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Abstract We consider algorithmic properties of mathematical models which are
used in computational linguistics to formalize and represent the semantics of natu-
ral language sentences. For example, finite-order functionals play a crucial role in
Montague intensional logics and formal semantics for natural languages. We discuss
some computable models for the spaces of finite-order functionals based on the
Ershov-Scott theory of domains and approximation spaces. As another example, in
the analysis of temporal aspects of verbs the scale of time is usually identified with
the ordered set of real numbers or just a dense linear order. There are many results
in generalized computability about such structures, and some of them can be applied
in this analysis.
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1 Introduction

This paper continues the work started in [17, 16, 3] on algorithmic issues of formal
semantics for natural languages. R. Montague in [10, 11] proposed a model-theoretic
approach to semantics of English known as Montague intensional logic. It is a typed
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higher-order logic which uses finite types and finite-order functionals to formalize
grammar categories of natural languages (in particular, English).

Neither Montague nor other researchers (to our knowledge) studied complexity
issues and algorithmic aspects of objects and constructions of this theory. A natural
question is to construct computable or effective (in some sense) presentations of
rather complicated structures considered in intensional logic. Such presentations
allow to regard the meaning of a natural language sentence as an algorithm of
checking its relevance (truth value) to a given circumstances (knowledge base).

Our approach is based on the framework of generalized computability formalised
via Σ-definability in admissible sets or superstructures developed by J. Barwise
[1], Y. N. Moschovakis [12], Yu. L. Ershov [8], and also by R. Montague [9].
To handle finite-order functionals in an effective way we use Ershov-Scott theory
of approximation spaces and domains, see [14, 6, 7, 8]. As a useful benefit, such
approach allows to consider the case when the basic entities can be approached only
via approximations. Also, it becomes possible to study spaces of truth values more
complicated than just 0 (“no”) and 1 (“yes”).

Intensionality in models discussed in this paper is limited only to the scale of
time as the set of possible worlds, we do not consider modality issues for simplicity
reasons. Time in linguistics is usually represented by the ordered set of real numbers
(denoted here as R). This model is sufficient to describe formally (and hence analyse
effectively) such important features of verbs as tense and aspect, see [2]. There are
some properties of dense linear orders (e.g., elimination of quantifiers and decidabil-
ity), which are well-known for logicians and which could be useful in the analysis
of algorithmic properties of interval semantics for verbs in natural languages. The
examples of results of this kind can be found in [17, 16].

In this paper, we consider two different kinds of models of entity spaces,
namely, rank models and vector models. Vector models are more natural from the
approximation-space point of view, and rank models are more natural from the set-
theoretical point of view. We prove that type hierarchies based on these classes of
models are effectively equivalent. This result is obtained for two different spaces of
truth values.

The authors are grateful for anonymous referees for valuable remarks and sug-
gestions. A comparison of our approach with the existing ones will be discussed in
a series of forthcoming publications. Here we just present examples of computable
models of finite-order functionals and approximation spaces not described before
and relevant to linguistics. We believe our approach is closely connected to the
problem of understanding the meaning of a natural language sentence via rigorous
mathematical formalization. In particular, since we consider effective (in some gen-
eral sense) models of Montague intensional logic, we plan to describe how exactly
our research is connected to the approach by Y. N. Moschovakis named “meaning
as an algorithm” [13].
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2 Basic Notions of Generalized Computability

Hereditary finite superstructures are the “simplest” examples of models of theory
𝐾𝑃𝑈 proposed by S.Kripke, R.Platek, J.Barwise, and Yu.L.Ershov for studying
generalized computability via Σ-definability in admissible sets (see [1, 8, 15]).

By 𝜔 we denote the set of natural numbers. For arbitrary set 𝑀 , we construct the
set 𝐻𝐹 (𝑀) of hereditarily finite sets over 𝑀 as follows:

𝐻𝐹0 (𝑀) = ∅
𝐻𝐹𝑛+1 (𝑀) = P𝜔 (𝑀 ∪ 𝐻𝐹𝑛 (𝑀)), 𝑛 < 𝜔
(here P𝜔 (𝑋) is the set of all finite subsets of 𝑋)
𝐻𝐹 (𝑀) = ⋃

𝑛<𝜔
𝐻𝐹𝑛 (𝑀)

If 𝔐 is a structure of some relational signature 𝜎 then one can define on 𝑀 ∪
𝐻𝐹 (𝑀) a structure HF(𝔐) of signature 𝜎′ = 𝜎 ∪ {𝑈,∅, ∈} (𝑈,∅, and ∈ are some
symbols not in 𝜎) with the following interpretation of signature symbols:

𝑈HF(𝔐) = 𝑀
𝑃HF(𝔐) = 𝑃𝔐, 𝑃 ∈ 𝜎
∅HF(𝔐) = ∅ ∈ 𝐻𝐹0 (𝑀)
∈HF(𝔐) = ∈ ∩ ((𝑀 ∪ 𝐻𝐹 (𝑀)) × 𝐻𝐹 (𝑀))

A class ofΔ0-formulas of signature 𝜎′ is the least one containing atomic formulas
which is closed under ∨, ∧, →, ¬, and bounded quantifiers ∀𝑥 ∈ 𝑦 and ∃𝑥 ∈ 𝑦

(∀𝑥 ∈ 𝑦 𝜑 and ∃𝑥 ∈ 𝑦 𝜑 are abbreviations for ∀𝑥(𝑥 ∈ 𝑦 → 𝜑) and ∃𝑥(𝑥 ∈ 𝑦 ∧ 𝜑),
respectively).

A class of Σ-formulas of signature 𝜎′ is the least one containing Δ0-formulas
and closed under ∨, ∧, bounded quantifiers ∀𝑥 ∈ 𝑦, ∃𝑥 ∈ 𝑦, and ∃𝑥. As usual, a
set is called Σ-definable if it is definable by some Σ-formula with parameters, and
Δ-definable if it and its complement are Σ-definable.

3 Montague Intensional Logic

Let 𝑒, 𝑡, and 𝑠 be the some fixed symbols used, correspondingly, as names for
basic types of entities and truth values, and for marking an intensional shift, i.e.,
relativization to a state or situation.

Definition The set 𝑇𝑦𝑝𝑒𝑠𝐼𝐿 is defined as follows:

• 𝑡 ∈ 𝑇𝑦𝑝𝑒𝑠𝐼𝐿 , 𝑒 ∈ 𝑇𝑦𝑝𝑒𝑠𝐼𝐿
• if 𝑎 ∈ 𝑇𝑦𝑝𝑒𝑠𝐼𝐿 and 𝑏 ∈ 𝑇𝑦𝑝𝑒𝑠𝐼𝐿 then (𝑎 → 𝑏) ∈ 𝑇𝑦𝑝𝑒𝑠𝐼𝐿
• if 𝑎 ∈ 𝑇𝑦𝑝𝑒𝑠𝐼𝐿 then (𝑠 → 𝑎) ∈ 𝑇𝑦𝑝𝑒𝑠𝐼𝐿 □

The language of intensional logic 𝐼𝐿 (see [4, 5, 10, 11]) contains countably many
constants of any type 𝑎 ∈ 𝑇𝑦𝑝𝑒𝑠𝐼𝐿 and countably many variables of each type
𝑎 ∈ 𝑇𝑦𝑝𝑒𝑠𝐼𝐿 .
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A model of intensional logic 𝐼𝐿 is a quadruple ⟨𝐴,𝑊,𝑇, ≤, 𝐹⟩ such that 𝐴,𝑊,𝑇
are nonempty sets, ≤ is a linear order on 𝑇 , 𝐹 is a function defined on the set of
constants of 𝐼𝐿 as described below. Sets𝑊 and 𝑇 correspond to the sets of possible
worlds and time moments correspondingly.

