?{)qukr»k»p i 4R§¢ﬁerqkr»j »P 4Rgi¢¢|¢(erqkr»i»p

12(g" Rgi?DRprkq»k»p i 12R?¢Ij<§errkq»j P 12R?i¢¢i¢<errkqf’i»p

16RY R i 16R™ Ry »P § 16RI(GFRpjg)»»P + 111

The flfth term on the right-hand side is equal to zero since Rpjkq is skew-symmetric
in (p;j) while »1»P is symmetric in these indices. By the same reason 8th and 17th
terms on the right-hand side are equal to zero too. Deleting that terms and changing
summation indices, we transform the formula to the form

i ggii',fil;ki»k = 315 27Tr°rR;j + 27r°riR;, + 27 rPR;, + 7Tr°riRyyq
i 7rir’Rj, + 2r°riRigp i 2r°riRj, + 4RMRypjq
i ARpirR™" T 4Rpigr R + 12RMRipjq i 12Rpqir R}
i 12RpigrR}™ 1 16RPIRjpjq + 16RIRj, »'») + 11
After grouping similar terms
i %gii'gilj)ki»k = 1—;5 27r° R + 25r°riR;, + 20 r°Rj, + 9r°riRyy,
+ 16RPRjp + 4Ripgr (4RPY + RI™" j 3R »'l + 11
The last term on the right-hand side can be simplifled a little bit with the help of the
Ricci identity R™ = j R j R = jR™" + R{™". The formula becomes

2 . 1
i §g'1'§§j)ki>>k = T 27r°rRj + 25r°riR;, + 20 r°R;, + 9r°riRy, @12
+ 16RPR;p + 4Ripgr (TRPY j 2R[P") »HI1 + 11

The fourth term on the right-hand side of (4.9) is treated similarly. The result is
as follows:
%',(ﬂlj)ki»i»j»k = j 9—10(27 rijRa + 16R?quﬁ|p)»i»j»k»'l + (4.13)
Formula (A.21) for ~ (2 . can be written as
“@ = o () () 30yRigi + 4Ry5eRE, + 3rRipg + WRpeRli
+ 3rikRipjq + 4Rpi.rR|2jq + 3riiRipjq + 4Rpk.rR{jq _

+ 3rkiij|q + 4Rpker{|q + 3r‘k|ijiq + 4Rpker|riq PP + 11

14



On using this representation, one easily derives

k-
i ggug nijkli = 125 3r°rpRij + 6r*Ripjq . (4.14)
+4RpRY + ARipgr (R + R™T) »I1 + 111
1 . 1 -
§gu’r(1i2j)kli»k»l = %(3 rirjRq + 4R?quﬂ|p)»'»J w4+ (4.15)
'Eizj)k“»i»j»k»' =0+::: (4.16)
We substitute expressions (4.10){(4.16) into (4.9) and write the result in the form
1 4 1 1 :
> el ’ri d, = eij”j2 Zgij Bij +(i éBij +Cij I)»i»j + Dijk||»i»j»k»I +:::; (4.17)
where
i Bij = gquipqu; (418)
1
Cij = E 18r'pr'pRij + 25r‘pr'iij +20; I"pij i 9rpquiqu
. (4.19)
+ 4RPRjp + 4Ripgr (4R j 5RI™)
1
Dijki = i 4—5(9ril’ij| +2RE REL): (4.20)

We apply the operator tr to (4.17) and integrate over F;M with the help of Lemma
2.1
o L L _ 1 B 4;1 B 3 ) .
et tr rﬁ d,d» = E tr (glj Bij) +d Eg” Dij + Z(gz)uklEin . (421)

M

From (4.19) and (4.20) we obtain

+ )
Eg'JCij+;(g2)'Jleijk| = 525 97 RSHIBrIR;+2Ric*+2Rij (18R j 28R™Y)
(4.22)
This formula can be simplifled with the help of the identities
r'R;; = %r‘ri = i¢S (4.23)
and 1 1
RijuR™!' = §RijklRIkJI = EJ'RJ'2 (4.24)
that will be proved at the end of the section. (4.22) takes now the form
1 . 3 i 1 L L
Eg”Cij + Z(gz)”leijm = m(i 18¢S + 2]RIC]2 + 3]Rj2)2 (4.25)
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Substitute (4.18) and (4.25) into (4.21) to obtain
zZ Z
in=2

