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Abstract. We present an approach to abstract computability based on
the notion of Σ-definability, and survey some results on effective model
theory which are obtained within this framework.

1 Introduction

We look at the computability over abstract structures via the formalism based on
the notion of Σ-definability in admissible sets and, in particular, in hereditarily
finite (HF) superstructures. HF-computability, as well as some other different
(yet equivalent) approaches to computability over abstract structures provide
a natural framework for considering “computability” (“effectiveness”) relative
to this structure. The survey of results on HF-computability in general can be
found in [ErshovPuzarenkoStukachev2011]. Here we present some of the results
focused (mostly) on effective model theory.

Considering the effectiveness of model-theoretical constructions, we first look
at the notion of interpretation of one structure in another, which seems to be
much older than model theory and probably as old as mathematics itself (for ex-
amples, one should think of numeral systems, geometries, fields, etc.). Classical
computable model theory studies interpretations and presentations of countable
structures in the standard model of arithmetics or, equivalently, in the least
admissible set HF(∅). So the notion of Σ-definability of a structure in HF-
superstructure over another structure is, on the one hand, an effectivization of
the notion of interpretability from model theory, and, on the other hand, a gener-
alization of the notion of constructivizability from computable (or constructive)
model theory. Moreover, the notion of Σ-degree of a structure turns out to be
well related with the notion of degree (in the sense of Turing or enumeration
reducibility) from classical computability theory, as well as with the notion of
degree spectra of a (countable) structure. So, the notion of Σ-degree, having an
? The research partially supported by the Russuian Foundation for Basic Research

(grants 06-01-04002, 08-01-00442 and 09-01-12140, 11-01-00688a), by the State Main-
tenance Program for the Leading Scientific Schools of the Russian Federation (grant
N.Sh.-3606.2010.1), and by the Lavrentjev grant for young scientists of the SB RAS
(dec. SB RAS N43 04.02.2010).



2

advantage of being defined for structures of arbitrary cardinality, is a natural
tool for measuring the (relative) complexity of a structure.

It turns out that many of important model-theoretical constructions are nat-
ural tools for studying effective model theory. We will mention, besides inter-
pretations, some other typical examples, including Skolem expansions, Marker’s
extensions, Fräıssé limits, indiscernibles, etc.

Being concerned to our particular approach based on Σ-definability in HF-
superstructures, we just mention some closely related approaches, such as search
computability [Moschovakis1969b], Montague computability [Montague1967], and
BSS-computability [BlumShubSmale1989,AshaevBelyaevMyasnikov1993]. It should
be noted that the notion of search computability, as well as the notion of ab-
stract computability in the sense of Montague, are equivalent (in accordance
with [Gordon1970]) to the notion of HF-computability.

The author would like to thank the organizers of the Effective Mathematics
of the Uncountable (EMU) series of workshops for the opportunity to present a
talk on the topics surveyed in the present paper.

2 Basic Definitions and Facts

By ω we denote the set of natural numbers. For arbitrary set M , we construct
the collection HF (M) of hereditarily finite sets over M as follows:

HF0(M) = ∅;
HFn+1(M) = Pω(M ∪HFn(M)), n < ω
(here Pω(X) is the collection of all finite subsets of X);
HF (M) =

⋃
n<ω

HFn(M).

For simplicity, we consider structures of relational signatures only, identifying
functions with their graphs. We consider at most countable signatures, usually
finite but always computable. We assume that each signature is equipped with
some fixed Gödel numbering of its (first-order) formulas.

If M is a structure of some relation signature σ then one can define on
M ∪ HF (M) a structure HF(M) of signature σ′ = σ ∪ {U,∅,∈} (U,∅,∈ are
some symbols not in σ) so that

UHF(M) = M ;
PHF(M) = PM, P ∈ σ;
∅HF(M) = ∅ ∈ HF0(M);
∈HF(M)=∈ ∩((M ∪HF (M))×HF (M)).

We will also assume that the signature of HF(M) contains a binary relational
symbol Sat2 interpreted as the satisfiability relation for the atomic formulas of
M, with respect to the fixed Gödel numbering. In case of finite signatures this
additional assumption is not essential.

A class of ∆0-formulas of signature σ′ is the least one containing atomic
formulas which is closed under ∨, ∧, →, ¬ and restricted quantifiers ∀x ∈ y
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and ∃x ∈ y (∀x ∈ yϕ and ∃x ∈ yϕ are abbreviations for ∀x(x ∈ y → ϕ) and
∃x(x ∈ y ∧ ϕ) respectively).

A class of Σ-formulas of signature σ′ is the least one containing ∆0-formulas
and closed under ∨, ∧, restricted quantifiers ∀x ∈ y, ∃x ∈ y, and ∃x.

A Σ1-formula is a formula of kind ∃uϕ0 where ϕ0 is ∆0-formula. It is known
that any Σ-formula is equivalent in the theory KPU (see [Barwise1975]) to some
Σ1-formula.

A Σ-predicate is a relation definable by some Σ-formula (possibly with pa-
rameters). A ∆-predicate is a Σ-predicate whose complement is also Σ. A partial
operation is called a (partial) Σ-function if its graph is Σ.

There is a useful result which presents the relationship betweenΣ-definability
and definability by infinitary computable formulas.

Theorem 1 ([Vaicenavichyus1989]). A predicate P ⊆ Mn is Σ-definable
in HF(M) iff there is a computable family ϕs(x̄, ȳ), s ∈ ω (x̄ = (x0, . . . , xk),
ȳ = (y0, . . . , yn−1)), of ∃-formulas and a k-tuple ā ∈ Mk such that, for any
b̄ ∈Mn,

b̄ ∈ P ⇐⇒ M |=
∨
s∈ω

ϕs(ā, b̄)

It is usually convenient to use in constructions not only the elements from
HF(∅) ⊆ HF(M), but also the elements from HF(N ), where N is isomorphic to
the standard model of arithmetic. To avoid confusion with ordinals from HF(∅),
we denote the domain of N and its elements as ω and n, n ∈ ω, respectively.
Since HF(N ) is constructivizable, it can be effectively defined in any hereditarily
finite superstructure.

In what follows, we use definitions and constructions from [Ershov1996].
For all n ∈ ω, κ ∈ HF(n)

(
n = {0, 1, . . . , n− 1}

)
, and x̄ ∈ Mn, we define

an element κ(x̄) ∈ HF(M) as follows. Define a mapping λx̄ : n → M as
λx̄(i) = xi, where x̄ = 〈x0, . . . , xn−1〉. The mapping λx̄ can be uniquely ex-
tended to λω

x̄ : HF(n) → HF(M) so that λω
x̄ (a0, . . . , ak) 


{
λω

x̄ (a0), . . . , λω
x̄ (ak)

}
for each set {a0, . . . , ak} ∈ HF(n). Then we put κ(x̄) 
 λω

x̄ (κ).
For every κ ∈ HF(n), we can effectively define a term tκ(x0, . . . , xn−1)

of signature 〈{},∪,∅〉 so that, for all elements x0
0, . . . , x

0
n−1 ∈ M , the equality

tκ(x0
0, . . . , x

0
n−1) = κ(x̄0) is valid.

Hereditarily finite superstructures are the “simplest” admissible sets, from
the set-theoretical point of view. Besides of this, Σ-definability in hereditarily
finite superstructures is one of the natural approaches for generalizing classical
computability theory on natural numbers to the case of computability over arbi-
trary structures. For the results on computability on admissible sets in general,
we refer the reader to [Barwise1975] and [Ershov1996].

3 Semilattices of Σ-Degrees of Structures

Theory of constructive (computable) models is one of the important research
areas of classical computability theory, as well as of model theory. Because of
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the evident cardinality limitations, in classical computable model theory only
countable structures are considered. The approach regarding generalized com-
putability as Σ-definability in admissible sets allows to consider structures with
arbitrary cardinality.

Hence, for a structure M the following problem naturally arise: to describe

– the structures Σ-definable in HF(M);
– the structures such that M is Σ-definable in their HF-superstructures.

Let us formalize the problems stated above. Let M be a structure of a finite
predicate signature 〈Pn1

1 , . . . , Pnk

k 〉 and let A be an admissible set. The following
notion is an effectivization of the model-theoretical notion of interpretability
of one structure in another, and also a natural generalization of the notion of
constructivizability of a (countable) structure on natural numbers.

Definition 1 ([Ershov1985]). M is Σ-definable in A if there exist Σ-formulas

Φ(x0, y), Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ1(x0, . . . , xn1−1, y),

Φ∗1(x0, . . . , xn1−1, y), . . . , Φk(x0, . . . , xnk−1, y), Φ∗k(x0, . . . , xnk−1, y),

such that for some parameter a ∈ A, and letting

M0 � ΦA(x0, a), η � ΨA(x0, x1, a) ∩M2
0

one has that M0 6= ∅ and η is a congruence relation on the structure

M0 � 〈M0, P
M0
1 , . . . , PM0

k 〉,

where PM0
i � ΦA

i (x0, . . . , xni−1) ∩Mni
0 for all 1 6 i < k,

Ψ∗A(x0, x1, a) ∩M2
0 = M2

0 \ ΨA(x0, x1, a),

Φ∗A
i (x0, . . . , xni−1, a) ∩Mni

0 = Mni
0 \ ΦA

i (x0, . . . , xni−1)

for all 1 6 i < k, and the structure M is isomorphic to the quotient structure
M0�η.

Remark 1. This definition can be naturally generalized to the case of structures
with infinite computable signatures. Namely, a structure M with a computable
predicate signature 〈Pn0

0 , Pn1
1 , . . .〉 is called Σ-definable in A if there exists a

computable sequence Φ(x0, y), Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ0(x0, . . . , xn0−1, y),
Φ∗0(x0, . . . , xn0−1, y), . . ., Φk(x0, . . . , xnk−1, y), Φ∗k(x0, . . . , xnk−1, y), . . . of Σ-
formulas and a parameter a ∈ A, which forms a Σ-definition of M in A, in
the sense of Definition 1.