Definition The set 𝐷𝜏 of possible denotations of type 𝜏 ∈ 𝑇𝑦𝑝𝑒𝑠𝐼𝐿 is defined by
induction on complexity of 𝜏:

• 𝐷𝑒 = 𝐴, 𝐷𝑡 = {0, 1}
• 𝐷 (𝑎→𝑏) = 𝐷

𝐷𝑎

𝑏
(the set of functions from 𝐷𝑎 to 𝐷𝑏)

• 𝐷 (𝑠→𝑎) = 𝐷
𝑊×𝑇
𝑎 (the set of functions from𝑊 × 𝑇 to 𝐷𝑎) □

We denote by 𝑆𝑎 the set 𝐷 (𝑠→𝑎) . Function 𝐹 defines for each constant of type 𝑎
some element from 𝑆𝑎 which is called its intension. Elements from 𝐷𝑎 are called
extensions of type 𝑎.

Finite types are used to represent grammar categories (parts of speech) of natural
languages. Some correspondences between categories and types are listed in Table 1.

Table 1 Categories and Types of Some Expressions
Category Grammar equivalent Corresponding type Basic expressions
e no e no
t sentences t no
IV intransitive verbs (e → t) walk, talk
CN common nouns (e → t) man, woman
TV extensional transitive verbs (e → (e → t)) love, find
CN/CN extensional adjectives ((e → t) → (e → t)) tall, young
CN/CN extensional adverbs ((e → t) → (e → t)) rapidly, slowly
T noun phrases and proper names ((s → (e → t)) → t) John, ninety, he
t/t sentence determinants ((s → t) → t) necessarily, possibly
IV/t connective verbs ((s → t) → (e → t)) believe, assert

For example, proper names correspond to the type ((𝑠 → (𝑒 → 𝑡)) → 𝑡) – the
set of properties true for the individual with this name. Here we do not consider one
of the most complex cases, intensional transitive verbs with the type ((𝑠 → ((𝑠 →
(𝑒 → 𝑡)) → 𝑡)) → (𝑒 → 𝑡))).

Extension (the set of denotations) of type 𝑎 is the set of possible values of the
grammar category interpreted by type 𝑎 in a model of intensional logic. Corre-
spondingly, intension of type 𝑎 is a function from 𝑊 × 𝑇 to the extension of type
𝑎.

4 Ershov-Scott Functional Spaces

To construct an effective model of Montague intensional logic we apply the domain
theory proposed by D. S. Scott [14] and the theory of functional spaces of finite
types proposed by Yu. L. Ershov [6, 7, 8]. The definitions below are from [8].
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Let A be a model of 𝐾𝑃𝑈 (see [8]). If 𝑎 ∈ 𝐴 then 𝑝∗
𝑙
𝑎 = {𝑏 | ∃𝑐(⟨𝑏, 𝑐⟩ ∈ 𝑎)},

𝑝∗𝑟𝑎 = {𝑏 | ∃𝑐(⟨𝑐, 𝑏⟩ ∈ 𝑎)}. If 𝐵 ⊆ 𝐴 then 𝐵∗ = {𝑏 | 𝑏 ⊆ 𝐵 and 𝑏 ∈ 𝐴}.
The notion of effectively presented functional space is based on the general

Definition Quadruple B = ⟨𝐵, ≤, 𝐶𝑜𝑛𝑠,⊔⟩ is called an 𝑓 -base on A (see [6, 7]) if
the following holds:

1) 𝐵 is a Δ-definable subset of A
2) ≤ is a Δ-definable preorder on 𝐵;

let [𝐵] be the quotient of set 𝐵 by the equivalence relation ≡ defined by the
preorder ≤ (𝑏0 ≡ 𝑏1 ⇔ 𝑏0 ≤ 𝑏1 and 𝑏1 ≤ 𝑏0); as usual, [𝑏] denotes the element
of [𝐵] which is the equivalence class of 𝑏 ∈ 𝐵; if𝐶 ⊆ 𝐵 then [𝐶] = {[𝑏] | 𝑏 ∈ 𝐶};
we also use ≤ to denote the order induced on [𝐵] by the original preorder ≤

3) 𝐶𝑜𝑛𝑠 is a Δ-definable subset of 𝐵∗ \ {∅}, and for any 𝑏∗ ∈ 𝐵∗ holds

𝑏∗ ∈ 𝐶𝑜𝑛𝑠 ⇔ (∃𝑏 ∈ 𝐵) (∀𝑏′ ∈ 𝑏∗) (𝑏
′ ≤ 𝑏)

4) ⊔ : 𝐶𝑜𝑛𝑠 → 𝐵 is a Σ-definable function such that [⊔𝑏∗] for any 𝑏∗ ∈ 𝐶𝑜𝑛𝑠 is
the least upper bound of [𝑏∗] ⊆ [𝐵] in ⟨[𝐵], ≤⟩ □

Definition Let B0 = ⟨𝐵0, ≤0, 𝐶𝑜𝑛𝑠0,⊔0⟩ and B1 = ⟨𝐵1, ≤1, 𝐶𝑜𝑛𝑠1,⊔1⟩ be some 𝑓 -
bases onA. A direct productB1×B2 ofB0 andB1 is the 𝑓 -base ⟨𝐵0×𝐵1, ≤, 𝐶𝑜𝑛𝑠,⊔⟩,
where ≤, 𝐶𝑜𝑛𝑠 and ⊔ are defined as follows:

1) ⟨𝑏0, 𝑏1⟩ ≤ ⟨𝑏′

0, 𝑏
′

1⟩ iff 𝑏0 ≤0 𝑏
′

0 and 𝑏1 ≤1 𝑏
′

1 for every 𝑏0, 𝑏
′

0 ∈ 𝐵0 and every
𝑏1, 𝑏

′

1 ∈ 𝐵1
2) 𝑏∗ ∈ 𝐶𝑜𝑛𝑠 iff 𝑝∗

𝑙
(𝑏∗) ∈ 𝐶𝑜𝑛𝑠0 and 𝑝∗𝑟 (𝑏∗) ∈ 𝐶𝑜𝑛𝑠1 for every 𝑏∗ ∈ (𝐵0 × 𝐵1)∗

3) ⊔𝑏∗ ⇋ ⟨⊔0𝑝
∗
𝑙
(𝑏∗),⊔1𝑝

∗
𝑟 (𝑏∗)⟩ for every 𝑏∗ ∈ 𝐶𝑜𝑛𝑠 □

In case the set 𝐶𝑜𝑛𝑠 of mutually consistent fragments (approximations) should
be as large as possible, we need

Definition Quadruple B = ⟨𝐵, 𝑏0, ≤,⊔⟩ is called an 𝑓 ∗-base on A if
⟨𝐵, ≤, 𝐵∗ \ {∅},⊔⟩ is an 𝑓 -base on A, [𝑏0] is the least element in ⟨[𝐵], ≤⟩ and
⊔∅ = 𝑏0. □

In general, the range (the set of possible values) of a functional can be arbitrary,
so the notion of 𝑓 ∗-base is at hand in the following

Definition Let B0 = ⟨𝐵0, ≤0, 𝐶𝑜𝑛𝑠0,⊔0⟩ be an 𝑓 -base,
B1 = ⟨𝐵1, 𝑏1, ≤1,⊔1⟩ be an 𝑓 ∗-base. A functional product 𝐹 (B0,B1) of 𝑓 -base B0
and 𝑓 ∗-base B1 is the 𝑓 ∗-base ⟨(𝐵0 × 𝐵1)∗, ∅, ≤,⊔⟩, where ≤ and ⊔ are defined as
follows:

1) 𝑓0 ≤ 𝑓1 iff ∀𝑏0 ∈ 𝑝∗
𝑙
𝑓0 (⊔1{𝑏1 | ∃𝑏

′

0 ∈ 𝑝∗
𝑙
𝑓0 (𝑏

′

0 ≤0 𝑏0 and ⟨𝑏′

0, 𝑏1⟩ ∈ 𝑓0)} ≤1
≤1 ⊔1{𝑏1 | ∃𝑏

′

0 ∈ 𝑝′

𝑙
𝑓1 (𝑏

′

0 ≤0 𝑏0 and ⟨𝑏′

0, 𝑏1⟩ ∈ 𝑓1)}) for 𝑓0, 𝑓1 ∈ (𝐵0 × 𝐵1)∗
2) ⊔ 𝑓∗ ⇋ ∪ 𝑓∗ for every 𝑓∗ ∈ ((𝐵0 × 𝐵1)∗)∗ □
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Definition For an 𝑓 -base B = ⟨𝐵, ≤, 𝐶𝑜𝑛𝑠,⊔⟩, the family 𝐼Σ (B) of Σ-ideals in B
consists of nonempty Σ-definable subsets 𝐶 ⊆ 𝐵 such that

1) from 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵, 𝑏 ≤ 𝑐 it follows that 𝑏 ∈ 𝐶
2) from 𝑐 ∈ 𝐶∗ it follows that 𝑐 ∈ 𝐶𝑜𝑛𝑠 and ⊔ 𝑐 ∈ 𝐶 □

We define a topology on the set 𝐼Σ (B) by fixing the basis

𝑉𝑏 ⇋ {𝐶 |𝐶 ∈ 𝐼Σ (B), 𝑏 ∈ 𝐶}, 𝑏 ∈ 𝐵.

