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Abstract:We consider a computable model of functionals of �nite
types used in Montague semantics to represent grammar categories
in natural language sentences. The model is based on the notion
of Σ-predicates of �nite types in admissible sets introduced by
Yu.L.Ershov.

Keywords:Montague semantics, functionals of �nite types, generalized
computability, Σ-predicates, Σ-operators.

1 Introduction

Type theory and functionals of �nite types are essentially and fruitfully used in
Montague intensional logic for formalizing the basic grammar categories of natural
languages. In Montague original works, as well as in works of other researchers in
this area of mathematical linguistics, to the authors' knowledge, the complexity
issues and algorithmic aspects of objects and constructions of this theory were
not considered so far. The functionals of �nite types (i.e., functions, functions on
functions, etc.) are complex objects and hard to be presented constructively in a
way which allows possible applications in (for example) ontological models from
computational linguistics.
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Our research, being purely theoretical and based on notions and methods from
generalized computability and Ershov-Scott theory of domains and approximation
spaces, is aimed to describe some algorithmic properties of these objects. This work
continues publications [10, 11, 2] and forthcoming article [13].

In this paper, we present two models of Montague intensional logic. Since they
are constructed within the framework of Σ-de�nability in admissible sets proposed
by Yu.L.Ershov, these models can be regarded as e�ective or computable in a
generalized sense. The di�erences between the models is in the de�nition of denotation
spaces for the basic types of entities and truth values. At �rst, the simplest possible
variant of these spaces is presented. The second model with the ontological space
for entities with partial information is brie�y described at the end of the paper and
studied with more details in [2].

2 Basic Notions

2.1. Montague Intensional Logic. Let e, t and s be some �xed symbols used,
correspondingly, as names for basic types of entities and truth values, and for
marking an intensional shift, i.e. relativization to a state or situation.

De�nition 1. The set TypesIL is de�ned as follows:

• t ∈ TypesIL, e ∈ TypesIL;
• if a ∈ TypesIL and b ∈ TypesIL then (a → b) ∈ TypesIL;
• if a ∈ TypesIL then (s → a) ∈ TypesIL.

The language of intensional logic IL (see [3, 7, 8]) contains countably many
constants of any type a ∈ TypesIL and countably many variables of each type
a ∈ TypesIL.

A model of intensional logic IL is a quadruple ⟨A,W, T,≤, F ⟩ such that A,W, T
are nonempty sets, ≤ is a linear order on T , F is a function de�ned on the set of
constants of IL as described below. Sets W and T correspond to the set of possible
worlds and time moments correspondingly.

De�nition 2. The set Dτ of possible denotations of type τ ∈ TypesIL is de�ned
by induction on complexity of τ :

• De = A, Dt = {0, 1};
• D(a→b) = DDa

b (the set of functions from Da to Db);

• D(s→a) = DW×T
a (the set of functions from W × T to Da).

We denote by Sa the set D(s→a). Function F de�nes for each constant of type
a some element from Sa which is called its intension. Elements from Da are called
extensions of type a.

Finite types from de�nition 1 are used to represent grammar categories (parts of
speech) of natural languages. Some correspondences between categories and types
are listed in Table 1.

For example, proper names correspond to the type ((s → (e → t)) → t) � �property
of being a property� (or the set of properties true for the individual with this name).
Here we do not consider one of the most complex cases, intensional transitive verbs
with the type ((s → ((s → (e → t)) → t)) → (e → t))).

Extension (the set of denotations) of type a is the set of possible values of the
grammar category interpreted by type a in a model of intensional logic. Correspondingly,
intension of type a is a function from W × T to the extension of type a.
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Table 1. Categories and types of some expressions

Category Grammar equivalent Corresponding type Basic expressions
e no e no
t sentences t no
IV intransitive verbs (e → t) walk, talk
CN common nouns (e → t) man, woman
TV extensional transitive verbs (e → (e → t)) love, �nd
CN/CN extensional adjectives ((e → t) → (e → t)) tall, young
CN/CN extensional adverbs ((e → t) → (e → t)) rapidly, slowly
T noun phrases and proper names ((s → (e → t)) → t) John, ninety, he
t/t sentence determinants ((s → t) → t) necessarily, possibly
IV/t connective verbs ((s → t) → (e → t)) believe, assert

2.2. Hereditarily Finite Superstructures. Hereditary �nite superstructures
are the �simplest� examples of models of theoryKPU proposed by S.Kripke, R.Platek,
J.Barwise and Yu.L.Ershov for studying generalized computability via Σ-de�nability
in admissible sets (see [1, 6, 12]).

By ω we denote the set of natural numbers. For arbitrary set M , we construct
the set HF (M) of hereditarily �nite sets over M as follows:

HF0(M) = ∅;
HFn+1(M) = Pω(M ∪HFn(M)), n < ω
(here Pω(X) is the set of all �nite subsets of X);
HF (M) =

⋃
n<ω

HFn(M).