Also, for a structure with an infinite computable signature, we assume that
some Gödel numbering of formulas of this signature is fixed. Σ-reducibility 6Σ

is defined as follows: for structures A and B, A 6Σ B if A is Σ-definable in
HF(B). We assume that the signature ofHF(B) contains a predicate symbol Sat2

interpreted by the satisfiability relation for atomic formulas in B, with respect
to a fixed Gödel numbering. In the case of structures with a finite signature this
assumption is not essential.
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Since, for the sets of natural numbers, Σ-definability in HF(∅) is equivalent
to classical computability, we get the following fact.

Proposition 1. Let M be a countable structure. The following are equivalent:

1) M is constructivizable;
2) M is Σ-definable in HF(∅).

For structures M and N, we denote by M 6Σ N the fact that M is Σ-
definable inHF(N). From the definition it follows that the relation 6Σ is reflexive
and transitive. We now look at the general properties of this relation, regarding
it as a kind of effective reducibility on structures.

For any infinite cardinal α, we denote by Kα the class of structures with
cardinality less or equal α.

As usual, preordering 6Σ generates on Kα a relation of Σ-equivalence: A ≡Σ

B if A 6Σ B and B 6Σ A. Classes of Σ-equivalence are called degrees of Σ-
definability, or Σ-degrees. The poset

SΣ(α) = 〈Kα/ ≡Σ ,6Σ〉

is an upper semilattice with the least element, which is the degree consisting of
computable structures. We denote the Σ-degree of a structure A by [A]Σ . The
notion of Σ-degree of a structure is invariant from the choice of a semilattice
SΣ(α), because all infinite structures of the same Σ-degree have the same car-
dinality. For any structures A,B ∈ Kα, [A]Σ ∨ [B]Σ = [(A,B)]Σ , where (A,B)
is the pair of A and B in model-theoretical sense.

For a structure A ∈ Kα and infinite cardinals β 6 α, γ > α, the sets

Iβ(A) = {[B]Σ |B ∈ Kβ , B 6Σ A}, Fγ(A) = {[B]Σ |B ∈ Kγ , A 6Σ B}

are, correspondingly, an ideal in SΣ(β) (principal for β = α) and a filter in SΣ(γ)
(principal for any γ > α). The sets Fγ(A) in semilattices SΣ(γ) are natural
analogues of the spectrum of a structure A. The sets Iβ(A) in semilattices SΣ(β)
consist of Σ-degrees of structures Σ-presentable over A.

A presentation of a structure M in an admissible set A is any structure C
which is isomorphic to M and whose domain C is a subset of A (relation =
is treated as a congruence relation on C, and it may differ from the standard
equality relation on C). In what follows, we will identify the presentation C (more
precisely, its atomic diagram) with some subset of A, fixing a Gödel numbering
of atomic formulas of the signature σM.

Definition 2. A problem of presentability of a structure M in A is the set
PrA(M) consisting of all possible presentations of M in A.

Denote by M the set Pr(M,HF(∅)) of presentations of M in the least admissible
set.

There exist natural embeddings of the semilattice D of Turing degrees and
the semilattice De of degrees of enumerability of sets of natural numbers into
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semilattice SΣ(ω) (and hence into any semilattice SΣ(α)) via the mappings
i : D → SΣ(ω) and j : De → SΣ(ω) defined below. These definitions show
that the notion of Σ-degree of a structure, which is total, i.e. defined for any
structure, no matter countable or not, is a natural generalization of the (partial)
notion of a degree of a countable structure, introduced in [Richter1981]. Hence,
we get that semilattices SΣ(α) extend in a natural way semilattices D and De.

Definition 3 ([Richter1981,Stukachev2007]). Let M be a countable struc-
ture. We say that M has a degree (e-degree) if there exists the least degree in
the set of T -degrees (e-degrees) of all possible presentations of M on natural
numbers.

Using the equivalence of “∀-recursiveness” and “∃-definability”, in the sense
of [Lacombe1964], [Moschovakis1969a], see also [AshKnightManasseSlaman1989],
[Chisholm1990], we get following result.

Theorem 2 ([Stukachev2007]). For a countable structure M, the following
are equivalent:

1) M has a degree (e-degree);
2) there exists a presentation C ∈ M which is a ∆-subset (Σ-subset) of HF(M).

We define mappings i : D → SΣ(ω) and j : De → SΣ(ω) in the following
way: for every degree a ∈ D, put

i(a) = [Ma]Σ , where Ma is any structure having degree a.

Similarly, for every e-degree b ∈ De, put

j(b) = [Mb]Σ , where Mb is any structure having e-degree b.

Lemma 1. The mappings i and j are well-defined: for any (e-)degree a there
are structures having (e-)degree a. Moreover, for any countable structures M
and N,

1) if M has (e-)degree a and M ≡Σ N, then N also has (e-)degree a;
2) if M and N have the same (e-)degree then M ≡Σ N.

(Notice, however, that the property of having a (e-)degree is not closed down-
wards w.r.t. 6Σ .) Usually, we just write a instead of i(a).

For a structure A, a Σ-jump of A is the structure

A′ = (HF(A), Σ-SatHF(A)),

where Σ-SatHF(A) denotes the satisfiability relation for the set of Σ-formulas in
HF(A). The definition of Σ-jump is persistent w.r.t. the Σ-equivalence: for any
structures A and B, from A ≡Σ B it follows that A′ ≡Σ B′. Hence, we may
assume that semilattices SΣ(α) are equipped with the jump operation.
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Remark 2. In a similar way the jump operation was introduced in [Baleva2006]
for the semilattice of s-degrees of countable structures. Also, in the same way
a notion of the jump of an admissible set with respect to various effective re-
ducibilities was introduced in [Morozov2004,Puzarenko2009].

The operation of Σ-jump agrees with the jump operations for Turing and
enumeration degrees w.r.t. the natural embeddings i and j: if a structure A has
a (e-)degree a, then the structure A′ has (e-)degree a′.

Proposition 2. The mappings i : D → SΣ and j : De → SΣ are embeddings
preserving 0, ∨ and the jump operation.

The existence of an embedding ofD in SΣ was first noted in [Khisamiev2004a].
The jump inversion theorem from the classical computability theory can also

be generalized to the case of the semilattices of Σ-degrees of structures.

Theorem 3 ([Stukachev2009,Stukachev2010]). Let A be a structure such
that 0′ 6Σ A. Then there exists a structure B such that

B′ ≡Σ A.

The proof uses Marker’s extensions in the similar form as proposed in
[GoncharovKhoussainov2004] and used in [Soskova2007,SoskovSoskova2009]. It
should be noted that relation of Σ-reducibility, being defined on structures of
arbitrary cardinality, in the case of countable structures can be viewed as the
strongest reducibility in the hierarchy of effective reducibilities on structures
[Stukachev2007], [Stukachev2008] (see Section 5). One of the weak reducibilities
in this hierarchy is the Muchnik reducibility. In [Soskova2007,SoskovSoskova2009],
the jump inversion theorem is proved for the semilattices of degrees of pre-
sentability of countable structures with respect to the Muchnik reducibility. As
a corollary of Theorem 3, we get the jump inversion theorem for all known
effective reducibilities on countable structures.

It follows from the definition of the Σ-jump that A ∨ 0′ 6Σ A′ for any
structure A. We say that a structure A is generalized low with respect to the
Σ-jump (in short, generalized Σ-low) if

A′ ≡Σ A ∨ 0′.

It turns out that the class of structures with a c-simple theory (i.e., model
complete, ω-categorical, decidable, and with a decidable set of atoms) constitutes
a series of examples (in arbitrary cardinality) of generalized Σ-low structures.

Theorem 4 ([StukachevTA]). For a structure A, if Th(A) is c-simple, then
A′ ≡Σ A ∨ 0′.

So, a jump of a structure A in the sense of [Montalban2009] is any expansion
(A, P0, P1, . . .), where P0, P1, . . . is a complete set of Πc

1-relations on A As an
example, one can always choose an expansion

A∗ = (A, P1, P2, . . .),
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where P1, P2, . . . is the list of all relations on A which are Π-definable in HF(A),
corresponding to some computable numbering Φ1, Φ2, . . . of all Π-formulas of
signature σ′A. As follows from the results on the equivalence of computable in-
finitary formulas and Π-formulas [Vaicenavichyus1989], A∗ is a jump of this
structure in the sense of [Montalban2009]. However, for a given structure there
can be many different jumps in this sense: for example, any dense linear order
is a jump of itself, see [Montalban2009]. We propose to call by a weak jump of
a structure any jump of that structure in the sense of [Montalban2009]. The
terminology we use is justified by the relationship between a weak jump of a
structure A and the Σ-jump of A. Exactly, there is

Proposition 3. For any structure A and any of its weak jumps, A∗,

A′ ≡Σ A∗ ∨ 0′.

Proof. Reducibility A∗ ∨ 0′ 6Σ A′ is evident from the the equivalence of com-
putable infinitary formulas and Π-formulas [Vaicenavichyus1989]. To prove the
reverse reducibility, we use notations from [Ershov1996]. Any Π-subset P ⊆
HF(A) can be represented in the form P = ∪κ∈HF(ω)Pκ, where, for any κ ∈
HF(ω), Pκ = {κ(a) |A |= Φκ(a)}, Φκ is a computable conjunction of ∀-formulas
of signature σ (with parameters c̄ ∈ A<ω), and {Φκ |κ ∈ HF(ω)} is a computable
family.

Consider an element κ(a) ∈ HF(A), where κ ∈ HF(ω) and a ∈ A<ω are
urelements. We have κ(ā) ∈ P if and only if A |= ∧n∈ω∀ȳnϕκ,n(c̄, ȳn, ā). Since
in HF(A∗) one can effectively (with 0′) find a Σ-formula equivalent to the Πc

1-
formula described above, we get that the relation Σ-SatHF(A) is ∆-definable in
HF(A∗) with 0′.