The set 𝐼Σ (B) together with the topology specified above is called the space of
Σ-ideals of 𝑓 -base B. The space 𝐼Σ (B) is a topological 𝑇0-space.

Let B0 be an 𝑓 -base and let B1 be an 𝑓 ∗-base. For any ideal 𝐼 of 𝑓 -base 𝐹 (B0,B1)
we can define the continuous function 𝑓𝐼 : 𝐼Σ (B0) → 𝐼Σ (B1) as follows. Let
𝐼0 ∈ 𝐼Σ (B0). We define

𝑓𝐼 (𝐼0) ⇋ {𝑏1 | 𝑏1 ∈ 𝐵1, (∃𝑐∗ ∈ 𝐼) (∃𝑏0 ∈ 𝐼0)∃𝑏
′

1 (𝑏1 ≤1 𝑏
′

1 and ⟨𝑏0, 𝑏
′

1⟩ ∈ 𝑐
∗)}.

If {⟨𝑏0, 𝑏1⟩} ∈ 𝐼, 𝑏0 ∈ 𝐼0, then 𝑏1 ∈ 𝑓𝐼 (𝐼0).
The mapping 𝐼 → 𝑓𝐼 from 𝐼Σ (𝐹 (B0,B1)) to 𝐶 (𝐼Σ (B0), 𝐼Σ (B1)) (the set of all

continuous functions from the space 𝐼Σ (B0) to the space 𝐼Σ (B1)) is injective.
To introduce the simplest example of spaces for entities and truth values, let A =

⟨𝐴, =, 𝑃1 (𝐴),∪⟩, where 𝑃1 (𝐴) ⇋ {{𝑎} | 𝑎 ∈ 𝐴}. This quadruple is an 𝑓 -base with
𝐼Σ (A) = 𝑃1 (𝐴). Also, let 𝛼 be an arbitrary ordinal in A and let B𝛼 = ⟨𝛼, ∅, ⊆,∪⟩.
This quadruple is an 𝑓 ∗-base with 𝐼Σ (B𝛼) = (𝛼 + 1) \ ∅. Further on we consider the
case 𝛼 = 2.

Definition The set of functional types 𝑇𝑦𝑝𝑒𝑠 𝑓 together with its proper subset
𝑃𝑇𝑦𝑝𝑒𝑠 𝑓 are defined as follows:

1) 𝒐 ∈ 𝑇𝑦𝑝𝑒𝑠 𝑓 \ 𝑃𝑇𝑦𝑝𝑒𝑠 𝑓 , 𝐵 ∈ 𝑃𝑇𝑦𝑝𝑒𝑠 𝑓 ⊆ 𝑇𝑦𝑝𝑒𝑠 𝑓 ;
2) if 𝜏0, 𝜏1 ∈ 𝑇𝑦𝑝𝑒𝑠 𝑓 (𝑃𝑇𝑦𝑝𝑒𝑠 𝑓 ) then (𝜏0 × 𝜏1) ∈ 𝑇𝑦𝑝𝑒𝑠 𝑓 (𝑃𝑇𝑦𝑝𝑒𝑠 𝑓 );
3) if 𝜏0 ∈ 𝑇𝑦𝑝𝑒𝑠 𝑓 , 𝜏1 ∈ 𝑃𝑇𝑦𝑝𝑒𝑠 𝑓 then (𝜏0 → 𝜏1) ∈ 𝑃𝑇𝑦𝑝𝑒𝑠 𝑓 . □

Definition For every type 𝜏 ∈ 𝑇𝑦𝑝𝑒𝑠 𝑓 , the 𝑓 -base F𝜏 is defined by induction on
the complexity of 𝜏:

1) F𝒐 ⇋ A, F𝐵 ⇋ B2
2) F(𝜏0×𝜏1) ⇋ F𝜏0 × F𝜏1

3) F(𝜏0→𝜏1) ⇋ 𝐹 (F𝜏0 , F𝜏1 ) □

If 𝜏 ∈ 𝑃𝑇𝑦𝑝𝑒𝑠 𝑓 then F𝜏 is an 𝑓 ∗-base.

Definition By a Σ-predicate of type 𝜏 ∈ 𝑇𝑦𝑝𝑒𝑠 𝑓 on 𝐴we mean an arbitrary element
of 𝐼Σ (F𝜏). □

The propositions below easily follow from the definitions. Here Σ(A) denotes the
set of all Σ-definable subsets of A.
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Lemma For any 𝑛 > 0 there is a natural bijective correspondence between Σ-
predicates of type 𝒐𝑛 → 𝐵 and 𝑛-ary Σ-predicates on A. □

Proposition A mapping 𝐹 : Σ(A) → Σ(A) is a restriction of a Σ-operator if and
only if 𝐹 is continuous with respect to the strong topology and there is a Σ-function
𝑓 : 𝐴→ 𝐴 such that 𝐹 (𝑄𝑢,𝑎) = 𝑄𝑢, 𝑓 (𝑎) for all 𝑎 ∈ 𝐴. □

Proposition For a family 𝑆 ⊆ Σ(A) the following are equivalent:

1. 𝑆 is represented by a Σ-predicate of type ((𝒐 → 𝐵) → 𝐵)
2. there is a Σ-formula Φ(𝑃+) of signature 𝜎 ∪ ⟨𝑃1⟩ such that

𝑆 = {𝑄 |𝑄 ∈ Σ(A), ⟨A, 𝑄⟩ ⊨ Φ(𝑃)}

Proposition There is a natural bijective correspondence between Σ-predicates of
type ((𝒐 → 𝐵) → (𝒐 → 𝐵)) and unary Σ-operators. □

We consider here the most natural case for studying algorithmic issues of Mon-
tague intensional logic, namely A = HF(R). Indeed, the scale of time in linguislics
is usually identified with the ordered set of real numbers R. The correspondences in
Table 2 were obtained in [3].

Table 2 Intensional Logic Types and HF(R)
Category Grammar equivalent Type Object in HF(R)
e no e sets {𝑎} for 𝑎 ∈ HF(R)
t sentenses t no
IV intransitive verbs (e → t) unary Σ-predicates
CN common nouns (e → t) unary Σ-predicates
TV extensional transitive verbs (e → (e → t)) binary Σ-operators
CN/CN extensional adjectives ((e → t) → (e → t)) Σ-operators
CN/CN extensional adverbs ((e → t) → (e → t)) Σ-predicates
T noun phrases ((s → (e → t)) → t) Σ-definable families

and proper names of binary Σ-predicates
t/t sentence determiners ((s → t) → t) Σ-definable families

of Σ-predicates on 𝑃1 (R)
IV/t connective verbs ((s → t) → (e → t)) Σ-operators

5 Rank and Vector Models of Intensional Logic

The main result of this paper about isomorphism of rank model and vector model pro-
vides a connection between two rather different methods of coding information. Both
models are natural, from our point of view, the first because of the set-theoretical sim-
plicity and the second because vectors or finite tuples are the typical approximations
for infinite strings which are necessary to represent entities exactly.
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Recall that a model of intensional logic is a tuple ⟨𝐴,𝑊,𝑇, ≤, 𝐹⟩. Here we
consider generalized computable models of intensional logic constructed with the
help of computable functionals of finite types. In such models, the set 𝐴 (entities
of type 𝑒) corresponds to some 𝑓 -base A, the space of truth values (values of type
𝑡) corresponds to some 𝑓 ∗-base B, the sets 𝑊 and 𝑇 used to form intensional types
(states 𝑠) correspond to some 𝑓 -base W. The valuation function 𝐹 corresponds to
the entire hierarchy of functionals of finite types generated by the triple ⟨A,B,W⟩
in accordance with the classical types considered in intensional logic. Thus, we say
that the triple ⟨A,B,W⟩ defines a (generalized computable) model of intensional
logic.