If M is a structure of some relational signature σ then one can de�ne on M ∪
HF (M) a structure HF(M) of signature σ′ = σ ∪ {U,∅,∈} (U,∅,∈ are some
symbols not in σ) with the following interpretation of signature symbols:

UHF(M) = M ;
PHF(M) = PM, P ∈ σ;
∅HF(M) = ∅ ∈ HF0(M);
∈HF(M)=∈ ∩((M ∪HF (M))×HF (M)).

A class of ∆0-formulas of signature σ′ is the least one containing atomic formulas
which is closed under ∨, ∧, →, ¬ and bounded quanti�ers ∀x ∈ y and ∃x ∈ y
(∀x ∈ y φ and ∃x ∈ y φ are abbreviations for ∀x(x ∈ y → φ) and ∃x(x ∈ y ∧ φ)
respectively).

A class of Σ-formulas of signature σ′ is the least one containing ∆0-formulas
and closed under ∨, ∧, bounded quanti�ers ∀x ∈ y, ∃x ∈ y, and ∃x. As usual, a
set is called Σ-de�nable if it is de�nable by some Σ-formula with parameters, and
∆-de�nable if it and its complement are Σ-de�nable.

2.3. Ershov-Scott Functional Spaces. To construct an e�ective model of
Montague intensional logic we apply the domain theory proposed by D.S. Scott
[9] and the theory of functional spaces of �nite types proposed by Yu.L. Ershov
[4, 5, 6]. The de�nitions below are from [6].

Let A be a model of KPU (see [6]). If a ∈ A then p∗l a = {b | ∃c(⟨b, c⟩ ∈ a)},
p∗ra = {b | ∃c(⟨c, b⟩ ∈ a)}. If B ⊆ A then B∗ = {b | b ⊆ B and b ∈ A}.

The notion of e�ectively presented functional space is based on the general
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De�nition 3. Quadruple B = ⟨B,≤, Cons,⊔⟩ is called an f -base on A (see [4, 5])
if the following holds:

1) B is a ∆-de�nable subset of A;
2) ≤ is a ∆-de�nable preorder on B;

let [B] be the quotient of set B by the equivalence relation ≡ induced by
the preorder ≤ (b0 ≡ b1 ⇔ b0 ≤ b1 and b1 ≤ b0); as usual, [b] denotes
the element of [B] which is the equivalence class of b ∈ B; if C ⊆ B then
[C] = {[b] | b ∈ C}; we also use ≤ to denote the preorder induced on [B] by
the original preorder ≤;

3) Cons is a ∆-de�nable subset of B∗ \ {∅}, and for any b∗ ∈ B∗ holds

b∗ ∈ Cons ⇔ (∃b ∈ B)(∀b
′
∈ b∗)(b

′
≤ b);

4) ⊔ : Cons → B is a Σ-de�nable function such that [⊔b∗] for any b∗ ∈ Cons
is the least upper bound of [b∗] ⊆ [B] in ⟨[B],≤⟩.

De�nition 4. Let B0 = ⟨B0,≤0, Cons0,⊔0⟩ and B1 = ⟨B1,≤1, Cons1,⊔1⟩ be
some f -bases on A. A direct product B1×B2 of B0 and B1 is the f -base ⟨B0×B1,≤
, Cons,⊔⟩, where ≤, Cons and ⊔ are de�ned as follows:

1) ⟨b0, b1⟩ ≤ ⟨b′0, b
′

1⟩ i� b0 ≤0 b
′

0 and b1 ≤1 b
′

1 for every b0, b
′

0 ∈ B0 and every

b1, b
′

1 ∈ B1;
2) b∗ ∈ Cons i� p∗l (b∗) ∈ Cons0 and p∗r(b∗) ∈ Cons1 for every b∗ ∈ (B0 ×B1)

∗;
3) ⊔b∗ ⇋ ⟨⊔0p

∗
l (b∗),⊔1p

∗
r(b∗)⟩ for every b∗ ∈ Cons.

In case the set Cons of mutually consistent fragments (approximations) should
be as large as possible, we need

De�nition 5. Quadruple B = ⟨B, b0,≤,⊔⟩ is called an f∗-base on A if
⟨B,≤, B∗ \ {∅},⊔⟩ is an f -base on A, [b0] is the least element in ⟨[B],≤⟩ and
⊔∅ = b0.