As it was already mentioned, the original definition from [Montalban2009] is
not quite precise, but it is precise in the sense that any two jumps of a given
structure are Σ-equivalent above 0′. Namely, exactly from the definition follows

Corollary 1. If B1,B2 are the weak jumps of a structure A then

B1 ∨ 0′ ≡Σ B2 ∨ 0′.

We mention the results on “Σ-universality” (i.e., universality w.r.t. the Σ-
equivalence) of the two classes of posets — graphs and lattices.

Proposition 4 ([StukachevTA]). For any structure A, there is an irreflexive
graph GA such that A ≡Σ GA.

Proposition 5 ([StukachevTA]). For any structure A, there is a lattice LA

such that A ≡Σ LA.

It should be noted that the class of linear orders is not Σ-universal (see the
results on local constructivizability below).
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4 Effective Self-Presentations of Admissible Sets

In Theorem 2, we have already seen examples of non-trivial effective self-pre-
sentations of admissible sets of kind HF(M), there M is a countable structure.
Namely, HF(M) has a ‘pure’ copy (i.e., a copy which is a subset of HF(∅)) as a
∆-subset (resp., Σ-subset) of HF(M) if and only if M have a degree (resp., an
e-degree). Now, we consider effective self-presentations of admissible sets which
are, in some sense, as close to the ground structure as possible.

In some cases, for a structures A and B one can say more than just state
the fact that A 6Σ B. For example, it is obvious that HF(A) 6Σ A for any A,
but, in case of the standard model of arithmetics N, much stronger result is true:
HF(N) is Σ-definable within N, not using the elements of the superstructure.

In particular, a natural additional restriction on Σ-definability of structures
in admissible sets is the restriction on the rank of elements used in this process.
To describe the situation formally, we now give some definitions.

Fix some signature σ, and let P be an unary predicate symbol not in σ. For
any formula Φ of the signature σ∪{∈}, with the bounded quantifiers of the form
∀x ∈ t and ∃x ∈ t, we define by induction the relativization ΦP of Φ by P :

— if Φ is an atomic formula, put ΦP = Φ;
— if Φ = (Φ1 ∗ Φ2), ∗ ∈ {∧,∨,→}, put ΦP = (ΦP

1 ∗ ΦP
2 );

— if Φ = ¬Ψ , put ΦP = ¬ΦP ;
— if Φ = (Qx ∈ y)Ψ , Q ∈ {∀,∃}, put ΨP = (Qx ∈ y)ΨP ;
— if Φ = ∃xΨ , put ΦP = ∃x(P (x) ∧ ΨP );
— if Φ = ∀xΨ , put ΦP = ∀x(P (x) → ΨP ).
Let now A be an admissible set, B ⊆ A be some transitive subset of A, and

Φ(x0, . . . , xn−1) be a formula of the signature σA. Define the set

(Φ(x0, . . . , xn−1))B = {〈a0, . . . , an−1〉 ∈ An | 〈A, B〉 |= ΦP (a0, . . . , an−1)}.

Definition 4 ([Stukachev2005]). Let A be an admissible set, B ⊆ A be some
transitive subset of A. A structure of a computable predicate signature 〈Pn0

0 , Pn1
1 , . . .〉

is called Σ-definable in A inside B if there exist a computable sequence

Φ(x0, y), Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ0(x0, . . . , xn0−1, y),

Φ∗0(x0, . . . , xn0−1, y), . . . , Φk(x0, . . . , xnk−1, y), Φ∗k(x0, . . . , xnk−1, y), . . .

of Σ-formulas of σA, and a parameter b ∈ B, such that, for the sets

M0 � ΦB(x0, b), M0 ⊆ B, η � ΨB(x0, x1, b) ∩M2
0 ,

the following holds: M0 6= ∅, η is a congruence relation on the structure

M0 � 〈M0, P
M0
0 , . . . , PM0

k , . . .〉,

where PM0
k � (Φk(x0, . . . , xnk−1))B ∩Mnk

0 , k ∈ ω,

(Ψ∗(x0, x1, a))B ∩M2
0 = M2

0 \ (Ψ(x0, x1, a))B ,
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(Φ∗k(x0, . . . , xnk−1, a))B ∩Mnk
0 = Mnk

0 \ (Φk(x0, . . . , xnk−1))B

for any k ∈ ω, and the quotient structure M is isomorphic to M0�η.

For an admissible set A and a subset B ⊆ A, define the ordinal rnk(B) as
follows:

rnk(B) = sup{rnk(b)|b ∈ B},

where rnk(b) is the rank of the set b in A [Barwise1975].

Definition 5 ([Stukachev2005]). The rank of inner constructivizability of an
admissible set A is the ordinal

cr(A) = inf{rnk(B) | A is Σ-definable in A inside B}.

The next theorem gives the precise estimate for the rank of inner construc-
tivizability of hereditarily finite superstructures. It can be viewed as an effective
analogue of some results from [Montague1967] on definability in higher order
languages.

Theorem 5 ([Stukachev2005]). Let M be a structure of a computable signa-
ture.

1) If M is finite then cr(HF(M)) = ω.
2) If M is infinite then cr(HF(M)) 6 2.

As a corollary of Theorem 5 we get the following. For a structures M, N, and
a natural number n ∈ ω, we denote by M 6n

Σ N the fact that M is Σ-definable
in HF(N) inside the subset consisting of all elements with the rank less or equal
n. If N is an infinite structure then

M 6n
Σ N if and only if M 6Σ N

for any M and any n > 2.
Typical examples of structures M with cr(HF(M)) = 2 are infinite structures

with the empty signature, dense linear orders, and, a more interesting one, the
structure 〈ω, s〉 of natural numbers with the successor function. This fact follows
from the next proposition, taking into account the decidability of ThWM(〈ω, s〉),
where ThWM(M) is the weak monadic second-order theory of M.

Proposition 6 ([Stukachev2005]). If ThWM(M) is decidable then

cr(HF(M)) = 2.

An example of a structure M with cr(HF(M)) = 0 is, obviously, the stan-
dard model of the arithmetic. An example of a structure which hereditary finite
superstructure has rank of inner constructivizability 1 is the field R of real num-
bers.

Proposition 7 ([Stukachev2005]). cr(HF(R)) = 1.
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Another natural special type of a Σ-presentation of a structure M in an
admissible set A, s.t. M ⊆ U(A), is a Σ-presentation preserving the domain of
a structure. For a signature σ and an ordinal n 6 ω, we denote by Formn(σ)
the set of (finite first-order) formulas of the signature σ, which have a prenex
normal form with no more than n alterating groups of quantifiers.

We assume that, for any signature considered, some Gödel numbering d·e of
its terms and formulas is fixed.

Definition 6. Let M be a structure of a finite signature σ, A an admissible set,
and let M ⊆ U(A). The structure M is n-decidable in A (n 6 ω) if

{〈dϕe,m〉 | ϕ ∈ Formn(σ),m ∈M<ω,M |= ϕ(m)}

is ∆-definable in A.

A structure M is computable in A if M is 0-decidable in A, and decidable in
A if M is ω-decidable in A. It is easy to prove that, if Th(M) is regular, then M
is decidable in HF(M).

The decidability is rather a strong condition. For example, there is

Proposition 8. A liner order L is 1-decidable in HF(L) if and only if L is a
sum of a finite number of dense linear orders and points.

A structure M of signature σ is n-complete [ErshovGoncharov2000] (n 6 ω)
if for any formula ϕ(x) ∈ Formn(σ) and for any m ∈M<ω such that M |= ϕ(m)
there exists a ∃-formula ψ(x) such that M |= ψ(m) and M |= ∀x(ψ(x) → ϕ(x)).
The following proposition follows immediately from the definitions.

Proposition 9. 1) Suppose M is n-decidable in HF(M) (n 6 ω). Then M is
n-complete in some expansion of M by a finite number of constants.

2) Suppose M is n-complete and Th(M) is decidable. Then M is n-decidable
in HF(M).

Suppose M is 1-decidable in HF(M). Then HF(M) has a universal Σ-function
and the reduction property, but not necessarily the uniformization property (see
[Ershov1996]).

A structure A is sΣ-definable [Stukachev2009,Stukachev2010] in HF(B) (de-
noted by A 6sΣ B) if A ⊆ HF(B) is a Σ-subset in HF(B), and all the signature
relations and functions of A are ∆-definable in HF(B). Relation 6sΣ is reflex-
ive and transitive, under some additional assumptions on the structures being
considered [StukachevTA]. For countable structures, in a slightly different form,
sΣ-reducibility was introduced in [Baleva2006].

We write A <sΣ B to denote the fact that A 6sΣ B and B 66sΣ A.
In [Stukachev2009,Stukachev2010] it was noted that

A <sΣ A′

for any structure A, no matter countable or not. It means that the operation ofΣ-
jump has no fixed points with respect to sΣ-reducibility, one of the strongest ef-
fective reducibilities on countable structures (see [Stukachev2007,Stukachev2008]).
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However, the relation of sΣ-reducibility is not persistent relative to the iso-
morphism, and the corresponding relation of sΣ-equivalence is stronger than
the isomorphism relation. Also, the embeddings of the semilattices of Turing
and enumeration degrees into the semilattice of sΣ-degrees are not so natural
as the corresponding embeddings in the case of the semilattices of Σ-degrees
[Stukachev2007,Stukachev2008].

However, sΣ-reducibility is useful in studying generalized computability. Ac-
tually, it was implicitly used in [Stukachev1997] to formulate a criterion of the
uniformization property.

Recall that an admissible set A is said to satisfy

– reduction if, for any Σ-subsets B0 and B1, there are disjoint Σ-subsets C0 ⊆
B0 and C1 ⊆ B1 such that C0 ∪ C1 = B0 ∪B1.

– uniformization if, for any binary Σ-predicate R on A, there is a partial Σ-
function ϕ(x) with δϕ = Pr1(R) and Γϕ ⊆ R.