. ] d N . 1 o

5 ei-trrid,d» = £4g(i18¢S + 2jRicj? + 3jRj?) + T @™¢"'Ri;Ru):
M

(4.26)
Let us recall that r, = rj +r2 +r:. Take the sum of (4.7), (4.8), and (4.26) to

obtain
"'in:2 £z i d 2 2 2

. _d N Cini2 oo
o et-trryd,d» 360(.12(1:8 5S¢ j 2jRicj” + 2JRj?)
M

T )
1 . - 1 . 1 1
+tr —g%¢'RijRi i =r'riA+ -A% j ZSA :
129 g ij kil 1 6 i 2 1 68
In virtue of (1.4), this coincides with statement (c) of Theorem 3.1.
Let us prove (4.23). By the Bianchi identity,
FiRjkpm + FjRkipm + FiRijpm = 0:

Contracting this equality with g<™ (i.,e., multiplying by gk™ and taking the sum over
k and m), we obtain
riRjp i rjRip+ quiqu =0:

Transpose the indices j and p on this equality
riRjp = Rij i r'Rigjq:
Applying the operator rP to the last equality and summing over p, we obtain
r°riRj, = r’rpRij i r°riRiyq:

Contracting this equality with g", we arrive to (4.23).
Finally, we prove (4.24). To this end we flrst transform the second factor in the
product R;jR™! with the help of the Ricci identity

Riik'Rikjl =1 Rijkl(Rijlk +R'"M) = RijklRijkI + RijklR“ij
Transpose the summation indices k and | in the last term on the right-hand side
RijkIRiij — RijkIRijkl + RijlkRikjl
and then use the skew-symmetry of Riji in two last indices to obtain
RijuR™' = RijuR"™ j R;jluR™":
This is equivalent to (4.24).
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5 Laplacian on forms
For a Riemannian manifold (M;g), we denote the Hodge Laplacian on ”-forms by
¢ =d-+-d: CLZ(FM)) ¥ CL(FM)):

Theorem 5.1 For a closed n-dimensional Riemannian manifold (M;g), the first
three heat invariants of ¢ are expressed by the formulas

n'IT
ao(xl ¢”) = 11 1
h I LT
ae)== 1 oje N 1% s
6 N il
(6 ©) = o C(;")ES + 0o(1;*)S? + cs(n; RIGE + ca(; "R
where qa T;
h i, i
c(n;”) =il2 n i5 ,r,]fz :
h n'IT ni lzﬁ n i 4'”'
(n;”)=5 . 12 "!1 +36 "!2 ;
h n‘IT r: i 2‘IT In i 4.”i
ca(m™=1i2 , j9% ,'% +360 '] ;
i.ﬂ 2
h n“T ni?2 ni 4||Ti
ca(m™=2 , §15 ,'° +90 '
) il i?
The binomial coe—cients 'T = k«mL:k), are assumed to be deflned for all integers
m

m and k under the agreement: =0ifeither m<Oork <0orm<Kk. The
curvature tensor is normalized so that the scalar curvature S is equal to +1 for the
two-dimensional unit sphere.

The result actually belongs to Patodi and is reproduced in Theorem 4.8.18 of
[2]. We emphasize that our formulas for cj(n;”) are valid for all n and ” while the
corresponding formulas in Theorem 4.8.18 of [2] make sense for n , 4 only. By the
way, it is a good exercise to check the agreement of our formulas with that of [2].