In general, the range (the set of possible values) of a functional can be arbitrary,
so the notion of f∗-base is used in the following

De�nition 6. Let B0 = ⟨B0,≤0, Cons0,⊔0⟩ be an f -base,
B1 = ⟨B1, b1,≤1,⊔1⟩ be an f∗-base. A functional product F (B0,B1) of f -base B0

and f∗-base B1 is the f∗-base ⟨(B0 ×B1)
∗, ∅,≤,⊔⟩, where ≤ and ⊔ are de�ned as

follows:

1) f0 ≤ f1 i� ∀b0 ∈ p∗l f0(⊔1{b1 | ∃b
′

0 ∈ p∗l f0(b
′

0 ≤0 b0 and ⟨b′0, b1⟩ ∈ f0)} ≤1

≤1 ⊔1{b1 | ∃b
′

0 ∈ p
′

lf1(b
′

0 ≤0 b0 and ⟨b′0, b1⟩ ∈ f1)}) for f0, f1 ∈ (B0 ×B1)
∗;

2) ⊔f∗ ⇋ ∪f∗ for every f∗ ∈ ((B0 ×B1)
∗)∗.

De�nition 7. For an f -base B = ⟨B,≤, Cons,⊔⟩, the family IΣ(B) of Σ-ideals in
B consists of nonempty Σ-de�nable subsets C ⊆ B such that

1) from c ∈ C, b ∈ B, b ≤ c it follows that b ∈ C;
2) from c ∈ C∗ it follows that c ∈ Cons and ⊔ c ∈ C.

We de�ne a topology on the set IΣ(B) by �xing the basis

Vb ⇋ {C |C ∈ IΣ(B), b ∈ C}, b ∈ B.

The set IΣ(B) together with the topology speci�ed above is called the space of
Σ-ideals of f -base B. The space IΣ(B) is a topological T0-space.
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Let B0 be an f -base and let B1 be an f∗-base. For any ideal I of f -base
F (B0,B1) we can de�ne the continuous function fI : IΣ(B0) → IΣ(B1) as follows.
Let I0 ∈ IΣ(B0). We de�ne

fI(I0) ⇋ {b1 | b1 ∈ B1, (∃c∗ ∈ I)(∃b0 ∈ I0)∃b
′

1(b1 ≤1 b
′

1 and ⟨b0, b
′

1⟩ ∈ c∗)}.

If {⟨b0, b1⟩} ∈ I, b0 ∈ I0, then b1 ∈ fI(I0).
The mapping I → fI from IΣ(F (B0,B1)) to C(IΣ(B0), IΣ(B1)) (the set of all

continuous functions from the space IΣ(B0) to the space IΣ(B1)) is injective.
To introduce the simplest example of spaces for entities and truth values, let

A = ⟨A,=, P1(A),∪ ↾ P1(A)⟩, where P1(A) ⇋ {{a} | a ∈ A}. This quadruple is
an f -base with IΣ(A) = P1(A). Also, let α be an arbitrary ordinal in A and let
Bα = ⟨α, ∅,⊆,∪ ↾ α⟩. This quadruple is an f∗-base with IΣ(Bα) = (α + 1) \ ∅.
Further on we consider the case α = 2.

De�nition 8. The set of functional types Typesf together with its proper subset
PTypesf are de�ned as follows:

1) o ∈ Typesf \ PTypest, B ∈ PTypesf ⊆ Typesf ;
2) if τ0, τ1 ∈ Typesf (PTypesf ) then (τ0 × τ1) ∈ Typesf (PTypesf );
3) if τ0 ∈ Typesf , τ1 ∈ PTypesf then (τ0 → τ1) ∈ PTypesf .

De�nition 9. For every type τ ∈ Typesf , the f -base Fτ is de�ned by induction
on the complexity of τ :

1) Fo ⇋ A, FB ⇋ B2;
2) F(τ0×τ1) ⇋ Fτ0 ×Fτ1 ;
3) F(τ0→τ1) ⇋ F (Fτ0 ,Fτ1).

If τ ∈ PTypesf then Fτ is an f∗-base.

De�nition 10. By a Σ-predicate of type τ ∈ Typesf on A we mean an arbitrary
element of IΣ(Fτ ).

The propositions below easily follow from the de�nitions. Here Σ(A) denotes the
set of all Σ-de�nable subsets of A.

Lemma 1. For any n > 0 there is a natural bijective correspondence between Σ-
predicates of type on → B and n-ary Σ-predicates on A.

Proposition 1. A mapping F : Σ(A) → Σ(A) is a restriction of a Σ-operator
if and only if F is continuous with respect to the strong topology and there is a
Σ-function f : A → A such that F (Qu,a) = Qu,f(a) for all a ∈ A.

Proposition 2. For a family S ⊆ Σ(A) the following are equivalent:

(1) S is represented by a Σ-predicate of type ((o → B) → B);
(2) there is a Σ-formula Φ(P+) of signature σ ∪ ⟨P 1⟩ such that

S = {Q |Q ∈ Σ(A), ⟨A, Q⟩ ⊨ Φ(P )}.