Suppose M has a regular (i.e., model complete and decidable [Ershov1996])
first-order theory. Then M is 1-decidable in HF(M), and hence has a universal
(partial, single-valued) Σ-function and satisfies reduction, but not necessarily
uniformization. It turns out that the relation of Σ-reducibility (in fact, of sΣ-
equivalence) can be used to provide a criterion.

Recall that a theory T of signature σ is said to be a theory with definable
Skolem functions [Dries1984], provided that, for each formula ϕ(x0, . . . , xn) of
signature σ, there exists a formula ψ(x0, . . . , xn) of the same signature such
that

T ` ∀x1 . . .∀xn

[
∃x0 ϕ(x0, . . . , xn) → ∃ !x0

(
ϕ(x0, . . . , xn) ∧ ψ(x0, . . . , xn)

)]
.

Actually, the requirement of definability of Skolem functions is too stringent.
Let M be a structure of signature σ, and let σ′ denotes the signature of HF(M).
In formulas of signature σ′, we conventially distinguish between variables with
values in the set of urelements and general variables, i.e. variables whose values
may be arbitrary elements of an admissible set. In what follows, given a formula
of signature σ, we assume all its variables, free or bounded, to be variables for
urelements.

A structure M is said to have aΣ-definable Skolem functions[Stukachev1997],
provided that, given any formula ϕ(x0, . . . , xn) of signature σ, we can effectively
find a Σ-formula ψ(x0, . . . , xn) of signature σ′ such that

HF(M) |= ∀x1. . .∀xn

[
∃x0ϕ(x0, . . . , xn) → ∃!x0

(
ϕ(x0, . . . , xn) ∧ ψ(x0, . . . , xn)

)]
(recall that x0, . . . , xn together with all bounded variables in ϕ are variables for
urelements).

The above definition can be easily expressed in terms of sΣ-equivalence. Let
M be a structure of signature σ and let signature σSkolem consist of all symbols
of σ and new functional symbols fϕ(x1, . . . , xn) for all formulas ϕ(x0, x1, . . . , xn)
of signature σ. The structure MS of signature σSkolem is called a (non-iterated)
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Skolem expansion of M if MS = M , M �σ= MS �σ, and for any formula
ϕ(x0, x1, . . . , xn) of signature σ

MS |= ∀x1 . . .∀xn(∃xϕ(x, x1, . . . , xn) → ϕ(fϕ(x1, . . . , xn), x1, . . . , xn)).

It is easy to see that, if M is a structure with a regular theory, then M is
a structure with Σ-definable Skolem functions if and only if, for some Skolem
expansion MS of M holds

MS ≡sΣ M.

Skolem expansion MS of a structure M is well-defined if for every formula
ϕ(x0, x1, . . . , xn) of signature σ, every m ∈Mn, and every permutation ρ of the
set {1, . . . , n},

M |= (ϕ(x0,m) ↔ ϕ(x0, ρ(m))) implies MS |= (fϕ(m) = fϕ(ρ(m))),

where ρ(m) = 〈mρ(1), . . . ,mρ(n)〉.
Recall that HF(M) has the uniformization property if for every Σ-predicate

E ⊆ HF(M) × HF(M) there exists a Σ-function F such that the following
assertions are valid:

1) dom(F ) = Pr1(E),
2) graph(F ) ⊆ E,

where dom(F ) =
{
x | F (x)↓

}
, graph(F ) =

{
〈x, y〉

∣∣ F (x) = y
}
, and Pr1(E) ={

x
∣∣ ∃ y(〈x, y〉 ∈ E)}

.
The next theorem is a reformulation (and correction) of the main result from

[Stukachev1997]. (Unfortunately, the property of well-definedness for Skolem ex-
pansions was not explicitly stated there, yet it was implicitly used in the text.)
This theorem gives a natural (and useful) example of using sΣ-reducibility on
structures and Proposition 10 can be viewed as a natural (and non-trivial) ex-
ample of sΣ-equivalence.

Theorem 6. Let M be a structure with a regular theory. HF(M) satisfies the
uniformization property if and only if, for some well-defined Skolem expansion
MS of M, holds

MS ≡sΣ M.

Proof. Fix a Gödel numbering of formulas of signature σ′ which distinguishes
variables for urelements. The Gödel number of a formula ϕ is denoted by [ϕ].
Note that if T is a regular theory then, by model completeness, each formula of its
signature is T -equivalent to some ∃-formula and, moreover, by decidability, this
formula can be found effectively (henceforth, by effectiveness we mean existence
of an appropriate computable function on the set of Gödel numbers).

Let us first prove the necessity. Suppose that HF(M) satisfies the uniformiza-
tion property. Let ϕ(x0, x1, . . . , xn) be an arbitrary formula of signature σ, and
let ψ(x0, x1, . . . , xn) be some ∃-formula of signature σ which is Th(M)-equivalent
to ϕ (such a formula exists and can be found effectively since Th(M) is regular).
First, define a binary predicate G0 as follows:

G0 = {〈a, b〉|a = 〈[ϕ],m1, . . . ,mn−1〉, b = {〈[ϕ],mρ(1), . . . ,mρ(n−1)〉|
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|ρ ∈ Sn−1 is a permutation such that

M |= (ϕ(x0,m1, . . . ,mn−1) ↔ ϕ(x0,mρ(1), . . . ,mρ(n−1)))}}.

From the regularity it follows that G0 is a Σ-predicate on HF(M). Let F0(x) be
a Σ-function which uniformizes G0. Second, define a binary Σ-predicate G1 on
HF(M) as follows:

〈a,m〉 ∈ G1 ⇐⇒
(
a =

〈
[ϕ],m1, . . . ,mn−1

〉)
∧

∧(ψ is an ∃-formula equivalent to ϕ) ∧Σ-Sat
(
[ψ], 〈m,m1, . . . ,mn−1〉

)
.

Again, there exists a Σ-function F1 that uniformizes G1. The function

fϕ(x1, . . . , xn−1) = λx1. . . . λxn−1. F1

(
F0(〈[ϕ], x1, . . . , xn−1〉)

)
is a Skolem function for the formula ϕ, which is well-defined by the construction.

Let us prove the sufficiency. Hereinafter, let T be a regular theory of sig-
nature σ and let M =

〈
M,σM

〉
be a model of T with a well-definable Skolem

expansion MS such that MS ≡sΣ M.

Lemma 2. Suppose that P is a definable n-ary predicate over M. Then each
formula defining P can be effectively transformed into a Σ-formula, with pa-
rameters used in the definition of P and in the definition of MS, that defines
a predicate Q on HF(M) such that

1) if P = ∅ then Q = ∅,
2) if P 6= ∅ then Q = {x̄}, x̄ ∈ P .

Proof. The case n = 1 is evidently follows from the existence of a Skolem
expansion MS with the property MS ≡sΣ M ; so, assume that n > 1 and
that the statement is true for all k < n. Suppose that the predicate P is
defined by a formula ϕ(x0, . . . , xn−1, ȳ) of signature σ with parameters m.
Given the predicate

X =
{
x0

∣∣ M |= ∃x1 . . .∃xn−1 ϕ(x0, . . . , xn−1,m)
}
,

we can effectively find by induction a Σ-formula Φ(x, ȳ) that defines a single
element in X (we can also assume that all the parameters used are urelements).
Consider the predicate

Y =
{
〈x1, . . . , xn−1〉 ∈Mn−1

∣∣∣ HF(M) |= ∃x0

(
ϕ(x̄,m) ∧ Φ(x0,m)

)}
.

By Lemma 3, HF(M) |= Φ(x0,m) ⇐⇒ M |=
∨

i∈ω ϕi(x0,m), where ϕi are
formulas of signature σ and the set

{
[ϕi]

∣∣ i ∈ ω
}

is computably enumerable.
Whence

Y =
{
〈x1, . . . , xn−1〉 ∈Mn−1

∣∣∣∣ M |=
∨
i∈ω

∃x0

(
ϕ(x̄,m) ∧ ϕi(x0,m)

)}
.
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Assume that i0 = µi
(
M |= ∃x̄

(
ϕ(x̄,m)∧ϕi(x0,m)

))
; by regularity, i0 is defined

by a Σ-formula in HF(M). Since the formula Φ(x0,m) is true for at most one
element, we have

Y =
{
〈x1, . . . , xn−1〉 ∈Mn−1

∣∣∣ M |= ∃x0

(
ϕ(x̄,m) ∧ ϕi0(x0,m)

)}
.

We find by induction a Σ-formula Ψ(x1, . . . , xn−1, ȳ) that defines a single
element in Y , with the same restrictions on the parameters. The required pred-
icate Q is defined by the Σ-formula Φ(x0, ȳ) ∧ Ψ(x1, . . . , xn−1, ȳ). The lemma
is proven.

Define a function h : ω → HF(ω). For each n ∈ ω, we put

h(n) =


n1, if n = c(0, n1),
{h(n1)}, if n = c(1, n1),
h(n1) ∪ h(n2), if n = c(2, c(n1, n2)), l(n1) · l(n2) > 0, and n1 < n2

∅, otherwise,
(1)

where c(n,m) = (n+m)2+3n+m
2 is Cantor’s bijection, and l(n) and r(n) are the

left and right projections. It is easy to see by definition that h is a numbering
of HF(ω), and since ω is a ∆-subset in HF(M), we conclude that, in terms of
[Ershov1996], h is an HF(M)-constructivization of HF(ω). Thus, HF(ω) can be
effectively defined in each superstructure.

Lemma 3. Suppose that ϕ(x) is a ∆0-formula of signature σ′ and let κ ∈
HF(n). Then we can effectively find a formula ϕ∗(x0, . . . , xn−1) of signature σ
so that, for each valuation γ : {x0, . . . , xn−1} →M ,

HF(M) |= ϕ(x)x
tκ(x̄)[γ] ⇐⇒ M |= ϕ∗(x0, . . . , xn−1)[γ].