As usual, 𝑃1 (𝑋) denotes the set of all one-element subsets of 𝑋 , i.e., 𝑃1 (𝑋) =
{{𝑥} | 𝑥 ∈ 𝑋}. In [3] was introduced a model consisting of 𝑓 -base

A0 = ⟨𝑋,=, 𝑃1 (𝑋),∪⟩

for 𝑋 = 𝐻𝐹 (R) ∪ R corresponding to the space of entities, 𝑓 ∗-base

B = ⟨{0, 1}, 0, ≤,max⟩,

corresponding to the space of truth values, and 𝑓 -base

W = ⟨𝑊, =, 𝑃1 (𝑊),∪⟩

for 𝑊 = 𝑃1 (R) corresponding to the space of possible worlds. The entities in this
model are singleton subsets of 𝑋 and their structure is not taken into account:
trivial equality is considered as a preorder on entities, and the entities themselves are
simply “points” or “atoms”. The space of truth values of this model can be intuitively
interpreted as “0 means that the property does not exist, but may appear in the future”
and “1 means that the property is and remains forever”.

Also, in [3] was described a model that consists of 𝑓 -base

A𝑣𝑒𝑐 = ⟨(R ∪ {⊥})<𝜔 , ≤𝑣𝑒𝑐, 𝐶𝑜𝑛𝑠𝑣𝑒𝑐,⊔𝑣𝑒𝑐⟩,

where 𝛼1 ≤𝑣𝑒𝑐 𝛼2 if and only if 𝑙ℎ(𝛼1) ≤ 𝑙ℎ(𝛼2) and 𝛼1 (𝑖) ≤ 𝛼2 (𝑖) for all
𝑖 ≤ 𝑙ℎ(𝛼1), while we assume that ⊥ ≤ 𝑎 for any 𝑎 ∈ R and for 𝑎, 𝑏 ∈ R are
incomparable for 𝑎 ≠ 𝑏. Informally, entities are infinite tuples approximated via
their finite initial subtuples, and contents of tuples correspond to properties (from
categories 𝐼𝑉 and 𝐶𝑁). In addition, we assume that some encoding is given, which
says whether the 𝑖-th position of the ordered set is a binary or measurable property.
For the space of truth values was used 𝑓 ∗-base

C = ⟨{0, 1,⊥,⊤},⊥, ≤,⊔⟩,

where ⊥ < 0, ⊥ < 1, 0 < ⊤, 1 < ⊤, and 0 and 1 are incomparable (elements of 𝐶
stand for “no”, “yes”, “unknown” and “contradiction”, correspondingly). Again,

W = ⟨𝑊, =, 𝑃1 (𝑊),∪⟩
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for𝑊 = 𝑃1 (R).
The triple ⟨A0,B,W⟩ will be called the simplest model, and the triple

⟨A𝑣𝑒𝑐, C,W⟩ – vector model (for brevity, we will omit the space of possible worlds
in what follows). In this section, some modification of the simplest model will be
considered. It will take into account the structure of entities (that is, the elements that
are contained in them as in sets). The entity {𝑎}, 𝑎 ∈ 𝐻𝐹 (R), will be defined by a set
of its properties, which are encoded by the set {𝑎1 ∈ 𝐻𝐹 (R) | 𝑎1 ∈ 𝑎}. A preorder
relation on entities will be introduced, and the space of truth values will also be
changed. The preorder relation and the space of truth values will be introduced in
accordance with the vector model of intensional logic, so the resulting model (which
we will call the rank model of intensional logic) will be isomorphic to it.

Consider the simplest model ⟨A0,B⟩. Let us indicate a possible way of in-
terpreting the properties of entities in this model. Consider 𝑎 ∈ 𝐻𝐹 (R): let
𝑎 = {𝑎1, . . . , 𝑎𝑘}. The elements 𝑎1, . . . , 𝑎𝑘 can be considered as properties of the
object {𝑎} from the basic categories 𝐼𝑉 and 𝐶𝑁 . These properties can be decoded
based on the ranks of the elements and some of their numerical characteristics.

Let us set 𝐶𝑁 = {𝑐𝑛1, . . . , 𝑐𝑛𝑛, . . . }, 𝐼𝑉 = {𝑖𝑣1 . . . , 𝑖𝑣𝑛, . . . }. All 𝐼𝑉 properties
are binary (either hold or not), but 𝐶𝑁 properties can be either binary or take
an arbitrary value from real numbers (for example, such properties as height or
weight), so we will consider two different categories of 𝐶𝑁𝑏𝑖𝑛 and 𝐶𝑁𝑐𝑜𝑛𝑡 . Let
us indicate a (possible) encoding of properties by natural numbers. If we associate
with each category and element of this category the number (𝐼𝑉 ↦→ 1, 𝑖𝑣𝑛 ↦→
𝑛;𝐶𝑁𝑏𝑖𝑛 ↦→ 2, (𝑐𝑛𝑏𝑖𝑛)𝑛 ↦→ 𝑛, (𝑐𝑛𝑏𝑖𝑛)𝑛 ↦→ 𝑛;𝐶𝑁𝑐𝑜𝑛𝑡 ↦→ 3, (𝑐𝑛𝑐𝑜𝑛𝑡 )𝑛 ↦→ 𝑛), then
using the Cantor function 𝑐 : N2 → N, 𝑐(𝑥, 𝑦) =

(𝑥+𝑦)2+3𝑥+𝑦
2 , for the number

𝑛 ∈ N we can restore a category and an element of this category. Let, for example,
𝐼𝑉 = {𝑤𝑎𝑙𝑘, 𝑡𝑎𝑙𝑘}, 𝐶𝑁𝑏𝑖𝑛 = {𝑚𝑎𝑛, 𝑤𝑜𝑚𝑎𝑛} (we assume that they are numbered in
the order they are listed). Since 𝑐(1, 2) = 7 and 𝑐(2, 1) = 8, we get that 7 corresponds
to the category 𝐼𝑉 and the property 𝑡𝑎𝑙𝑘 , and 8 corresponds to the category 𝐶𝑁 and
the property𝑚𝑎𝑛. The numerical value of measurable properties can be encoded, for
example, using the maximum real number contained in the support of the element
𝑎. More generally, we assume that some abstract Σ-function 𝑉𝑎𝑙 : 𝐴 → R is given,
which determines the value for measurable properties.