Proposition 3. There is a natural bijective correspondence between Σ-predicates
of type ((o → B) → (o → B)) and unary Σ-operators.
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3 Σ-predicates of Finite Types in HF(R) and Intensional

Logic

For arbitrary model A of KPU , the simplest example of spaces for entities and
truth values are the f -base

A = ⟨A,=, P1(A),∪ ↾ P1(A)⟩
and the f∗-base

B2 = ⟨2, ∅,⊆,∪ ↾ 2⟩.
Further on, we restrict ourselves to the case A = HF(R), where R is the ordered
�eld of real numbers. This choice is motivated by the fact that the reals are very
natural to use for representing the scale of time and for coding. Let W = P1(R).
We also �x the f -base

W = ⟨W,=, P1(W ),∪ ↾ P1(W )⟩.
The set of ideals is de�ned to be the set of singletons from W , i.e. P1(P1(R)).

Singletons fromHF(R) (Σ-ideals of f -base A) correspond to basic entities, objects
of type e. Real numbers (urelements) represent possible worlds. In particular, each
possible world can be considered as a substructure of the whole structure with some
partial information about the universe.

We give analogues of de�nitions 8 and 9.

De�nition 11. The set Types together with its proper subset PTypes are de�ned
as follows:

1) e ∈ Types \ PTypes, t ∈ PTypes;
2) if a ∈ Types and b ∈ PTypes, then (a → b) ∈ PTypes;
3) if a ∈ PTypes then (s → a) ∈ PTypes.

De�nition 12. For every a ∈ Types, the f -base Fa is de�ned as follows:

1) Fe ⇋ A, Ft ⇋ B2;
2) F(a→b) ⇋ F (Fa,Fb);
3) F(s→a) ⇋ F (W,Fa).

For every type a ∈ Types, Σ-predicates of this type are introduced by De�nition
10.

De�nition 13. The set of possible denotations Dτ of type τ ∈ Types is the set of
all Σ-predicates of type τ .

Note that A is not precisely an f∗-base (there is no minimal element in A, but
A∗ can be considered as Cons). Nevertheless, we de�ne a functional product

F(s→e) ⇋ F (W,Fe).

Since in HF(R) holds the uniformization property [12], for every Σ-ideal I of type
(s → e) there is a corresponding (partial) Σ-function fI : P1(R) → A. Hence the
following is true:

Lemma 2. There is a natural bijective correspondence between Σ-predicates of type
(s → e) and Σ-functions from P1(R) to A.

As a corollary of Lemma 1 and Lemma 2 we get the following

Lemma 3. There is a natural bijective correspondence between Σ-predicates of type
(s → t) and unary Σ-predicates on P1(R).
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Proposition 4. For a family S ⊆ Σ(P1(R)) the following are equivalent:

(1) S is represented by a Σ-predicate of type ((s → t) → t);
(2) there exists a Σ-formula Φ(P+) of signature σ ∪ ⟨P 1⟩ such that

S = {Q |Q ∈ Σ(P1(R)), ⟨A, Q⟩ ⊨ Φ(P+)}.

We obtain the correspondence for type ((s → t) → (e → t)) analogous to
Proposition 3.

Lemma 4. There is a natural bijective correspondence between Σ-predicates of type
((s → t) → (e → t)) and unary Σ-operators on A.

Proof. If I ∈ IΣ(F (W,B2)), by Lemma 3 we get that I can be uniquely constructed
from some Q ∈ Σ(P1(R)). We denote I = IQ and assume that elements from
IΣ(F (W,B2)) are of the form IQ for a suitable Q ∈ Σ(P1(R)). In the same way (by
Lemma 1), elements from IΣ(F (A,B2)) are of the form IQ for a suitable Q ∈ Σ(A).

With any Σ-predicate I of type ((s → t) → (e → t)), a continuous mapping
fI : IΣ(F (W,B2)) → IΣ(F (A,B2)) is naturally associated. Hence for fI there is
a unique mapping FI : Σ(P1(R)) → Σ(A) such that for any Q ∈ Σ(P1(R)) holds
fI(I

′

Q) = I
′

FI(Q) for I
′

Q ∈ IΣ(F (W,B2)) and for I
′

FI(Q) ∈ IΣ(F (A,B2)).

Since FI is continuous with respect to weak topology because of the continuity
of fI , it is enough to show that the set

Γ∗
FI

= {⟨a, b⟩ | a ∈ A∗, b ∈ FI(a)}
is a Σ-subset.

For arbitrary a ∈ A∗, we have

b ∈ FI(a) ⇔ ∃c(c ∈ I
′

FI(a)
& ⟨b, 1⟩ ∈ c),

where

c ∈ I
′

FI(a)
⇔ ∃c∗∃b0∃b1(∀x ∈ b0(∃a0(x = ⟨a0, 0⟩) ∨ ∃a1(a1 ∈ a and

and x = ⟨a1, 1⟩)) and c ≤ b1 and ⟨b0, b1⟩ ∈ c∗).