Proof. Given a formula ϕ(x) and element κ ∈ HF(n), we construct a formula
ϕx

κ(x0, . . . , xn−1) of signature σ′ ∪
{
∅, {},∪

}
as follows:

1) if ϕ = ϕ1 q ϕ2 , q ∈ {∨,∧,→} , then ϕx
κ 
 (ϕ1)x

κ q (ϕ2)x
κ

2) if ϕ = ¬ϕ1 then ϕx
κ 
 ¬(ϕ1)x

κ
3) if ϕ = (t1 p t2) , p ∈ {∈,=}, then ϕx

κ 
 (t1 p t2)x
tκ(x̄)

4) if ϕ = ∃y∈x(ϕ1) then ϕx
κ 


∨
κ′∈κ

((ϕ1)
y
κ′)x

κ

5) if ϕ = ∀y∈x(ϕ1) then ϕx
κ 


∧
κ′∈κ

((ϕ1)
y
κ′)x

κ

6) if ϕ = U(x) then ϕx
κ 


{
τ, if κ ∈ n
¬τ, otherwise

7) if ϕ = P (t0, . . . , tk) , P ∈ σ , then ϕx
κ 


{
P (t0, . . . tk)x

tκ(x̄), if κ ∈ n
¬τ, otherwise

where τ denotes the statement ∃x(x = x) (without loss of generality we may
assume that σ does not contain functional symbols).
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Next, for any pair of terms t0, t1 of signature
〈
∅, {},∪

〉
over variables for

urelements x0, . . . , xn−1, we can effectively define formulas Φt0,t1 and Ψt0,t1 of
empty signature so that FV(Φt0,t1) = FV(Ψt0,t1) = FV(t0) ∪ FV(t1) and, for
each valuation γ : FV(t0 = t1) →M , the following statements be true:

t
〈HF(M),{},∪〉
0 [γ] ∈ t〈HF(M),{},∪〉

1 [γ] ⇐⇒ M |= Φt0,t1 [γ]

t
〈HF(M),{},∪〉
0 [γ] ⊆ t

〈HF(M),{},∪〉
1 [γ] ⇐⇒ M |= Ψt0,t1 [γ]

(see [Ershov1996] for a proof). The formula ϕ∗(x̄) is obtained from ϕx
κ(x̄) by

replacing the subformulas of kind (t0 ∈ t1) by Φt0,t1 and the subformulas of
kind (t0 = t1) by (Ψt0,t1 ∧ Ψt1,t0). The lemma is proven.

Lemma 3 can be easily extended to formulas with several variables. This
lemma also implies that we can restrict our consideration to formulas with pa-
rameters in M only.

Assume that Φ(x,m) is a ∆0-formula of signature σ′ with parameters m
in M . For each n ∈ ω, we define the set

Hn 
 {κ ∈ HF(n) | HF(M) |= ∃x0 . . .∃xn−1(Φ(x,m))x
tκ(x̄)}

and put H 

⋃

n∈ω Hn. The following lemma is valid:

Lemma 4. The set H is a ∆-subset in HF(M).

Proof. Let Hn 
 HF(n)\Hn, H 
 HF(ω)\H; then H =
⋃

n∈ω Hn. So, it suffices
to prove that Hn is a ∆-subset in HF(M).

Making use of Lemma 3, given a formula Φ and an element κ, we effectively
find a formula Ψκ(x̄,m) of signature σ such that

κ ∈ Hn ⇐⇒ M |= ∃x0 . . .∃xn−1 Ψκ(x̄,m).

By regularity, given the formula ∃x̄ Ψκ(x̄, ȳ), we can effectively find an
∃-formula Θκ(ȳ) equivalent to it. Thus,

κ ∈ Hn ⇐⇒ HF(M) |= Σ-Sat
(
[Θκ],m

)
.

The case κ ∈ Hn is handled similarly. The lemma is proven.

So, let E ⊆ HF(M) × HF(M) be an arbitrary Σ-predicate. Without loss of
generality, we may assume that the predicate E(x, y) is defined by a formula
∃z Φ(x, y, z,m), where Φ(x, y, z,m) is a ∆0-formula with parameters m in M .

It is evident that Pr1(E) is a Σ-predicate. Indeed, consider the ∆0-formula

Ψ(x, t,m) 
 ∃u ∈ t ∃v ∈ t ∃y ∈ u ∃z ∈ v
(
t = 〈y, z〉 ∧ Φ(x, y, z,m)

)
.

It is clear that x ∈ Pr1(E) ⇐⇒ HF(M) |= ∃t Ψ(x, t,m).
For each a ∈ HF(M), there exist n ∈ ω, κ ∈ HF(n), and a0, . . . , an−1 ∈ M

such that a = κ(ā). (Here is the point where we assume the tuple ā being
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ordered in some way, but the ordering does not matter, because the Skolem
expansion is well-defined.) Let x∗ ∈ HF(M), x∗ = κ0(x̄), where κ0 ∈ HF(l),
x̄ = 〈x0, . . . , xl−1〉 ∈M l. In the same way as in Lemma 3, we define the sets

Hn 
 { κ ∈ HF(n) | HF(M) |= ∃t0 . . .∃tn−1(Ψ(x∗, t,m))t
tκ(t̄)}

for all n ∈ ω and put H 

⋃

n∈ω Hn.
If x∗ ∈ Pr1(E) then the set

{
t
∣∣ HF(M) |= Ψ(x∗, t,m)

}
is nonempty; hence,

the set H is nonempty too. In this case, the element κ1 ∈ H minimal in
the sense of the enumeration h above is uniquely defined. In other words, κ1

is taken so as to satisfy the following conditions:

∃k
(
(k ∈ ω) ∧

(
κ1 = h(k)

)
∧ (κ1 ∈ H) ∧ ∀k′ < k

(
h(k′) /∈ H

))
.

By virtue of Lemma 4, this condition is expressed in HF(M) by some Σ-formula
Ψ1(κ1, x

∗,m).
Suppose that κ1 ∈ HF(n). Consider the set

T =
{
〈t0, . . . , tn−1〉 ∈Mn

∣∣∣ HF(M) |= Ψ(x∗, t,m)t
κ1(t̄)

}
.

By Lemma 3 we can effectively construct a formula Θ(x̄, t̄, ȳ) of signature σ so
that, for each valuation γ {x̄, t̄} →M , the following be true:

HF(M) |= Ψ(x, t,m)x,
κ0(x̄),

t

κ1(t̄)
[γ] ⇐⇒ M |= Θ(x̄, t̄,m)[γ].

By Lemma 2, given the formula Θ, we can effectively find an ∃-formula
Θ∗(x̄, t̄,m) that defines a unique element t∗ in the set T .

The element t∗ 
 κ1(t∗) satisfies the formula Ψ(x∗, t∗,m); hence, it has
the form t∗ = 〈y∗, z∗〉 and, moreover, 〈x∗, y∗〉 ∈ E. We put F (x∗) 
 y∗ by
definition.

The required Σ-function F is defined as follows: let F (x∗) = y∗ if

HF(M) |= ∃t∗∃z∗∃κ0∃κ1

(
(t∗=〈y∗, z∗〉) ∧ Ψ1(κ1, x

∗,m)∧

∧Σ -Sat([∃x0 . . .∃xl−1∃t0 . . .∃tn−1(x∗=κ0(x̄)∧

∧t∗=κ1(t̄) ∧Θ∗(x̄, t̄, ȳ))],m)
)
.

One of the important corollaries of this criterion follows from the next result.

Proposition 10 ([Stukachev1997]). There exist well-defined Skolem expan-
sions RS and (Qp)S, of the fields R and Qp, such that RS ≡sΣ R and (Qp)S ≡sΣ

Qp.

Corollary 2 ([Stukachev1997]). Structures HF(R) and HF(Qp) satisfy uni-
formization and have a universal Σ-function.
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For HF(R), the uniformization property and existence of a universal Σ-
function was independently proved by the author in [Stukachev1996] and by
M.V. Korovina in [Korovina1996]. In [Ershov1996], a general sufficien condition
for an admissible set to have a universal Σ-function was found, which implies
the existence of a universal Σ-function for HF(M), there Th(M) is regular.

The role of parameters in the Σ-definition of a structure is rather impor-
tant. For example, as it is easy to see, any countable structure is Σ-definable in
HF(R), where R is the field of real numbers. The case of Σ-definability with-
out parameters turned out to be quite interesting, as it was shown recently in
[MorozovKorovina2008].

Theorem 7 ([MorozovKorovina2008]). Suppose a countable structure M is
Σ-definable in HF(R) without parameters. Then M has a hyperarithmetic pre-
sentation.

This estimate is precise, as follows from the next theorem.

Theorem 8 ([MorozovKorovina2008]). For any δ < ωCK
1 there is a count-

able structure M such that

1) M is Σ-definable in HF(R) without parameters;
2) for any H ⊆ ω such that M has an H-computable presentation, 0(δ) 6T H.

In case we fix some restrictions on the cardinality of the congruence classes,
the estimate of complexity becomes much lower.

Theorem 9 ([MorozovKorovina2008]). Let M be a countable structure with
a finite signature. The following are equivalent:

1) M is Σ-definable without parameters in HF(R), and all congruence classes
are at least countable;

2) M is computable.

5 Degrees of Presentability of Structures in Admissible
Sets

The relation 6Σ of Σ-reducibility, which is defined on structures of arbitrary
cardinality, in the case of countable structures can be viewed as the strongest
reducibility in the hierarchy of effective reducibilities on structures, as it was
shown in [Stukachev2007,Stukachev2008]. We overview some of the results in
this field.

Let A be an admissible set. A mapping F : P (A)n → P (A) (n ∈ ω) is called
a Σ-operator [Ershov1996] if if there exists a Σ-formula Φ(x0, . . . , xn−1, y) of
signature σA such that, for any S0, . . . , Sn−1 ∈ P (A),

F (S0, . . . , Sn−1) = {a|∃a0, . . . , an−1 ∈ A(
∧
i<n

ai ⊆ Si ∧A |= Φ(a0, . . . , an−1, a))}.
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The next condition is necessary for the transitiveness of the reducibilities defined
below. An operator F : P (A) → P (A) is called strongly continuous in S ∈ P (A)
if, for any a ⊆ F (S), a ∈ A, there exists an a′ ⊆ S, a′ ∈ A, such that a ⊆ F (a′)
(this definition can be easily generalized for the case of operators with the number
of arguments more than 1).