As an example, consider the following model:

• 𝐼𝑉 = {𝑡𝑎𝑙𝑘}
• 𝐶𝑁𝑏𝑖𝑛 = {ℎ𝑢𝑚𝑎𝑛, 𝑚𝑎𝑙𝑒}
• 𝐶𝑁𝑐𝑜𝑛𝑡 = {ℎ𝑒𝑖𝑔ℎ𝑡, 𝑠𝑝𝑒𝑒𝑑}

And the following match:

• 𝑤𝑎𝑙𝑘 ↦→ 𝑐(1, 1)
• ℎ𝑢𝑚𝑎𝑛 ↦→ 𝑐(2, 1), 𝑚𝑎𝑙𝑒 ↦→ 𝑐(2, 2)
• ℎ𝑒𝑖𝑔ℎ𝑡 ↦→ 𝑐(3, 1), 𝑠𝑝𝑒𝑒𝑑 ↦→ 𝑐(3, 2)

Suppose that for some element 𝑎 = {𝑎1, . . . , 𝑎5} ∈ 𝐻𝐹 (R) the following corre-
spondence is given:

• 𝑟𝑛𝑘 (𝑎1) = 𝑐(1, 1)
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• 𝑟𝑛𝑘 (𝑎2) = 𝑐(2, 1), 𝑟𝑛𝑘 (𝑎3) = 𝑐(2, 2)
• 𝑟𝑛𝑘 (𝑎4) = 𝑐(3, 1), 𝑉𝑎𝑙 (𝑎4) = 180, 𝑟𝑛𝑘 (𝑎5) = 𝑐(3, 2), 𝑉𝑎𝑙 (𝑎5) = 6

The element 𝑎 = {𝑎1, . . . , 𝑎5} can be visualized using a graph as in Fig. 1.

Fig. 1 Rank Tree

Then, looking at each vertex of the graph (for example, by breadth- or depth-first
searches), we can conclude that

• 𝑎1 ∼ 𝑤𝑎𝑙𝑘
• 𝑎2 ∼ ℎ𝑢𝑚𝑎𝑛, 𝑎3 ∼ 𝑚𝑎𝑙𝑒
• 𝑎4 ∼ ℎ𝑒𝑖𝑔ℎ𝑡 = 180, 𝑎5 ∼ 𝑠𝑝𝑒𝑒𝑑 = 6

Using this correspondence, one can define Σ-predicates and Σ-operators as fol-
lows:

• (𝑎 ∈ ℎ𝑢𝑚𝑎𝑛) ⇔ (∃𝑥 ∈ 𝑎) (𝑟𝑛𝑘 (𝑥) = 𝑐(2, 1))
• (𝑎 ∈ 𝑚𝑎𝑙𝑒) ⇔ (∃𝑥 ∈ 𝑎) (𝑟𝑛𝑘 (𝑥) = 𝑐(2, 2))
• (𝑎 ∈ 𝑚𝑎𝑛) ⇔ (𝑎 ∈ 𝑚𝑎𝑙𝑒 & 𝑎 ∈ ℎ𝑢𝑚𝑎𝑛)
• (𝑎 ∈ 𝑡𝑎𝑙𝑙 (𝑚𝑎𝑛)) ⇔ (𝑎 ∈ 𝑚𝑎𝑛 & (∃𝑥 ∈ 𝑎) (𝑟𝑛𝑘 (𝑥) = 𝑐(3, 1) ; & 𝑉𝑎𝑙 (𝑥) ≥

185))
• (𝑎 ∈ 𝑠𝑙𝑜𝑤𝑙𝑦(𝑤𝑎𝑙𝑘) ⇔ (𝑎 ∈ 𝑤𝑎𝑙𝑘 & (∃𝑥 ∈ 𝑎) (𝑟𝑛𝑘 (𝑥) = 𝑐(3, 2) & 𝑉𝑎𝑙 (𝑥) ≤

3))
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5.1 Isomorphism between Rank and Vector Models

The reasoning above was given within the framework of the simplest model. The vec-
tor (or ontological) model of intensional logic uses a different approach to compare
entities and different spaces of truth values.

Denote by 𝑁𝑎𝑡 the set of ordinals in 𝐻𝐹 (R). Let’s assume that some en-
coding of categories 𝐼𝑉 and 𝐶𝑁 is given (for example, as specified in the pre-
vious subsection). There exists a partial Σ-function 𝜈 : 𝑁𝑎𝑡 → 𝑁𝑎𝑡2, which
allows one to effectively determine a category and a property from this cate-
gory by number, and its domain of definition is a Δ-set, as well as some Σ-
function 𝑉𝑎𝑙 : 𝐻𝐹 (R) → 𝑁𝑎𝑡, which determines the numerical characteris-
tics of properties from 𝐶𝑁𝑐𝑜𝑛𝑡 . Accordingly, there are Δ-formulas 𝜑𝑏𝑖𝑛 (𝑥) and
𝜑𝑐𝑜𝑛𝑡 (𝑥) such that 𝜑𝑏𝑖𝑛 (𝑥) ⇔ “𝑥 matches the binary property ” and 𝜑𝑐𝑜𝑛𝑡 (𝑥) ⇔
“𝑥 matches the continuous property ”. We indicate (following the definition of the
vector model) how the presence, absence, or uncertainty of a property can be inter-
preted in the rank model. If 𝑥 ∈ 𝑎 for 𝑎 ∈ 𝐻𝐹 (R) then:

• if 0 ∈ 𝑥, then we assume that the property (determined by the rank of the element
𝑥) is missing;

• if 0 ∉ 𝑥, then we assume that the property is present;
• if an element of rank 𝑛 is absent in 𝑎, then we assume that we do not know about

the presence of this property.

In view of what has been said, it is necessary to exclude some of the elements from
𝐻𝐹 (R) in order to avoid ambiguous interpretation. Namely, to exclude all elements
that contain (as sets) different elements of the same rank, as well as elements whose
rank does not belong to the domain of the encoding function 𝜈. Thus, we will consider
a set 𝑆 such that

𝑎 ∈ 𝑆 ⇔ ∀𝑥 ∈ 𝑎[∀𝑦 ∈ 𝑎(𝑟𝑛𝑘 (𝑥) ≠ 𝑟𝑛𝑘 (𝑦)) & 𝑟𝑛𝑘 (𝑥) ∈ 𝑑𝑜𝑚(𝜈)] .

𝑆 is a Δ-set. Denote by 𝑟𝑛𝑘∗ (𝑎) the set of ranks of elements from 𝑎, i.e., 𝑟𝑛𝑘∗ (𝑎) =
{𝑛 ∈ 𝑁𝑎𝑡 : ∃𝑥 ∈ 𝑎(𝑟𝑛𝑘 (𝑥) = 𝑛)}. On the set 𝑆, we introduce the Δ-preorder ≤1 as
follows:

𝑎1 ≤1 𝑎2 ⇔ 𝑟𝑛𝑘∗ (𝑎1) ⊆ 𝑟𝑛𝑘∗ (𝑎2) &∀𝑥 ∈ 𝑎1 [(0 ∈ 𝑥 → ∃𝑦 ∈ 𝑎2 (𝑟𝑛𝑘 (𝑥) = 𝑟𝑛𝑘 (𝑦)

& 0 ∈ 𝑦))&(0 ∉ 𝑥& 𝜑𝑐𝑜𝑛𝑡 (𝑥) → ∃𝑦 ∈ 𝑎2 (𝑟𝑛𝑘 (𝑥) = 𝑟𝑛𝑘 (𝑦) &𝑉𝑎𝑙 (𝑥) = 𝑉𝑎𝑙 (𝑦)))] .

The equivalence relation defined by this preorder makes it possible to consider equal
elements with the same properties, but in which these properties are defined by
different elements. Therefore, in what follows we will consider the sets of equivalence
classes [𝑆] and the (induced on it) order ≤1.