The Laplacian €~ can be written in form (2.1) with the algebraic operator A =
A. 2 CL(Ende(FM))) that is expressed in local coordinates as follows. If a
”-form is written as ¥ = ¥; ..;.dx" A ¢6¢~ dx™ with skew-symmetric 1;,...;.., then

+ _ _
Al = RPN i (i DRPLT Yogigme dXTACEEA X (5.1)
Another useful representation of A~ is
X >
A= A2 A (5.2)
a=1 lea<be”
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where
A2(dx A eee A dx™) = Rladx™ A eee A dxiait AdxP Adxart Apee A dxT (5.3)
and
AP(dx™ Aot A dxi) = R dxit Agee A dxiait A dxP A dxiar A

tptq

N dxibil N qu N dXib+1 NEEN dXi"Z (5'4)

The Levi-Chivita connection of (M; g) induces the connection oo—"(F"M)) whose

curvature tensor R” = (R;;) can be written as
R.=i R? (5.5)

where

R (dx™ A eee A dx™) = Rizdx™ A eee A dxiait AdxP Adxiart Apee A dxT o (5.6)

Lemma 5.2 For all n and 7,

nij 2‘IT
tra-= | '° s; (5.7)
il
1l h il Tj T
5 _ id ni2 _ nid4 "._. ., id4
trA" - 77 i 2 S + 7 i 1 1 4 7 i 2 JRICJ + 7 i 2 JRJ 1 (58)
. n j 2'IT
r@g'RiRD) =i . 1 IR (5.9)

The proof of Theorem 5.1 consists of substituting values (5.7){(5.9) into the state-
ment of Theorem 3.1. So, it remains to prove Lemma 5.2.

Lemma 5.2 is of a pure algebraic nature. It can be proved in difierent ways.
Probably, the shortest proof is as follows. The idea of the proof is taken from [2], see
arguments presented before Theorem 4.8.18 of [2].

Obviously, tr A» must be a linear scalar function of the curvature tensor which,
moreover, must be invariant under action of the orthogonal group. As well known,
every such linear invariant is a multiple of the scalar curvature. Thus tr A- = a(n;”)S.
To fInd the coe—cient a(n; ), it su—ces to consider the case of a metric of the constant
sectional curvature K. In the latter case Rijkl = K(gikgjl i gilgjk); Rij = (n i 1)gij:
S =n(n j 1)K, and formula (5.7) is easily derived from deflnition (5.1).

By the same arguments

tr A2 = by(n; ”)S? + by(n; ”)jRicj? + bs(n; 7)jRj?: (5.10)
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It is easy to see that the coe—cients satisfy the recurrent relation (Pascal’s formula)
bi(n+1;7) =bi(n;”) +bi(n;” § 1) (1=1;2;3): (5.11)

Indeed, given an n-dimensional Riemannian manifold (M;g), let M £R be the metric
product. Then M and M £ R have the same values of S?, jRicj?, and jRj? in the
obvious sense. For a point x 2 M, we have the natural isomorphism

(Fan(M £ R)) 22(FM) =TH(FM): (5.12)

Let A-.+1 be the operator A- for M £ R and A-., be the same for M. As follows
from (5.1), both summands on the right-hand side of (5.12) are invariant subspaces
of A~n+1, the restriction of A-.,.q to the flrst summand coincides with A-.,, and
the restriction of A-.,.1 to the second summand coincides with A-;1.n. In other
words, A-ns1 = Ann ™ A-jin. Therefore A3, = A% " A2, and trAZ, ,, =
tr A%, +trAZ. .. This implies (5.11).

The recurrent relation (5.11) makes sense for n , 4 since S?; jRicj?, and jRj?
become linearly dependent for n = 3. It is easy to check that the coe—cients of
formula (5.8)

] 11 11 il

niéd ni?2 ni4d niéd
by(n;”) = ,,;2: ;)= ,'7 4, o b=

satisfy (5.11). Thus, to fInish the proof of formula (5.8), we need to check the validity
of the formula for n = 4. Obviously A, = 0. Beside this, tr AZ = trAﬁi" since A» is
agreed with the Hodge star. So, we need to consider four values of (n;”)

(n;”) 2 1(2;1); (3;1); (4, 1); (4; 2)0:

-

[BY

- )
-

We will present the consideration of the last case only. Other three cases are much
easier.