For an operator F : P (A)n → P (A), we denote by δc(F ) the set of elements
of P (A)n in which F is strongly continuous. A set S ∈ P (A)n is called a Σ∗-set
if S ∈ δc(F ) for any Σ-operator F : P (A)n → P (A). It is easy to verify that in
admissible sets of the kind HF(M) any subset is a Σ∗-set. However, in general
this is not so: for example, in [Stukachev2002] were studied Σ∗-sets in HYP(L),
where L is a dense linear order. Even in this simplest case the class of Σ∗-sets
is non-trivial.

Let B,C ⊆ A. Below are reducibilities that are direct generalizations of e-
and T -reducibilities on natural numbers:

1) B 6eΣ C, if there is a unary Σ-operator F for which C ∈ δc(F ) and
B = F (C);

2) B 6TΣ C, if there are binary Σ-operators F0 and F1 such that 〈C,A\C〉 ∈
δc(F0) ∩ δc(F1) and B = F0(C,A \ C), A \B = F1(C,A \ C).

Let A be an admissible set. We define uniform reducibilities on subsets of A,
which are direct generalizations of Medvedev, Muchnik, and Dyment reducibili-
ties on mass problems [Sorbi1996]. Let X ,Y ⊆ P (A). Then:

1) X is Medvedev reducible to Y (X 6s Y) if there are binary Σ-operators
F0 and F1 such that for all Y ∈ Y, 〈Y,A \ Y 〉 ∈ δc(F0) ∩ δc(F1), and for some
X ∈ X , X = F0(Y,A \ Y ) and A \X = F1(Y,A \ Y );

2) X is Dyment reducible to Y (X 6e Y) if there is a unary Σ-operator F
such that, for all Y ∈ Y, Y ∈ δc(F ) and F (Y) ⊆ X ;

3) X is Muchnik reducible to Y (X 6w Y) if for any Y ∈ Y there are binary
Σ-operators F0 and F1 such that 〈Y,A \ Y 〉 ∈ δc(F0) ∩ δc(F1) and, for some
X ∈ X , X = F0(Y,A \ Y ) and A \X = F1(Y,A \ Y );

4) X is weakly Dyment reducible to Y (X 6ew Y) if for any Y ∈ Y there is a
unary Σ-operator F such that Y ∈ δc(F ) and F (Y) ⊆ X .

For an admissible set A and a symbol r ∈ {e, s, w, ew}, we denote by Mr(A)
the degree structure 〈P (P (A))/ ≡r,6r〉. For simplicity, we use the notation Mr

instead of Mr(HF(∅)). All structures of the kind Mr(A) are lattices with 0
and 1, moreover, M,Me,Mw are isomorphic to the Medvedev, Dyment, and
Muchnik lattices, respectively.

Proposition 11. For any admissible set A and any reducibility symbol r ∈ {e, s,
w, ew}, the structure

Mr(A) = 〈P (P (A))� ≡r,6r〉

is a distributive lattice with 0 and 1.

Proof. Fix some admissible set A, together with some reducibility symbol r ∈
{e, s, w, ew}. For arbitrary a ∈ A and X ⊆ A, we denote by a ∗ X the set
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{〈a, x〉|x ∈ X}. For any X ,Y ⊆ P (A), define, as in the classical case,

X ∨ Y = {X ⊕ Y |X ∈ X , Y ∈ Y}, X ∧ Y = 0 ∗ X ∪ 1 ∗ Y.

It is easy to check that X ∨ Y and X ∧ Y are the l.u.b. and the g.l.b. for X and
Y, correspondingly. We define [X ]r ∨ [Y]r = [X ∨Y]r and [X ]r ∧ [Y]r = [X ∧Y]r.
To prove the distributiveness, it is enough to check it straightforwardly as in the
classical case. As usual, 1 = [∅]r and 0 = [{∅}]r.

Recall [Stukachev2007] that the problem of presentability of a structure M
in an admissible set A is the mass problem

PrA(M) = {C | C ⊆ A, C ' M}.

Here, we identify presentations of structures with the atomic diagrams of these
presentations and assume that some Gödel numbering for the signature symbols
is fixed. We denote by M 6A

r N the fact that PrA(M) 6r PrA(N). For an admis-
sible set A and a reducibility symbol r ∈ {e, s, w, ew}, preorder 6A

r generates
the semilattice Sr(A) of degrees of presentability of structures (with cardinality
6 card(A)) in A w.r.t. reducibility r.

Recall that we denote by M the set Pr(M,HF(∅)) of presentations of M in
the least admissible set HF(∅).

For a countable structure M, we consider the following classes consisting of
structures that are effectively reducible to M:

KΣ(M) = {N | N 6Σ M},
Ke(M) = {N | N 6e (M, m̄) for some m̄ ∈M<ω},
Ks(M) = {N | N 6s (M, m̄) for some m̄ ∈M<ω},
Kew(M) = {N | N 6ew M},
Kw(M) = {N | N 6w M}.

It is known [Stukachev2008] that for any structure M, the following inclusions
hold:

KΣ(M) ⊆ Ke(M) ⊆ Ks(M) ⊆ Kw(M),

and
Ke(M) ⊆ Kew(M) ⊆ Kw(M).

In general, all these inclusions are proper [Kalimullin2006,Kalimullin2009].
For any r ∈ {e, s, w, ew}, we define a relation 6r on Kω by setting M 6r N

iff Kr(M) ⊆ Kr(N) and letting Sr = 〈Kω/ ≡r,6r〉 be the structure of degrees
of presentability corresponding to this relation.

Theorem 10 ([Stukachev2007]). For any r ∈ {e, s, w, ew}, the structure Sr

is an upper semilattice with 0, and the following embeddings (↪→) and homomor-
phisms (→) hold:

D ↪→ De ↪→ SΣ → Se → S ↪→M.
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The next theorem clarifies the role of Σ-reducibility as the strongest possible
effective reducibility on structures. Moreover, it gives an “existential” character-
ization (item 1 below) of a “universal” sentence (item 2).

Theorem 11 ([StukachevTA]). For any structures M, N, and any reducibil-
ity symbol r ∈ {e, ew}, the following are equivalent:

1) M 6Σ N;
2) for any admissible set A, M 6A

r N.

Remark. The cardinalities of M, N, and A in this theorem are arbitrary:
PrA(M) = ∅ (i.e., the “hardest” problem) if card(A) < card(M).

As a corollary of the Jump Inversion Theorem for the semilattices of Σ-
degrees and Theorem 11, we get

Proposition 12 ([StukachevTA]). Suppose A is an admissible set, and r is a
reducibility symbol, r ∈ {e, ew}. Let A be a structure such that 0′ 6Σ A. There
exists a structure B for which

B′ ≡A
r A.

Proposition 13 ([StukachevTA]). Let A be an admissible set with 0′ ∈ ∆(A).
Then, for any generalized Σ-low structure A and for any effective reducibility
r ∈ {e, ew},

A′ ≡A
r A.

Proof. It is sufficient to consider the case of A being a generalized Σ-low struc-
ture with card(A) 6 card(A). Since there is a natural homomorphism from
SΣ(card(A)) into MA

r , we get the desired statement.

Remark 3. Existence of the fixed points for the operation ofΣ-jump w.r.t. Much-
nik reducibility (i.e., existence of structures A with the property A ≡w A′) was
announced by the author in his talk at the CiE2009 Conference. However, the
proof turned to be more complicated than he assumed. The corrected proof,
valid for all abstract effective reducibilities, will appear in [StukachevTA].

Remark 4. If an admissible set A is recursively listed [Barwise1975] then Theo-
rems 11, 12, and Proposition 13 are true also for reducibilities r ∈ {s, w}, since
in this case an analogue of Theorem 2 from [Stukachev2007] is valid.

For arbitrary structures M and M′ with the same signature and any n ∈ ω,
we denote by M ≡HF

n M′ the fact that HF(M) ≡n HF(M′), and by M 4HF
n M′

the fact thatHF(M) 4n HF(M′). It is easy to check that, for n < 2, M ≡HF
n M′ if

and only if M ≡n M′. In case n = 2, M ≡HF
2 M′ if and only if, for any computable

sequence {ϕmn(xm, yn)|m,n ∈ ω} of quantifier-free formulas of signature σM,

M′ |=
∨

m∈ω

∃xm

∧
n∈ω

∀ynϕmn(xm, yn)
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if and only if the same sentence is true in M.
For arbitrary structures M and N, we denote by M 6∃ N the fact that, for

any tuple m ∈ M<ω, there exists a tuple n ∈ N<ω such that Th∃(M,m) 6e

Th∃(N, n). In particular, if M is locally constructivizable then M 6∃ N for
any structure N. As it was noted in [Ershov1996], if M 6Σ N and N is locally
constructivizable then M is also locally constructivizable. A straightforward gen-
eralization of this fact is as follows: M 6Σ N implies M 6∃ N.

Definition 7 ([Stukachev2007]). A structure M is uniformly locally construc-
tivizable of level n (1 < n 6 ω) if there exists a constructivizable structure N for
which M 4HF

n N.

For instance, the structure 〈ωCK
1 ,6〉 is uniformly locally constructivizable of

level ω since 〈ωCK
1 ,6〉 4HF 〈ωCK

1 (1 + η),6〉, where the last ordering (known as
the Harrison ordering) is constructivizable.

Proposition 14 ([Stukachev2008]). If M 6Σ N and a structure N is (uni-
formly) locally constructivizable of level n (1 < n 6 ω), then M is also (uni-
formly) locally constructivizable of level n.