Recall that the elements of the set𝐶𝑜𝑛𝑠 for the vector model are finite tuples from
(R ∪ {⊥})<𝜔 . The ⊔ function is clearly defined. Let’s denote them by 𝐶𝑜𝑛𝑠𝑣𝑒𝑐 and
⊔𝑣𝑒𝑐 respectively. As the set 𝐶𝑜𝑛𝑠 for the rank model, we also consider finite tuples
(from [𝑆]), and the function ⊔ is defined similarly to a vector one. Let’s denote them
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by 𝐶𝑜𝑛𝑠𝑟𝑛𝑘 and ⊔𝑟𝑛𝑘 , respectively. The orders on the vector and rank models will
also be denoted by ≤𝑣𝑒𝑐 and ≤𝑟𝑛𝑘 . Consider 𝑓 -bases

A0 = ⟨[𝑆], ≤𝑟𝑛𝑘 , 𝐶𝑜𝑛𝑠𝑟𝑛𝑘 ,⊔𝑟𝑛𝑘⟩,

A𝑣𝑒𝑐 = ⟨(R ∪ {⊥})<𝜔 , ≤𝑣𝑒𝑐, 𝐶𝑜𝑛𝑠𝑣𝑒𝑐,⊔𝑣𝑒𝑐⟩

, and the mapping 𝛽 : A0 → A𝑣𝑒𝑐 defined as follows: the element 𝑎 ∈ [𝑆]
corresponds to an ordered set 𝛼 of length 𝑟𝑛𝑘 (𝑎) − 1 such that for all 𝑖 ≤ 𝑙ℎ(𝛼):

• if 𝑖 ∉ 𝑟𝑛𝑘∗ (𝑎) then 𝛼(𝑖) = ⊥
• if ∃𝑥 ∈ 𝑎(𝑟𝑛𝑘 (𝑥) = 𝑖& 0 ∈ 𝑥) then 𝛼(𝑖) = 0
• if ∃𝑥 ∈ 𝑎(𝑟𝑛𝑘 (𝑥) = 𝑖& 0 ∉ 𝑥& 𝜑𝑐𝑜𝑛𝑡 (𝑥)) then 𝛼(𝑖) = 𝑉𝑎𝑙 (𝑥)
• else 𝛼(𝑖) = 1

Let us show that 𝛽 is a bijection. Let’s show injectivity. Let 𝑎1, 𝑎2 ∈ [𝑆] and 𝑎1 ≠

𝑎2, 𝛽(𝑎1) = 𝛼1, 𝛽(𝑎2) = 𝛼2. Either 𝑟𝑛𝑘∗ (𝑎1) ≠ 𝑟𝑛𝑘∗ (𝑎2) or 𝑟𝑛𝑘∗ (𝑎1) = 𝑟𝑛𝑘∗ (𝑎2).
The first immediately implies 𝛼1 ≠ 𝛼2, since there is an element 𝑥 of rank 𝑖 such that
𝑥 ∈ 𝑎1 and 𝑥 ∉ 𝑎2, so by the definition of the mapping 𝛽 𝛼1 (𝑖) ≠ 𝛼2 (𝑖) (or 𝛼2 (𝑖) is
not defined at all and 𝑙ℎ(𝛼1) ≠ 𝑙ℎ(𝛼2)). Let 𝑟𝑛𝑘∗ (𝑎1) = 𝑟𝑛𝑘∗ (𝑎2). Then one of the
following is required:

• ∃𝑥 ∈ 𝑎1∃𝑦 ∈ 𝑎2 (𝑟𝑛𝑘 (𝑥) = 𝑟𝑛𝑘 (𝑦) & 0 ∈ 𝑥& 0 ∉ 𝑦)
• ∃𝑥 ∈ 𝑎1∃𝑦 ∈ 𝑎2 (𝑟𝑛𝑘 (𝑥) = 𝑟𝑛𝑘 (𝑦) & 𝜑𝑐𝑜𝑛𝑡 (𝑥) &𝑉𝑎𝑙 (𝑥) ≠ 𝑉𝑎𝑙 (𝑦))

Each item immediately follows 𝛼1 ≠ 𝛼2, so 𝛽 is an injection. Let’s show surjectivity.
Let 𝛼 ∈ (R ∪ {⊥})<𝜔 . Consider an element 𝑎 ∈ [𝑆] such that for all 𝑖 ≤ 𝑙ℎ(𝛼):

• if 𝛼(𝑖) = ⊥ then 𝑖 ∉ 𝑟𝑛𝑘∗ (𝑎)
• if 𝑖 corresponds to a continuum property and 𝛼(𝑖) ≠ ⊥ then

∃𝑥 ∈ 𝑎(𝑟𝑛𝑘 (𝑥) = 𝑖&𝑉𝑎𝑙 (𝑥) = 𝛼(𝑖))
• if 𝛼(𝑖) = 0 then ∃𝑥 ∈ 𝑎(𝑟𝑛𝑘 (𝑥) = 𝑖& 0 ∈ 𝑥)
• else ∃𝑥 ∈ 𝑎(𝑟𝑛𝑘 (𝑥) = 𝑖& 0 ∉ 𝑥)

These conditions uniquely define an element 𝑎 ∈ [𝑆] such that 𝛽(𝑎) = 𝛼, so 𝛽 is a
surjection.

Let us now show that the mapping 𝛽 is order-preserving. Let 𝑎1, 𝑎2 ∈ 𝑆, 𝑎1 ≤𝑟𝑛𝑘

𝑎2, 𝛽(𝑎1) = 𝛼1, 𝛽(𝑎2) = 𝛼2. Since 𝑎1 ≤𝑟𝑛𝑘 𝑎2, then 𝑙ℎ(𝛼1) ≤ 𝑙ℎ(𝛼2). Let 𝑖 ≤
𝑙ℎ(𝛼1). If 𝛼1 (𝑖) = ⊥, then 𝛼1 (𝑖) ≤ 𝛼2 (𝑖). If 𝛼1 (𝑖) = 0, then ∃𝑥 ∈ 𝑎1 (𝑟𝑛𝑘 (𝑥) =

𝑖& 0 ∈ 𝑥) is true by the definition of 𝛽, and by definition of order ≤1, we get that
∃𝑦 ∈ 𝑎2 (𝑟𝑛𝑘 (𝑥) = 𝑟𝑛𝑘 (𝑦) & 0 ∈ 𝑦), which gives 𝛼2 (𝑖) = 0. If now 𝑖 corresponds
to a continuum property, then ∃𝑥 ∈ 𝑎1 (𝑟𝑛𝑘 (𝑥) = 𝑖& 𝜑𝑐𝑜𝑛𝑡 (𝑥) &𝑉𝑎𝑙 (𝑥) = 𝛼1 (𝑖)),
which gives ∃𝑦 ∈ 𝑎2 (𝑟𝑛𝑘 (𝑥) = 𝑟𝑛𝑘 (𝑦) & 𝜑𝑐𝑜𝑛𝑡 (𝑥) &𝑉𝑎𝑙 (𝑦) = 𝛼1 (𝑖)), and therefore
𝛼1 (𝑖) = 𝛼2 (𝑖). So 𝛼1 (𝑖) ≤ 𝛼2 (𝑖) is true for all 𝑖 ≤ 𝑙ℎ(𝛼1), and by definition of the
order ≤𝑣𝑒𝑐 we get that 𝛼1 ≤𝑣𝑒𝑐 𝛼2. Thus, we have

Proposition There exists an isomorphism between 𝑓 -bases A0 = ⟨[𝑆], ≤𝑟𝑛𝑘

, 𝐶𝑜𝑛𝑠𝑟𝑛𝑘 ,⊔𝑟𝑛𝑘⟩ and A𝑣𝑒𝑐 = ⟨(R ∪ {⊥})<𝜔 , ≤𝑣𝑒𝑐, 𝐶𝑜𝑛𝑠𝑣𝑒𝑐,⊔𝑣𝑒𝑐⟩. □
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If we take
C = ⟨{0, 1,⊥,⊤},⊥, ≤,⊔⟩,

as the truth space, then we get the following

Corollary Hierarchies of computable functionals of finite types for a rank model of
the form ⟨A0, C⟩ and a vector model of the form ⟨A𝑣𝑒𝑐, C⟩ are equivalent. □

Moreover, from the definition of this isomorphism it is clear that it is a Σ-function.
The ranks of ordered sets of parent elements depend only on the length of the set.