Fix a point x in a four-dimensional M and choose local coordinates in a neigh-
borhood of x such that g;;(x) = -j. The six 2-forms

dxt A dx?: dxEAdxE; dxE A dxt o dx® N dx3 dx® N dxt dxE A dx?

constitute the orthonormal basis af~2(F;M). We find the matrix of A, in this basis
by explicit calculations according formulas (5.2){(5.4)

(@) 1
Ri1 + R Ro23 R24 i Ris i Rus 0
R23 Ri1 + Ras Ras Ri. 0 i Ru
B = R24 Ras Ri1 + Ras 0 R Ris .
i Ri3 Ri, 0 R2 + Ras Ras i Roa ’
i Ru 0 P Ra4 R22 + Rys Ros
0 i Ru Ris i Ros Ros Ras + Rys
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0] 1
Ri212 Ri213 Riz1a Rizzz Rizoa Rizaa
Ri213 Riziz Risia Rizzs Rizaa Rizaa
C= Ri214 Rizia Risis Riszz Risos Raisss <.

Ri22s Rizz Rz Roszaz Rozas Rozas
Ri224 Rizza Risa Rozoa Rosoa Rosza
Ri2ss Riszs Riazs Rosss Rosza Raaza

Since the matrices are symmetric,
tr A3 = jBj? + 4jCj? j 4tr (BC): (5.13)

We evaluate - , , ,
iBj” = (Ru1 + Rg2)” + (Ru1 + R33)” + (Ru + Rag)

+ (Ry2 + Ra3)? + (R + Ryg)? + (Raz + Rug)?
+2(R}, + R%; + RY, + R3; + RS, + R3,):
On using the equalities S = Ry; + Ry, + R3z + Ry4 and
jRicj> = R, + RS, + R} + R, + 2(R%, + R%; + RE, + R3; + RS, + R%y);
we transform the previous formula to the form
jBj? = 2jRicj? + S (5.14)
Next,

tr (BC) = R11(Ri212 + Ruziz + Rua14) + R22(R1212 + Rasas + Rag24)
+ Rs3(Ri1313 + R2s2s + Raaza) + Rua(R1a1a + Rags + Raazs)
+2 Ri2(Riszs + Rusz4) + Ri3(Ruzs2 + Rusza) + R1a(Ri2a2 + Rizs3)
+  R23(Ri213 + Raszs) + Raa(Ruz1a + Roaza) + R3a(Ris14 + Rasosg)
With the help of the relation Rj; = Rij1 + Rizj2 + Risjs + Risja, this gives
tr (BC) = jRicj%: (5.15)
Finally,
jiCi* = Riziz + Rigs + Riga + Rl + Rl + R
+2 Riys + Riyy + Riy + Ry + Riygy + Rizy + Rigg (5.16)
=R

2 2 2 2 2 2 2 _
+  Rigy + Rigy + Ry + Riypy + Riygy + Rz + Riyzy =

Substitute (5.14){(5.16) into (5.13) to obtain tr AZ = S? j 2jRicj?+jRj?: This coincides
with (5.8) in the case of (n;”) = (4;2).
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We have thus flnished the proof of (5.8). Formula (5.9) is proved in the same way.

In conclusion, we give a couple of remarks about the possibility of computerizing
our calculations in order to evaluate heat invariants a,(x; ¢-) for kK = 6;8;:::.

First of all, the evaluation of the coe—cients ~{ deflnitely can be computerized
and there is some experience of doing this. See our comments after formula (A.15)
in Appendix below.

There is no problem with computer difierentiation, i.e., with deriving higher order
versions of formulas (3.2){(3.4) and (4.2){(4.3). Of course a computer can substitute
a polynomial into another one and group similar terms. A little bit more problematic
is the computer canceling of terms caused by the skew-symmetry of curvature tensors.
We flrst have done such a canceling in formula (3.5) and then in a number of formulas
of Section 4.

Probably, the main problem of the computerization relates to higher order analo-
gies of (4.23) and (4.24). Recall that these relations are proved with the help of
the Bianchi identity. There is an inflnite sequence of Bianchi identities for higher
order covariant derivatives of the curvature tensor which imply many relations be-
tween higher order curvature invariants. In author’s opinion, this subject needs some
theoretical investigation before the computerization.

Finally, our arguments based on Pascal’s recurrent formula (5.11) are general
enough to compute higher order algebraic invariants of A- and R”.

Appendix. Geometric symbol calculus

For reader’s convenience, we summarize here main deflnitions and facts of geometric
symbol calculus which are used in this paper. See [3] for proofs.