The next proposition holds that a class of locally constructivizable (of level
1) countable structures is closed downward w.r.t. 6w, which is weakest among
the reducibilities under consideration.

Proposition 15 ([Stukachev2008]). Let M and N be structures. Then N 6∃
M if N ∈ Kw(M). In particular, if M is locally constructivizable, then every
structure N ∈ Kw(M) is also locally constructivizable.

A pair (M,N) is locally constructivizable iff so are M and N; therefore, a set
of degrees generated by locally constructivizable structures is an ideal in semi-
lattices Sr, r ∈ {Σ, e, s, w, ew}. Classes of locally constructivizable structures of
level n, n > 1, however, are downward closed w.r.t. 6Σ only (so they form initial
segments in SΣ). For weaker reducibilities, this is not the case.

Theorem 12 ([Stukachev2008]). There exists a countable structure M0 which
is locally constructivizable of level 1 exactly and is such that M0 6 M for every
nonconstructivizable countable structure M. If M is locally constructivizable of
level n > 1 but is not constructivizable, then KΣ(M)  K(M).

The proof makes use of the result (obtained by T. Slaman [Slaman1998],
and, independently, S. Wehner [Wehner1998]) which states that there exists a
structure whose problem of presentability belongs to the least nonzero degree
of the Medvedev lattice (which, in particular, means that a semilattice S of
degrees of presentability has a least nonzero element). Every such structure is
locally constructivizable. Namely, in [Stukachev2007] was proved the following
fact:

Theorem 13. There exist a countable structure M and a unary relation P ⊆M
for which (M, P ) ≡s M but (M, P ) 66Σ M.
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This theorem is of interest in connection with the following result from
[AshKnightManasseSlaman1989,Chisholm1990]: for any countable structure M,
a relation P ⊆ Mn, n ∈ ω, is Σ-definable in HF(M) iff P C is C � σM-c.e. for
every C ∈ (M, P ).

The next result from [Stukachev2007] gives some sufficient conditions for
the equality of the principal ideals generated by a structure M with respect to
different effective reducibilities.

Theorem 14. If M has a degree then KΣ(M) = Ke(M) = Ks(M) = Kw(M).
If M has an e-degree then KΣ(M) = Ke(M) = Kew(M).

For an admissible set A and a structures M, consider the class

KA
s (M) = {M′ | PrA(M′) 6s PrA(M, m̄) for some m̄ ∈M<ω}.

Classes KA
e (M), KA

w(M), and KA
ew(M) are defined similarly.

Proposition 16 ([Stukachev2007]). Let M and N be countable structures
and let N be a structure of the empty signature, or dense linear order. Then
KΣ(M) = KHF(N)

e (M) = KHF(N)
s (M).

As a consequence, there exist natural isomorphisms between a semilattice SΣ

of degrees of Σ-definability and semilattices SHF(N)
r of degrees of presentability,

where N is a countable structure of empty signature, or dense linear order.

We mention one more result using the equivalence of “∀-recursiveness” and
“∃-definability”, based on results from [Lacombe1964], [Moschovakis1969a], and
[AshKnightManasseSlaman1989,Chisholm1990].

Theorem 15 ([Stukachev2007]). For any countable structures M and N and
any relation R ⊆ HF(N), the following conditions are equivalent:

1) R 6eΣ C for every presentation C of M in the admissible set HF(N);
2) R is Σ-definable in HF(M,N), where (M,N) is the pair of M and N).

Definition 8. Let M and N be countable structures. Structure M has a degree
(an e-degree) over structure N if there exists a least degree among all TΣ-degrees
(eΣ-degrees) of all possible presentations of M in HF(N).

An immediate consequence of Theorem 15 is the following generalization of item
2:

Theorem 16. Let M and N be countable structures. Then the conditions below
are equivalent:

1) M has a degree (an e-degree) over N;
2) some presentation C ⊆ HF (N) of M is ∆-subset (Σ-subset) in HF(M,N).
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As a corollary, for M 6∃ N, the structure M has a degree (an e-degree) over
N iff M 6Σ N. It is also true that if M has a degree (an e-degree) over N, and
N 6Σ N′, then M has a degree (an e-degree) over N′. Furthermore, we have for
any countable structure A, there exists a structure M which has a degree but is
not Σ-definable in HF(A).

As in the nonrelativized case, we have the following result:

Theorem 17. Let M and N be countable structures. If M has a degree over N,
then KΣ(M) = KHF(N)

e (M) = KHF(N)
s (M). If M has an e-degree over N, then

KΣ(M) = KHF(N)
e (M).

6 Effective Presentations of Special Structures

As it was already mentioned, cardinality boundaries are unavoidable in the clas-
sical theory of computability (CTC). Numberings allow to use CTC for countable
objects. Admissible sets of the form HF(M) can have an arbitrary cardinality.
Hence, the following question naturally arise: does there exists a “reasonably
good” theory T such that the class of admissible sets of the form HF(M), with
M |= T , allows to extend, in some natural way, the classical theory CTC to the
case of objects with an arbitrary cardinality.

Recall that a theory T of a finite signature is called regular [Ershov1996] if
it is decidable and model complete.

Remark 5. Let T be a regular theory. Then, for any formula Φ(x) of the signature
of T , there exists an ∃-formula Ψ(x) which is equivalent (w.r.t. the theory T ) to
Φ(x). Moreover, Ψ(x) can be found effectively from Φ(x).

Recall that a theory T is called c-simple (constructively simple) [Ershov1996]
if it is regular, ω-categorical, and has a decidable set of the complete formulas.

Remark 6. In [Ershov1996] such theories were called simple, but this terminology
was simultaneously used in model theory for a different notion.

In the definition of a c-simple theory, ω-categoricity gives the uniqueness, up
to an isomorphism, of a countable model of such theory. Model completeness,
decidability of a theory, and decidability of the set of its complete formulas,
guarantee the autostability of every constructivization of this countable theory,
i.e., the uniqueness of the “computability” on its countable models.

Furthermore, if T is a c-simple theory, M0 and M1 are any models of T
(Mi |= T , i = 0, 1), then HF(M0) ≡ HF(M1), since the models of ω-categorical
theories are saturated enough ([Ershov1996]).

Henceforth, for a c-simple theory T , the class of admissible sets of the form
HF(M), M |= T , extends “uniformly” the classical theory of computability for
arbitrary infinite cardinalities.

An example of a c-simple theory is the theory TE of infinite structures with
the empty signature. But this theory is too “weak”, if we regard a theory T
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being “strong” in case there are enough of uncountable structures Σ-definable
in HF(M), M |= T . The reason of the “weakness” of TE is the following property:
for an arbitrary set X and arbitrary permutation f on X, f can be extended (in
a unique way) to an automorphism f∗ of HF(X).

Following [Ershov1985,Ershov1995,Ershov1996], we present a characteriza-
tion of the theories having uncountable models which are Σ-definable in HF(L)
for L |= TDLO.

The category ∗ω is defined as follows. Its objects are the sets of the form
[n] 
 {0, 1, . . . , n−1}, n ∈ ω ([0] 
 ∅), and its morphisms are order-preserving
embeddings. It should be noted that there is a unique morphism from [0] into
[n] for any n ∈ ω.

Definition 9. By a ∗ω-spectrum we mean any functor S from the category ∗ω
into the category Mod∗σ of structures (of some fixed signature σ), whose mor-
phisms are all possible embeddings.

To define a ∗ω-spectrum S, it is necessary to give an infinite sequence M0,
M1, . . ., Mn, . . ., n ∈ ω, of structures of signature σ, and associate with each
order-preserving embeddings µ : [n] → [m] an embedding µ∗ : Mn → Mm so
that, if µ0 : [n] → [m] and µ1 : [m] → [k], n 6 m 6 k ∈ ω, are morphisms of the
category ∗ω, then (µ0µ1)∗ = µ1∗µ0∗, and if µ : [n] → [n] is the unique morphism
from [n] into [n] (= id[n]), then µ∗ = idMn

: Mn → Mn, n ∈ ω.
If the ∗ω-spectrum S={Mn, µ∗|n ∈ ω, µ ∈ Mor∗ω} has been defined, then

for any linearly ordered set L, it is possible to define the structure ML(MS
L) as

a direct limit limL0 M′
L0

of the spectrum

{M′
L0
, ϕL0,L1 | L0 ⊆ L1 ⊆ L, L1 is finite},

where M′
L0


 Mn, if L0 ⊆ L is finite and |L0| = n, and the embedding ϕL0,L1 :
M′

L0
→ M′

L1
is defined for finite L0 ⊆ L1(⊆ L) as follows: if L1 = {l0 < l1 <

. . . < lm−1} and L0 = {li0 < li1 < . . . < lin−1} (in which case 0 6 i0 < i1 <

. . . < in−1 6 m) and µ : [n] → [m] is defined as µ(j) 
 ij , j < n, then

ϕL0,L1 
 µ∗ : M′
L0

= Mn → Mm = M′
L1
.

If L ⊆ L′ are linearly ordered sets, then the structure ML can be identified with
a substructure of ML′ in a natural way.

Any isomorphism between linearly ordered sets L and L′ induces an isomor-
phism between ML and ML′ . Also if L ⊆ L′ are dense linear orders without
endpoints, then ML 4 ML′ . As a corollary, if L and L′ are dense linear orders
without endpoints, then ML ≡ ML′ .

Let µ0 and µ1 be morphisms from [1] into [2] such that µ0(0) = 0 and
µ1(0) = 1. The condition

µ0∗ 6= µ1∗. (∗)

is sufficient for |MS
L| > |L| to hold for any linearly ordered set L.
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Definition 10. A system of numberings νn : ω → Mn, n ∈ ω, is called a
computable sequence of constructivization

(M0, ν0), (M1, ν1), . . . , (Mn, νn), . . . , n ∈ ω,

if the following conditions hold (we assume that the signature σ of the structures
M0,M1, . . . is finite and without function symbols):

1) E 
 {〈n,m0,m1〉|n,m0,m1 ∈ ω, νn(m0) = νn(m1)} is a ∆-predicate on ω;
2) NP 
 {n̄ = 〈n0, n1, . . . , nk〉|n̄ ∈ ωk+1, 〈νn0(n1), . . . , νn0(nk)〉 ∈ PMn0} is a

∆-predicate on ω for any (k-ary) predicate symbol P ∈ σ;
3) for any constant symbol c ∈ σ there exists a Σ-function fc : ω → ω such that

cMn = νnfc(n).