Hence Γ∗
FI

is a Σ-subset and FI is a restriction of some Σ-operator.
On the other hand, if F : P (A) → P (A) is a Σ-operator then from the bijective

correspondence between the ideals of f∗-base F (F (W,B2), F (A,B2)) and continuous
mappings from IΣ(F (W,B2)) to IΣ(F (A,B2)), an operator F (more exactly, its
restriction on P1(R)) uniquely determines the ideal IF such that for all Q ∈
Σ(P1(R)) holds fIF (I

′

Q) = I
′

F (Q). □

Now we describe Σ-predicates of type (s → (e → t)). Let Φ(x, a) be a Σ-formula
with parameters, and let Q ⊆ A. We associate with Φ and with set Q the family

of subsets SQ
Φ = {ΦA(x, a) | a ∈ Q}. The set Q is called the set of indices of S and

denoted by Ind(S). If possible, we will omit indices Q and Φ.

Lemma 5. There is a natural bijective correspondence between Σ-predicates of

type (s → (e → t)) and families S
Ind(S)
Φ of Σ-subsets de�ned by Σ-formulas with

parameters, such that Ind(S) ⊆ P1(R) is a Σ-subset.

Proof. Let I be a Σ-predicate of type (s → (e → t)), I ⊆ (P1(R)× (A× 2)∗)∗. Let

Φ(x, a) ⇋ (∃f ∈ I)(∃f
′
∈ f)(plf

′
= a and ⟨x, 1⟩ ∈ prf

′
),

Ψ(x) ⇋ (∃f ∈ I)(∃f
′
∈ f)(plf

′
= x and ∃y(⟨y, 1⟩ ∈ prf

′
)).
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We de�ne Q = ΨA(x), SI = {ΦA(x,w) |w ∈ Q}. Then SI = SQ
Φ is a family of

Σ-subsets which is de�ned by a Σ-formula Φ(x, a) with a parameter, which set of
indices Ind(S)(= Q) ⊆ P1(R) is a Σ-subset.

Let S
Ind(S)
Φ be a family of Σ-subsets which is de�ned by a Σ-formula Φ(x, a)

with a parameter, which set of indices Ind(S) ⊆ P1(R) is a Σ-subset. Let

IS = ({⟨w, {⟨a, 0⟩ | a ∈ A}∗⟩ |w ∈ P1(R)}
⋃

⋃
{⟨w, ({⟨a, 0⟩ | a ∈ A} ∪ {⟨a, 1⟩ | a ∈ ΦA(x,w)})∗⟩ |w ∈ Ind(S)})∗.

We prove that this is a Σ-ideal. It is clear that IS ⊆ (P1(R)× (A× 2)∗)∗ and that
condition 2 for ideals is satis�ed. Check condition 1: let f ∈ IS , g ∈ (P1(R)× (A×
2)∗)∗ and g ≤ f . We need to show that in that case g ∈ IS . For this, it is enough
to show that

g ⊆ {⟨w, {⟨a, 0⟩ | a ∈ A}∗⟩ |w ∈ P1(R)}
⋃

⋃
{⟨w, ({⟨a, 0⟩ | a ∈ A} ∪ {⟨a, 1⟩ | a ∈ ΦA(x,w)})∗⟩ |w ∈ Ind(S)}.

Let w /∈ Ind(S) and there is an a0 such that ⟨w, a0⟩ ∈ g. Since g ≤ f (and by
the de�nition of IS), from ⟨a1, ϵ⟩ ∈ a0 it follows that ϵ = 0. Hence

⟨w, a0⟩ ∈ {⟨w, {⟨a, 0⟩ | a ∈ A}∗⟩ |w ∈ P1(R)}.
Let w ∈ Ind(S) and there is an a0 such that ⟨w, a0⟩ ∈ g. Let ⟨a1, ϵ⟩ ∈ a0. If ϵ = 0
then ⟨a1, ϵ⟩ ∈ {⟨a, 0⟩ | a ∈ A}. On the other hand, if ϵ = 1, then since g ≤ f there
exists b such that ⟨w, b⟩ ∈ f and ⟨a1, 1⟩ ∈ b. By the de�nition of IS we get that
⟨a1, ϵ⟩ ∈ {⟨a, 1⟩ | a ∈ ΦA(x,w)}. Hence

g ⊆ {⟨w, {⟨a, 0⟩ | a ∈ A}∗⟩ |w ∈ P1(R)}
⋃

⋃
{⟨w, ({⟨a, 0⟩ | a ∈ A} ∪ {⟨a, 1⟩ | a ∈ ΦA(x,w)})∗⟩ |w ∈ Ind(S)}

and g ∈ IS .