Indeed, the following (more general) fact is true

Lemma IfA is an admissible set and 𝑎1, . . . , 𝑎𝑛 ∈ A, 𝑛 ≥ 2 then 𝑟𝑛𝑘 (⟨𝑎1, . . . , 𝑎𝑛⟩) =
sup{ sup

𝑖=1,𝑛−1
{𝑟𝑛𝑘 (𝑎𝑖) + 2𝑖}, 𝑟𝑛𝑘 (𝑎𝑛) + 2(𝑛 − 1)}. □

Proof Induction on 𝑛. For 𝑛 = 2 the assertion is true.
𝑛→ 𝑛 + 1: since ⟨𝑎1, . . . , 𝑎𝑛+1⟩ = ⟨𝑎1, ⟨𝑎2, . . . , 𝑎𝑛+1⟩⟩ , then

𝑟𝑛𝑘 (⟨𝑎1, . . . , 𝑎𝑛+1⟩) = sup{𝑟𝑛𝑘 (𝑎1) + 2, sup
𝑖=2,𝑛

{𝑟𝑛𝑘 (𝑎𝑖) + 2𝑖}, 𝑟𝑛𝑘 (𝑎𝑛+1) + 2𝑛} =

= sup{ sup
𝑖=1,𝑛

{𝑟𝑛𝑘 (𝑎𝑖) + 2𝑖}, 𝑟𝑛𝑘 (𝑎𝑛+1) + 2𝑛}.

Hence, if 𝑟1, . . . , 𝑟𝑛 ∈ R ∪ {⊥} then 𝑟𝑛𝑘 (⟨𝑟1, . . . , 𝑟𝑛⟩) = 2(𝑛 − 1) . In the rank
model, by definition, the rank of an element corresponding to an ordered set of length
𝑛 does not exceed 𝑛. Thus, even for 𝑛 > 2, elements of lower ranks are obtained. In
the general case, the ranks of the elements of the rank model will be much smaller,
since if 𝑟𝑖 = ⊥, then the element of rank 𝑖 is absent in the corresponding object of the
rank model. In addition, due to the introduced equivalence relation when defining
the rank model, most of the content of the hereditarily finite superstructure becomes
insignificant. In particular, since the rank (but not the content) uniquely determines
some property, it is sufficient to confine ourselves to considering only one parent
element.

6 Interpreting the Semantics of Possible Worlds

In this section, we will show how, for a possible world given by a real number (more
precisely, the set 𝑤 = {𝑟}, where 𝑟 ∈ R), one can reasonably define a Δ-subset in
𝐻𝐹 (R) and an 𝑓 -base on this Δ-subset, which will be an interpretation of possible
world 𝑤. Having such 𝑓 -bases for all possible worlds, when considering questions of
the truth of formulas (depending on the possible world), one can switch from using
universal valuation, which, depending on the possible world, assigns one or another
value to a variable, to checking the truth of formulas in the constructed 𝑓 -bases,
which are already significantly smaller than the original structure. In addition, this
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allows us to consider the entire hierarchy of computable functionals of finite types
already on the structure corresponding to the possible world.

Various interpretations will be given for 𝑓 -bases

A0 = ⟨𝑋, =, 𝑃1 (𝑋),∪⟩,

where 𝑋 = 𝐻𝐹 (R) , and

A𝑣𝑒𝑐 = ⟨(R ∪ {⊥})<𝜔 , ≤, 𝐶𝑜𝑛𝑠𝑣𝑒𝑐,⊔𝑣𝑒𝑐⟩

due to their fundamental differences.
Here we indicate how, given a real number 𝑟 ∈ R in a hereditarily finite super-

structure HF(R), one can define a countable Δ-definable set of real numbers. To do
this, we need several auxiliary Σ-functions, defined (by Σ-recursion over ordinals)
as follows:
𝑓1 : 𝑁𝑎𝑡 → R, 𝑓1 (0) = 0, 𝑓1 (𝑛 + 1) = 𝑓 (𝑛) + 1.
𝑓2 : R × 𝑁𝑎𝑡 → R, 𝑓2 (𝑟, 0) = 𝑟 , 𝑓2 (𝑟, 𝑛 + 1) = 𝑓2 (𝑟 ,𝑛)

10 .
𝑝𝑟 : R × 𝑁𝑎𝑡 → 𝑁𝑎𝑡, 𝑝𝑟 (𝑟, 0) = 𝑎0 ⇔ 𝑎0 ∈ 𝑁𝑎𝑡& 𝑓1 (𝑎0) ≤ 𝑟 ≤ 𝑓1 (𝑎0) + 1,
𝑝𝑟 (𝑟, 𝑛 + 1) = 𝑎𝑛+1 ⇔ 𝑎𝑛+1 ∈ 𝑁𝑎𝑡& 𝑓1 (𝑎𝑛+1)

10𝑛 ≤ 𝑥 −∑𝑛
𝑖=0

𝑓1 (𝑎𝑖)
10𝑖 ≤ 𝑓1 (𝑎𝑛+1)

10𝑛 + 1.
The function 𝑓1 associates a natural number (ordinal) with a real number (primary el-
ement) corresponding to this natural number. The function 𝑓2 divides the real number
𝑟 by 10 to the power of 𝑛, and the function 𝑝𝑟 determines the natural number corre-
sponding to the 𝑛-th digit in the decimal representation of the real number 𝑟. From
the function 𝑝𝑟 one can define (by Σ-recursion) the Σ-function 𝑓3 : R×𝑁𝑎𝑡 → 𝑁𝑎𝑡,
which enumerates the sequence of the first 𝑛 numbers in the decimal representation
of a real number , i.e., if 𝑟 = 𝑎0, 𝑎1 . . . 𝑎𝑛−1 . . . , then 𝑓3 (𝑟, 𝑛) is the number of the
sequence of natural numbers ⟨𝑎0, . . . 𝑎𝑛−1⟩.

Let some natural number 𝑘 be given, which indicates how many characters in
the decimal representation of real numbers to consider. We will call this number
the order of approximation of real numbers. Let 𝑟 ∈ R. We define the Δ-set 𝑆{𝑟 } as
follows:

𝑥 ∈ 𝑆{𝑟 } ⇔ ∃𝑙 ( 𝑓3 (𝑥, 𝑘) = 𝑙&∀𝑖 ≤ 𝑘 (𝑝𝑟 (𝑥, 𝑖) = 𝑝𝑟 (𝑟, 𝑝𝑖𝑙)) &∃𝑛(𝑛 ∈ 𝑁𝑎𝑡&

& 𝑓1 (𝑛) = 𝑥 · 10𝑘),

𝑥 ∉ 𝑆{𝑟 } ⇔ ∃𝑙 ( 𝑓3 (𝑥, 𝑘) = 𝑙&∃𝑖 ≤ 𝑘 (𝑝𝑟 (𝑥, 𝑖) ≠ 𝑝𝑟 (𝑟, 𝑝𝑖𝑙)) ∨ ∃𝑛(𝑛 ∈ 𝑁𝑎𝑡&

& 𝑓1 (𝑛) < 𝑥 · 10𝑘 < 𝑓1 (𝑛) + 1),

where 𝑝𝑙 is the 𝑙th prime number. Thus, the set 𝑆{𝑟 } will include all real numbers of
the form 𝑎0, 𝑎1 . . . 𝑎𝑘−1 whose 𝑖-th digit in decimal representation is equal to 𝑝𝑖

𝑙
th

digit in decimal representation of 𝑟 , where 𝑙 is the sequence number ⟨𝑎0, . . . , 𝑎𝑘−1⟩.
In addition, we define the Σ function 𝜈{𝑟 } : 𝑆{𝑟 } → 𝑁𝑎𝑡 as follows: 𝜈(𝑥) = 𝑛⇔ 𝑥 ∈
𝑆{𝑟 } &∀𝑖 ≤ 𝑘 (𝑝𝑟 (𝑥, 𝑖) = 𝑝𝑟 (𝑟, 𝑝𝑖𝑛)). This function enumerates the set 𝑆{𝑟 }.
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6.1 Interpretation of Possible Worlds Semantics for Simplest Model

Consider the simplest model

A0 = ⟨𝑋, =, 𝑃1 (𝑋),∪⟩,

where 𝑋 = 𝐻𝐹 (R). The possible world is given by an element from 𝑃1 (R), i.e., set
of the form 𝑤 = {𝑟} for 𝑟 ∈ R. Based on the possible world 𝑤, we define the Δ-set
𝑆𝑤 as in the previous section. Based on it, we construct the Δ-set 𝐻𝑤 as follows:

𝑥 ∈ 𝐻𝑤 ⇔ 𝑠𝑝(𝑥) ⊆ 𝑆𝑤 ,

where 𝑠𝑝(𝑥) is the support of 𝑥. It is clear that this is also a Δ-set. Then on the set
𝐻𝑤 it is possible to define an 𝑓 -base

H𝑤 = ⟨𝐻𝑤 , =, 𝑃1 (𝐻𝑤),∪⟩,

which we will consider as an 𝑓 -base, corresponding to the possible world 𝑤.
Intuitively, one can consider real numbers as some initial “filling” of A, which

contains information about all possible worlds at once. Sets from 𝐻𝐹 (R) are con-
structed over this filling, i.e., objects of our structure A. Choosing a real number 𝑟
and considering the set 𝑆{𝑟 } specified by it, we select a part from the entire content
of the structure A and consider the objects built on this part, which are the objects
of the possible world 𝑤 = {𝑟}.