Every morphism µ : [n] → [m] of the category ∗ω is uniquely defined by
the number m and the subset µ([n]) ⊆ [m]. This remark allows one to define
a one-to-one correspondence µ∗ : ∆ → Mor∗ω between the subset ∆ 
 {n|n ∈
ω, r(n) < 2l(n)} ⊆ ω and the set Mor∗ω, provided that n ∈ ∆ is assumed to
code the morphism µ : [k] → [l] such that l = l(n) and r(n) is the number of
the subset µ([k]) ⊆ [l] = [l(n)] in some standard listing of the finite subsets of ω
(here, l(n) and r(n) are the left and right projections). It is evident that ∆ is a
∆-subset of ω.

Definition 11. Let S = {Mn, µ∗|n ∈ ω, µ ∈ Mor∗ω} be a ∗ω-spectrum. By a
constructivization of S we mean any computable sequence of constructivizations

(M0, ν0), (M1, ν1), . . . , (Mn, νn), . . . , n ∈ ω,

together with a Σ-function f : ∆ × ω → ω such that, for any n,m, k ∈ ω and
µ : [n] → [m] ∈ Mor∗ω, if n∗ ∈ ∆ is such that µ∗(n∗) = µ, then µ∗νn(k) =
νmf(n∗, k).

A ∗ω-spectrum S is called constructivizable if there exists a constructivization
for it.

Theorem 18 ([Ershov1996]). Let L be a dense linear order without endpoints.
A theory T has an uncountable model Σ-definable in HF(L) if and only if there
exists a constructivizable ∗ω-spectrum S, satisfying condition (∗), and such that
MS

L |= T .

One of the important corollaries of this theorem is the first part of the fol-
lowing result, showing that the field C of complex numbers is rather “simple”.
The second part shows that C is not “too simple”.

Theorem 19 ([Ershov1996]).

1) C is Σ-definable in HF(L) for any dense linear order L of size continuum;
2) C is not Σ-definable in HF(S) for any structure S with empty signature.
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Another example of a c-simple theory is the theory TDLO of dense linear
orders (without endpoints). This theory seems to be quite reasonable candidate
for a “correct extension of CTC for arbitrary cardinalities”. Below we present
two different characterizations of the theories having uncountable models which
are Σ-definable in HF(L) L |= TDLO.

We now formalize a desired property of TDLO to be the “strongest” in the
class of c-simple theories.

Conjecture 1 ([Ershov1998]). Suppose a theory T has an uncountable model
which is Σ-definable in HF(M), for some structure M with a c-simple theory.
Then T has an uncountable model which is Σ-definable in HF(L) for some
L |= TDLO.

It is an open question whether this conjecture is equivalent to the following
one (which is its formal consequence).

Conjecture 2. Any c-simple theory has an uncountable model which isΣ-definable
in HF(L) for some L |= TDLO.

It turned out that there are counterexample to Conjectures 1 and 2. The
next definition is a generalization of the model-theoretical notions of order and
total indiscernibility.

Definition 12. For structures A, B and some k > 0, a set I ⊆ Ak ∩ B is
called a set of A-indiscernibles in B (with dimension k) if for any pair of tuples
i, i

′ ∈ I<ω with the same length,

〈A, i〉 ≡ 〈A, i′〉 implies 〈B, i〉 ≡ 〈B, i′〉.

Proposition 17 ([Stukachev2010]). Suppose A is an uncountable structure,
a structure B is saturated enough and locally constructivizable of level ω, and
let A 6Σ B. There exist computable structures A0 and B0 such that A0 ≡ A,
B0 ≡ B, and there is an infinite computable set of (B0, b0)-indiscernibles in A0

with dimension k, for some k > 0 and b0 ∈ (B0)<ω.

For certain c-simple theories this necessary condition of Σ-definability of
uncountable models can be simplified (by assuming the dimension to be equal
1). Namely, for theory TDLO of dense linear orders without endpoints, and the
theory TE of infinite structures with empty signature, there is the following
theorem which is a correct part of the corresponding incorrect statement from
[Stukachev2004] (the proof can be found in [Stukachev2010]).

Theorem 20. Let T be a c-simple theory, and let A be any computable model
of T . Then

1) if there exists an uncountable M |= T such that M 6Σ L, L |= TDLO,
then there exists an infinite computable set of order indiscernibles in A (with
dimension 1);
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2) if there exists an uncountable M |= T such that M 6Σ S, S |= TE, then there
exists an infinite computable set of total indiscernibles in A (with dimension
1).

In the case of an infinite signature the counterexample to Conjecture 2 was
obtained using the construction from [KiersteadRemmel1985] together with The-
orem 20.

Theorem 21 ([Stukachev2004]). There is a sc-simple theory T of an infinite
computable signature, such that, for any uncountable A |= T and any L |= TDLO,
we have A 66Σ L.

Using Theorem 21 and the Hrushovski’s construction which allow to interpret
countably categorical structures with an infinite signature in countably categor-
ical structures with a finite signature, we get the following result.

Theorem 22 ([StukachevTA]). There is a c-simple theory T with a finite
signature, such that, for any uncountable A |= T and any L |= TDLO, we have
A 66Σ L.

It is known that Conjecture 2 is true for rather a “rich” class of c-simple
theories (see Theorem 23 below).

Definition 13. Let n ∈ ω. A (first-order) theory T is called n-discrete if any
finite type of T is uniquely determined by its n-subtypes.

A theory T is called discrete if it is n-discrete for some n ∈ ω. If T is n-discrete
and has a finite number of n-types then T is ω-categorical and submodel complete
in some expansion by a finite number of definable predicates. Any regular n-
discrete theory with a finite number of n-types is c-simple. Also, any submodel
complete theory of a finite relational signature is n-discrete with a finite number
of n-types, for some n ∈ ω, and any ω-categorical submodel complete theory of
a finite signature is n-discrete with a finite number of n-types, for some n ∈ ω.

A theory T is called sc-simple [Stukachev2010] if it is ω-categorical, submodel
complete, decidable, and has a decidable set of the complete formulas. Hence-
forth, a theory (of a finite signature) is sc-simple if it is c-simple and submodel
complete.

As corollary of the Ehrenfeucht-Mostowski Theorem we get the next result.

Proposition 18 ([Stukachev2010]). If T is a sc-simple theory of a finite sig-
nature then, in any computable model of T , there exists an infinite computable
set of order indiscernibles.

Using this fact, we get a partial positive answer to Conjecture 2.

Theorem 23 ([Stukachev2010]). Let T be sc-simple theory of a finite signa-
ture. There exists an uncountable model A of T such that A 6Σ L, L |= TDLO.
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We now present some examples of sc-simple theories constructed via Fräıssé
limits.

Let FinGraph be the class of all finite symmetric graphs. It is easy to check
that this class satisfies the properties HP, JEP,AP, and has a ULF-computable
presentation.

Definition 14. A symmetric graph A is called random if, for any finite X,Y ⊆
A such that X ∩Y = ∅, there is a vertex v ∈ A \ (X ∪Y ) such that v is adjacent
with all vertices from X and not adjacent with vertices from Y .

Proposition 19 ([Hodges1993]). If A is the Fräıssé limit of the class FinGraph
then A is a random graph. As a corollary, Th(A) is sc-simple.

Let σ be a finite predicate signature. The class Fin(σ) of all finite structures
of signature σ satisfies the properties HP, JEP,AP, and has a ULF-computable
presentation.

Definition 15. Let σ be a finite predicate signature. A random structure Ran(σ)
of signature σ is the Fräıssé limit of the class Fin(σ).

A structure A is called locally constructivizable [Ershov1996] if Th∃(A, a) is
c.e. for any a ∈ A<ω. It is easy to verify that a structure A is locally con-
structivizable if and only if, for any a ∈ A<ω, there exist a constructivizable
structure B and a tuple b ∈ B<ω such that (A, a) ≡1 (B, b) (or, which is the
same, HF(A, a) ≡1 HF(B, b)). Symbol ≡α, here and further on, denotes elemen-
tary equivalence w.r.t. the class of formulas with less than α groups of alternating
groups of quantifieres in the prenex normal form (0 6 α 6 ω). Henceforth, the
next definition is a generalization of the notion of local constructivizability.

Definition 16 ([Stukachev2008]). A structure A is called locally construc-
tivizable of level α (0 < α 6 ω) if for any a ∈ A<ω there exists a constructiviz-
able structure B and a tuple b ∈ B<ω such that

HF(A, a) ≡α HF(B, b).

Local constructivizability of any level is preserved by Σ-definability.

Proposition 20 ([Stukachev2008]). Let A and B be such that A 6Σ B and
B is locally constructivizable of level α, 0 < α 6 ω. Then A is also locally
constructivizable of level α.

A structure A0 is called saturated enough [Ershov1996] if there exists an ω-
saturated structure A1 such that A0 4 A1 and HF(A0) 4 HF(A1). Any structure
with a c-simple theory is saturated enough and locally constructivizable of level
ω. Moreover, its countable “computable simulation”, in the terminology from
[MillerMulcahey2008], is unique up to the computable isomorphism. The situa-
tion is different in the case of regular theories: there are structures with a regular
theory, which are not locally constructivizable even of level 1. For example, con-
sider the fields R and Qp of real and p-adic numbers.
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Corollary 3 ([Ershov1996]). For any linear order L, fields R and Qp are not
Σ-definable in HF(L).

We conclude with the list of references which are relevant to the topics dis-
cussed in the paper.
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