Using the correspondences described above we can get for any family S
Ind(S)
Φ of

Σ-subsets that S
Ind(S)
Φ = SIS . On reverse, for any Σ-predicate I of type (s → (e →

t)) we get that I = ISI
. □

Corollary 1. There is a natural bijective correspondence between Σ-predicates of

type (e → (e → t)) and families S
Ind(S)
Φ of Σ-subsets de�ned by Σ-formulas with

parameters such that Ind(S) ⊆ A is a Σ-subset.

Remark: objects of type (s → (e → t)) and (e → (e → t)) can also be considered
as binary Σ-predicates (in case of type (s → (e → t)) they are subsets of P1(R)×A).
This is equivalent to the correspondence described above and will be also convenient
to use.

The set of all families described in Proposition 5 is denoted by Σ
′
(A).

Using the proof of Proposition 2 we describe Σ-predicates of type ((s → (e →
t)) → t): they correspond to de�nable families of families of Σ-subsets obtained
above.

We use the following notation: if S
Ind(S)
Φ ∈ Σ

′
(A) then

CS = {⟨w, a⟩ : w ∈ Ind(S), a ∈ (ΦA(x,w))∗}.

Lemma 6. For a family K ⊆ Σ
′
(A) the following are equivalent:

(1) K corresponds to a Σ-predicate of type ((s → (e → t)) → t);
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(2) there is a Σ-formula Φ(P+) of signature σ ∪ ⟨P 1⟩ such that

K = {S |S ∈ Σ
′
(A), ⟨A, CS⟩ ⊨ Φ(P+)}.

Proof. Let I be a Σ-predicate of type ((s → (e → t)) → t), I ⊆ ((P1(R)× (A×
× 2)∗)∗ × 2)∗. We connect with I the family

KI = {S |S ⊆ Σ
′
(A), fI(IS) = 2}

(here IS is the Σ-predicate from Proposition 5).
(1 ⇒ 2). Let

K = {S |S ⊆ Σ
′
(A), ⟨A, CS⟩ ⊨ Φ(P+)},

where

Φ(P+) ⇋ ∃x∃y∃z[x ∈ I and ⟨y, 1⟩ ∈ x and (∀w ∈ p∗l y)(∀a ∈ p∗ry)(⟨w, a⟩ ∈ y →

→ ∃z
′
⊆ z(a = z

′
× {1} and P (⟨w, z

′
⟩)))].

We prove that K = KI .
(⊆). If S ∈ K then by the de�nition there are x ∈ I, y ∈ (P1(R) × (A × 2)∗)∗

and z ∈ A such that ⟨y, 1⟩ ∈ x and from ⟨w, a⟩ ∈ y follows that a = z
′ × 1 for

some z
′ ⊆ z. Besides, for all such pairs we have P (⟨w, z′⟩), hence y ∈ IS . By the

de�nition of mapping fI we get 1 ∈ fI(IS), and hence S ∈ KI .
(⊇) Let S ∈ KI . Then fI(IS) = 2 and there are c∗ ∈ I, b0 ∈ IS such that

⟨b0, 1⟩ ∈ I. De�ne the sets bw and b as follows:

bw = {a | ∃a0(⟨w, a0⟩ ∈ b0 and ⟨a, 1⟩ ∈ a0)}

for w ∈ p∗l b0,

b = {{w} × (bw × {1}) |w ∈ p∗l b0 and bw ̸= ∅}.
Let us show that {⟨b, 1⟩} ∈ I. Since {⟨b2, 1⟩} ≤ {⟨b2, 1⟩} ∪ c∗, it is enough to show
that {⟨b2, 1⟩}∪c∗ ∈ I. We show that {⟨b2, 1⟩}∪c∗ ≤ c∗. Since ⟨b0, 1⟩ ∈ c∗, it is enough
to �nd a pair ⟨b1, 1⟩ ∈ c∗ such that b1 ≤ b (the orders belong to corresponding f -
bases). We can take b1 = b0: if for some a, a0 it is true that ⟨w, a⟩ ∈ b0 and
⟨a0, 1⟩ ∈ a, by the de�nition of a0 ∈ bw there exists c such that ⟨w, c⟩ ∈ b and
⟨a0, 1⟩ ∈ c. Hence b0 ≤ b (and also b ≤ b0).

So, {⟨b, 1⟩} ∈ I. Now take

x = {⟨b, 1⟩}, y = b, z =
⋃

w∈p∗
l b0

bw.

Then in ⟨A, CS⟩ it is true that

x ∈ I and ⟨y, 1⟩ ∈ x and (∀w ∈ p∗l y)(∀a ∈ p∗ry)(⟨w, a⟩ ∈ y →

→ ∃z
′
⊆ z(a = z

′
× {1} and P (⟨w, z

′
⟩))).