6.2 Interpretation of Semantics of Possible Worlds for Vector Model

Let us interpret possible worlds for a vector model of the form

A𝑣𝑒𝑐 = ⟨(R ∪ {⊥})<𝜔 , ≤𝑣𝑒𝑐, 𝐶𝑜𝑛𝑠𝑣𝑒𝑐,⊔𝑣𝑒𝑐⟩.

Similarly, we consider the set 𝑤 = {𝑟} as a possible world and construct a Δ-set 𝑆𝑤
from it. Given the set 𝑆𝑤 , we define the Δ-set 𝐻𝑤 as follows (assuming that only
ordered sets are considered):

𝑥 ∈ 𝐻𝑤 ⇔ ∀𝑖 ≤ 𝑙ℎ(𝑥) [∃𝑟 (𝑟 ∈ 𝑆𝑤 & 𝜈𝑤 (𝑟) = 𝑖& 𝑥(𝑖) ∈ 𝑆{𝑟 })∨

∨(𝑖 ∉ 𝑝𝑟∗𝑟 (𝜈𝑤) & “𝑥(𝑖) takes any valid value”)],

where the formula in quotation marks at the end is written as in Sect. 6.2 using the
Σ-formulas 𝜑𝑏𝑖𝑛 and 𝜑𝑐𝑜𝑛𝑡 . It is also clear that the complement of the set 𝐻𝑤 is a
Σ-set, so it is indeed a Δ-set. Restrictions of the order ≤𝑣𝑒𝑐, the set 𝐶𝑜𝑛𝑠, and the
function ⊔ to 𝐻𝑤 allow us to correctly define the 𝑓 -base

H𝑤 = ⟨𝐻𝑤 , ≤𝑣𝑒𝑐 ∩(𝐻𝑤)2, 𝐶𝑜𝑛𝑠𝑣𝑒𝑐 ∩ (𝐻𝑤)∗,⊔𝑣𝑒𝑐⟩,
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which will be treat as an interpretation of the possible world 𝑤.
The algorithm for constructing a support for a possible world consists in con-

structing a countable set of real numbers 𝑆𝑤 from the possible world 𝑤 = {𝑟}.
Further, we assume that each number 𝑟1 ∈ 𝑆𝑤 together with its number 𝑖 = 𝜈𝑤 (𝑟1)
and a similar countable set of real numbers 𝑆{𝑟1 } defines the set of admissible values
for all 𝑖-th coordinates of ordered sets. Next, the set 𝐻𝑤 contains all such ordered
sets whose coordinate values belong to the sets of their admissible values. The set
𝐻𝑤 is considered to be the set of objects in the possible world 𝑤.

To analyze time processes, one has to consider both points (moments) and in-
tervals of the form (𝑟1, 𝑟2), where 𝑟1 ≤ 𝑟2 are real numbers. Using the above
Σ-functions for encoding real numbers and a note about the order of approximation
of real numbers, as well as some way of encoding ordered pairs of real numbers
(for example, the pair 𝑟1 = 𝑥, 𝑥1𝑥2 . . . , 𝑟2 = 𝑦, 𝑦1𝑦2 . . . corresponds to the number
𝑟 = 0, 𝑥𝑦𝑥1𝑦1𝑥2𝑦2 . . . ) we get that there are Σ-predicates 𝑐𝑖𝑛𝑡 (𝑟) 𝑖𝑛𝑡 (𝑟, 𝑟1, 𝑟2) true
if and only if the real number 𝑟 encodes some interval and when the real number
𝑟 encodes the interval (𝑟1, 𝑟2) respectively. Further, following the already defined
constructions, we set 𝑆𝑖𝑛𝑡{𝑟 } = 𝑆{𝑟1 } ∪ 𝑆{𝑟2 } as a possible world for the interval (𝑟1, 𝑟2)
given by the number 𝑟. If it is necessary to use time intervals or a point in time, the
possible world 𝑤 = {𝑟} can be treated in one way or another.

6.3 Analysis of Past Simple, Future Simple
and Present Continuous in English

Let us give examples of using the interpretation of possible worlds. Consider sen-
tences

(1) Michele barked,

(2) Michele will bark,

(3) Michele is barking,

as well as
(4) Michele barks.

It is clear that on possible worlds one can define by a Δ-formula an order relation
consistent with the order on real numbers (i.e., 𝑤1 (= {𝑟1}) ≤ 𝑤2 (= {𝑟2}) ⇔
𝑟1 ≤ 𝑟2). In [3] is given an analysis of English sentences using object intensions.
Here, we will consider 𝑚 as a variable with a certain set of its possible values
(extensions). Moreover, for each Σ-subset 𝑆 in 𝐻𝐹 (R) there is a Σ-subset 𝑆𝑤 ⊆ 𝑆

in 𝐻𝑤 (the support of 𝑓 -base H𝑤 corresponding to the possible world 𝑤). This
Σ-subset is obtained in the same way as Σ-subsets were obtained from the Σ-ideals
of the functional product 𝐹 (A,B), with the replacement by 𝑓 -base A to 𝑓 -base
H𝑤 . Then the Σ-subset 𝑆𝑤 can be considered an interpretation of the most general
Σ-subset 𝑆 in the possible world 𝑤.
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Therefore, proposition (1) is true in the model A and the possible world 𝑤 = {𝑟}
if

A ⊨ ∃𝑤1 (= {𝑟1})∃𝑟2𝑟3 (𝑖𝑛𝑡 (𝑟1, 𝑟2, 𝑟3) & 𝑟3 < 𝑟 &𝑚 ∈ 𝑆𝑖𝑛𝑡𝑤1 & 𝑏𝑎𝑟𝑘 ′𝑤1 (𝑚))

(when valuing 𝛾), where 𝑏𝑎𝑟𝑘 ′(𝑥) is the Σ-predicate corresponding to the verb bark.
In other words, sentence (1) is true at time 𝑟 if there exists a time interval (𝑟2, 𝑟3)
such that 𝑟3 ≤ 𝑟 and sentence (4) is true in this time interval. Proposition (2) is
treated similarly, with a change of order. Proposition (3) is true in the model A and
the possible world 𝑤 = {𝑟} if

A ⊨ ∃𝑤1 (= {𝑟1})∃𝑟2𝑟3 (𝑖𝑛𝑡 (𝑟1, 𝑟2, 𝑟3) & 𝑟2 < 𝑟 < 𝑟3 &𝑚 ∈ 𝑆𝑖𝑛𝑡𝑤1 & 𝑏𝑎𝑟𝑘 ′𝑤1 (𝑚)).

In the case of proposition (3), the possible world 𝑤 for which the truth of the
proposition is checked can also be an interval if necessary.

Algorithmic issues of interval semantics for Perfect tenses in English and the
category of aspect in Russian are discussed in [17, 16].

It is interesting that, in contrast to extensional objects, intensional issues (more
exactly, temporal aspects) are arranged very different in English and in Russian. We
discuss these differences in one of the forthcoming papers.
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