For a vector bundle V over a manifold M and for m 2 R, the space of symbols
SM(FM; V) of order = m consists of all smooth functions a: M ¥ V such that
a(x;») 2 Vy for (x;») 2 P'M and the estimate

jefie"a(x; »)j = Crgin (1 + ppj)m i (x 2 K)

holds in any local coordinate system for any multi-indices fi; fl and for any compact
K % X contained in the domain of the system.

Let now (M; r) be a manifold with a flxed symmetric connection, (V; rV) be a
vector bundle with connection over M, and W be a second vector bundle over M.
Given a symbol a 2 S™(F"M; Hom(V; W)), we say that a linear continuous operator

A=a(x; jir):Cg(v) 1 D'(W)
belongs to ““™(M; r;V; W) and has the geometric symbol a if the Schwartz kernel

of A is smooth outside the diagonal and, for every point x 2 X, there exists a
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neighborhood U of x such that
Z Z

Au(x) = (2.)i" e VTa(x; ») ISPV u(exp, V) dvd» (A:1)
M TuM

for any section u 2 C1(V) with suppu % U. Here hv;»i means the canonical pairing
TyX £ F X ¥ R, dv and d» are dual densities on T, X and F; X respectively, and
x ¥ Vexp v ¥ Vy is the parallel transport along the geodesic t ® exp,v which
is determined by the connection V. Note that the integrand a(x;»)Jx "< u(exp,v)
belongs to the vector space Wy, so the integral is well deflned. There is no ambiguity
in (A.1) since the product dvd» is uniquely determined. Observe that no coordinate
system participates in the deflnition.
the symbol depends polynomially on », a(x;») = i af(x)»", then a(x; jir)
= jjem @i () (i ir)f where (jir)" is the symmetrized covariant derivative on V .
We are going to present the formula that expresses the geometric symbol of the
product of two pseudodifierential operators through symbols of the factors. To this
end, given a bundle (V; r") with a connection, we introduce polynomials R (x;») 2
C1(FP"M;End(V)) by the equalities

GiNGIn"=RMM(x; jir): (A:2)

Let .. : M ¥ M be the cotangent bundle and (X be the bundle of (r;s)-
tensors. The pull-back fIif(M;V) = = (V > ;M) is a vector bundle over "M which
is called the bundle of E-valued semibasic (r; s)-tensors. A connection rV onV allows

h
us to deflne the horizontal derivative r : CT(flf(M;V)) ¥ CL(fIf,,(M;V)): that
commutes with the vertical derivative - = @, : CTHL(M;V)) § CLEIII(M; V).

Theorem A.1. Let (M;r) be a manifold with a symmetric connection, (V;r")
and (W; r'v) be two vector bundles with connections, and Z be a third vector bundle
over M. Let one of two operators A = a(x; jir) 2 “™M(M;r;W;Z) and B =
b(x; jir) 2 ““M2(M; r;V;W) be properly supported. Then the product C = AB
belongs to ““™*M2(M; r~; V; Z) and the full geometric symbol c(x;») of C is expressed
through a(x;») and b(x;») by the asymptotic series

X X .T[
C(X; ))) >» fi“;/"ﬁ il Ill (i i:")ﬂ :" b¢%0fiif|; ; (A3)
fi ) fl; '
ig® _ g N : gt .

where o = fichi i are the binomial coe—cients with ;& 0 only for fl = fi; and
hosi-r (X; ») are polynomials expressed through polynomials (A.2) by the formula

----fiﬂflﬂ-__ .

i = (i 1)t (j1)-1H w1, R0
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Compared with [3], we have slightly changed the notation for the coe—cients that
are denoted by %™ in [3]. Let R be the curvature tensor of r and R be the curvature
tensor of rv. Every function %4 is a homogeneous polynomial of degree jfij + jflj
in the variables R; R; r, and » if the degree of homogeneity of R and R is equal to
two and the degree of homogeneity of ¥ and » is equal to one. The degree of .5 in
» satisfy the estimate

deg, kri;n = minfjfij; jflj; (fij + jflj)=3g: (A:4)

There exists an e—cient procedure for evaluating these polynomials based on the
commutator formula for covariant derivatives, but the volume of calculations grows
rapidly with jfij+jflj. To write down some of these polynomials, we need the following
correspondence between multi-indices and tensor indices. For a multi-index fi =