Hence S ∈ K.
(2 ⇒ 1). Let K = {S |S ⊆ Σ

′
(A), ⟨A, CS⟩ ⊨ Φ(P+)} for some Σ-formula Φ(P+).

Let Φ∗(x) = [Φ(P+)]Px (this means that all atomic subformulas of kind P (y) are
substituted by y ∈ x). Prove �rst that

K = {S |S ⊆ Σ
′
(A),∃a(Φ∗(a) and a ⊆ CS)}.

Let Ψ(a, P+) = (Φ(P+) & a = ∅). Consider the operator

ΓΨ(Q) = {a ∈ A | ⟨A, S⟩ ⊨ Ψ(a, P+)}.
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Table 2. Intensional Logic Types and HF(R)

Category Grammar equivalent Type Object in HF(R)
e no e sets {a} for a ∈ HF(R)
t sentenses t no
IV intransitive verbs (e → t) unary Σ-predicates
CN common nouns (e → t) unary Σ-predicates
TV existential transitive verbs (e → (e → t)) binary Σ-operators
CN/CN existential adjectives ((e → t) → (e → t)) Σ-operators
CN/CN existential adverbs ((e → t) → (e → t)) Σ-predicates
T noun phrases ((s → (e → t)) → t) Σ-de�nable families

and proper names of binary Σ-predicates
t/t sentence determiners ((s → t) → t) Σ-de�nable families

of Σ-predicates on P1(R)
IV/t connective verbs ((s → t) → (e → t)) Σ-operators

For the corresponding Σ-operator FΨ such that for every Q ⊆ Σ(A) holds ΓΨ(Q) =
FΨ(Q), we have

FΨ(Q) = {a ∈ A | ∃y(y ⊆ Q and Ψ(a, y)}.
Hence for FΨ we have S ∈ K ⇔ FΨ(CS) = {∅}, and so

K = {S |S ⊆ Σ
′
(A),∃a(Φ∗(a) and a ⊆ CS}.

Now de�ne the ideal I as follows:

I = {c ∈ ((P1(R)× (A× 2)∗)∗ × 2)∗ | ∃a(Φ∗(a)∧

∧c ≤ {⟨{⟨w, b× {1}⟩ | ⟨w, b⟩ ∈ a}, 1⟩})}
(it is easy to check it is really an ideal). We show that K = KI .

(⊆). Let S ∈ K. Then there is an a such that a ⊆ CS and Φ∗(a). Let

c∗ = {⟨{⟨w, b× {1}⟩ | ⟨w, b⟩ ∈ a}, 1⟩}.

Then c∗ ∈ I, but

b0 = {⟨w, b× {1}⟩ | ⟨w, b⟩ ∈ a} ∈ IS ,

hence there are c∗ ∈ I and b0 ∈ IS such that ⟨b0, 1⟩ ∈ c∗. Henceforth, fI(IS) = 2
and S ∈ KI .

(⊇). Let S ∈ KI . Then fI(IS) = 2 and there are c∗ ∈ I and b0 ∈ IS such that
⟨b0, 1⟩ ∈ c∗. Since c∗ ∈ I, there is an a such that Φ∗(a) and

c∗ ≤ {⟨{⟨w, b× {1}⟩ | ⟨w, b⟩ ∈ a}, 1⟩}(= B).

Since B is a singleton and ⟨b0, 1⟩ ∈ c∗, we have

{⟨w, b× {1}⟩ | ⟨w, b⟩ ∈ a} ≤ b0.

Hence

{⟨w, b× {1}⟩ | ⟨w, b⟩ ∈ a} ∈ IS

and a ⊆ CS , that means that S ∈ K. □

All these correspondences are summarized in Table 2.
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3.1. Analysis of Natural Language Sentences. Consider some simple exam-
ples of English sentences by means of Σ-predicates of �nite types. Truth value of any
sentence is regarded relative to a possible world w ∈ P1(R). However, we consider
the simplest absolute case �rst.

According to Table 1, the proper name John has the type ((s → (e → t)) → t).
But the semantics of the sentence

(1) John walks.

is the same in case we consider John as an object of type e and in case we consider
it as an object of type ((s → (e → t)) → t). From the grammar point of view
the latter case is more appropriate: in sentences of kind �subject + predicate� the
subject is regarded as a functor which receives a predicate as an argument. This is
not so when John is considered as an object of type e.

Yet consider John as an object of type e (a set {j} for some j ∈ HF(R)), and
(intransitive) verb walk as an object of type (e → t) (unary Σ-predicate walk').
The truth value of this sentence is equivalent to the truth value of Σ-formula

{j} ∈ walk'

in HF(R).
Consider now the sentence

(2) John loves Mary.

As in the previous case, names John and Mary are considered as objets of type e
({j} and {m} respectively). Transitive verb love is considered as an object of type
(e → (e → t)), hence it is interpreted by some binary Σ-predicate love'. Hence the
truth value of this sentence is equivalent to the truth value of Σ-formula

⟨{j}, {m}⟩ ∈ love'

in HF(R).
In addition, consider the quanti�ed sentence

(3) Every �sh walks.

The common noun �sh is an object of type (e → t), that is, the set of all �shes, and
is denoted by �sh'. The quanti�er can be regarded from the usual point of view in
�rst-order logic: the truth value of sentence Every �sh walks is equivalent to the
truth value of formula

∀x(x ∈ �sh'→ x ∈ walk')

in HF(R). This, however, is not a Σ-formula. But from the point of the complexity,
checking the truth of this formula is a �nite search through the domain used by the
model.

Now we relativize our model via the concept of possible worlds and consider the
truth values of sentences (1) and (2) in a given possible world w ∈ P1(R). First we
look at sentence (1). Previous interpretations for John and walk remain the same,
but now for checking the truth value it becomes necessary to connect with objects
j and walk' their intensions, i.e., objects of types (s → e) and(s → (e → t)). These
are, correspondingly, a Σ-function ĵ : P1(R) → HF (R) and a binary Σ-predicate
ˆwalk' ⊆ P1(R) × (HF (R) ∪ R). The truth value of this sentence in world w is
equivalent to the truth value of Σ-formula (with a parameter)

⟨w,̂ j(w)⟩ ∈ˆwalk'
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in HF(R).
In the same way, the truth value of sentence (2) in possible world w is equivalent

to the truth value of Σ-formula (with a parameter)

⟨w,̂ j(w),̂ m(w)⟩ ∈ l̂ove'

in HF(R).

4 Ontological Models

In models described above, the space Dt of truth values consists of elements 0
and 1 with natural ordering (0 < 1). The intuition is that 0 means �the property
is not true now but probably will become true in the future�, while �1� means
�the property true now and forever�. One can consider a di�erent type of models
of intensional logic. The main di�erence is that these models use other spaces of
entities and truth values. Let

Dt = {0, 1,⊥,⊤}

and the ordering is de�ned as follows: ⊥ < 0, ⊥ < 1, 0 < ⊤, 1 < ⊤ while 0 and 1
are uncomparable. Intuitively, 0, 1 and ⊥ correspond to no, yes, and unknown. The
element ⊤ corresponds to inconsistency of data and is necessary for constructing
f∗-spaces. We set

De = (R ∪ {⊥})<ω.

In particular, (Dt)
<ω ⊆ De. Intuitively, every element from De is interpreted as

a tuple (sequence) of properties of this element. Properties can be discrete (in our
case, binary) and continuous, i.e. described by some measure. We assume that even
positions of elements from De correspond to binary properties (the values in these
positions belong to Dt and compared via the corresponding ordering), while odd
positions correspond to continuous properties (the values in these positions belong
to R∪{⊥} and compared as follows: ⊥ < a for all a ∈ R, a and b are uncomparable
for a, b ∈ R, a ̸= b).

The ordering on De is de�ned as follows: for α, β ∈ De, α ⩽ β if and only if the
length of the tuple α is less or equal to the length of the tuple β and α(i) ⩽ β(i)
for all i ⩽ lh(α).

As in models described previously, it is possible to interprete by Σ-de�nable
objects inHF(R) the corresponding objects (types) of intensional logic. For example,
a common noun �man� (of type (e → t)) can be interpreted by Σ-predicate
(α(human) = 1) ∧ (α(gender) = “M ′′) for some �xed in this model positions
human, gender ∈ ω . In the same way, an adjective �tall� (type (e → t) → (e → t))
can be interpreted by Σ-operator H such that, for example, α ∈ H(man) ⇐⇒
α(height) ⩾ 180, α ∈ H(woman) ⇐⇒ α(height) ⩾ 175, α ∈ H(chair) ⇐⇒
α(height) ⩾ 120 Again, height ∈ ω is some �xed position.

In our version of ontological models the scale of time is identi�ed with the ordered
set of real numbers: T = R. The set of possible worlds is identi�ed with the set of
natural numbers:W = N. Entities of world n are identi�ed with the tuples of length
n+1. The moment of time in which a given entity is described by the corresponding
tuples is identi�ed with the value of the leftmost position of these tuples.

The detailed description of this type of models can be given in the same way as
before and was presented in [2].
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5 Conclusion and Acknowledgements

The mathematical model of Montague semantics based on computable objects,
described in this paper, was presented in authors' talk at the workshop �Logical
Aspects of Computational Linguistics 2021�, Monpellier, France, December 13-
17, 2021. The authors are grateful for program and organizing committees of this
conference for the possibility to communicate our ideas and results for the community
of experts in mathematical and computational linguistics. The paper with our
results was accepted for the publication in the volume of conference proceedings
(not published due to some technical problems). We are happy to publish these
results here.
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