(};{_z'; ’f:{z; {2
fi1 fio fin
for the symmetrization in (ij :::K).
Several flrst polynomials %y. are as follows (I is the identity operator):

Moo =1, fi:o = %o:s =0 for jfij > 0; (AD)

Tonj i:hii = i%Rjk; (A:6)

Ponjishkti = 0 %(Rﬁu + Rl i % (iR + (I IMiRj); (A7)

Pnjkicnti = i %(R})u( ;;I- RR; )7l i % ((iin)jR + (i irkRj); (A.8)

Honizhkimi = % (k|ml 2(i ir)kRﬂm»M i Girk(iimMRjm + REU Emp (A.9)
1

Fnjiainmi = 7 (K1) 2(i iRl i 3(iiN;(iiNkRim i Rj,Rip 5 (A10)

1 . i ) .
Honjicizhimi = 5 (k) (Im) 5(iin);Rim»pl +(i'r)IRkam»p| A
i3(i Ir)_](i ir)|ka + 2Rp Rkp + RJPHRpm + 3R]|ka . (All)

Imj

The author derived these formulas by manual calculations. Later V. Djepko [1] com-
puted % for jfij + jflj = 5 but only in the scalar case, i.e., when R = 0. He used
MAPLE in his calculations. We will need the following two of his results:

+

1 ..
Tonijkihimi = i3—0 (ijk) (Im) 27"inka+7ri'RJPkm+2r“R}3km (A:12)
i 4R?legkm i 12R?jIR|Pnkq i 16R?imR;?kq Pp;
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T
1 ..
Tonictizhmi = T @ijkl) i 9rRE,, + 7R}

klm ijm

Rﬁlq p: (A:13)

Let %og% be the homogeneous in » part of degree p of the polynomial %s.q. Being valid
in the scalar case, (A.12) and (A.13) imply the validity of formulas

+

1 ..
%uf(lgi)ki;hlmi =1 % (IJ k) (lm) 27 rij Ri)km + 7|"i|RJPkm + 2r|iRJPkm (A14)
i ARG RN i 12R{j R 1 16RE R »pl + 0075
g (1) _1 T i- p q p- .
thijk,i;hmi =15 (jkl) i IRy, + TR{jmRiiq 2l + 100 (A:15)

in the general case, where dots stand for some terms linearly depending on R.
Indeed, observe that », always comes to %ri.s together with R, i.e., as a product
RErs7p. Therefore extra terms on (A.14) and (A.15) consist of monomials of the form
a’”™(R; R; rRA.¢»p, where a™™(R; R; r) has the second degree in (R;R; r). So, it
must be linear in R.

As Djepko states in his PhD thesis, no modern computer is powerful enough to
compute . for jfij + jflj = 6. We are more optimistic. Probably, some progress
can be achieved either by improving the algorithm or creating some special soft wear.
Indeed, any universal soft wear like MAPLE is far of the optimal usage of computer
resources. Observe that, to evaluate ~{, we need to know tosi-r for jflj = 2 only. Most
probably, a fast algorithm can be found for computing %s.5x (jflj = 2) which does not
refer to M. with jflj > 2.

M. Skokan [4] computed leading terms of % for jfij + jflj = 6. From his results,
we need the formula

2 ..
%Oﬁizj)kli;hpqi 3 (ijKD) (pa)(RijpRkig?r»s)1: (A:16)

Again, Skokan derived this formula in the scalar case only. But the same arguments
as above show the validity of the formula in the general case.

Finally, we write down some of polynomials P (p = 0;1;2) that participate in
the recurrent formula (2.11). The following formulas are obtained by substituting
values (A.5){(A.16) into the deflnition (2.8) of ~{P_ Dots stand for some extra terms
depending linearly on R.

O =9 “W=0 “B=0 (A:17)
2 1
-(0) — e . - N .
i — 0+ T = §Rip»p| i §Rip»p, it — 0; (A:18)
-0 _1 qu_ R 4 -2 _ -1R N ql. Alg
hiji — zg iPFRjg e i = EgRipie? (A:19)
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. 2 ..
i = 5 (KD Rigiq + 4RpijrRigg )™ + 11 (A:21)
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