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Abstract. We consider the notion of mass problem of presentability for
countable structures, and study the relationship between Medvedev and
Muchnik reducibilities on such problems and possible ways of syntac-
tically characterizing these reducibilities. Also, we consider the notions
of strong and weak presentability dimension and characterize classes of
structures with presentability dimensions 1.

1 Basic notions and facts

The main problem we consider in this paper is the relationship between pre-
sentations of countable structures on natural numbers and on admissible sets.
Most of notations and terminology we use here are standard and corresponds
to [4, 1, 13]. We denote the domains of a structures M, N, . . . by M,N. . . .. For
any arbitrary structure M the hereditary finite superstructure HF(M), which
is the least admissible set containing the domain of M as a subset, enables us
to study effective (computable) properties of M by means of computability the-
ory for admissible sets. The exact definition is as follows: the hereditary finite
superstructure HF(M) over a structure M of signature σ is a structure of sig-
nature σ′ = σ ∪ {U1,∈2}, whose universe is HF (M) =

⋃
n∈ω Hn(M), where

H0(M) = M , Hn+1(M) = Hn(M)∪{a|a ⊆ Hn(M), card(a) < ω}, the predicate
U distinguish the set of the elements of the structure M (regarded as urelements),
while the relation ∈ has the usual set theoretic meaning.

In the class of all formulas of signature σ′ we define the subclass of ∆0-
formulas as the closure of the class of atomic formulas under ∧,∨,¬,→, ∃x ∈
y, ∀x ∈ y; the class of Σ-formulas is the closure of the class of ∆0-formulas
under ∧,∨,¬,→, ∃x ∈ y, ∀x ∈ y, and the quantifier ∃x; the class of Π-formulas
is defined in the same way, allowing the quantifier ∀x instead of ∃x. A relation
on HF(M) is called Σ-definable (Π-definable) if it is defined by a corresponding
formula, possibly with parameters; it is called ∆-definable if it is Σ- and Π-
definable at the same time.
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In all that follows, we consider only countable structures of finite signatures.
For a countable structure M, a presentation of M on the natural numbers, or
simply a presentation of M, is any structure C such that C ∼= M and the domain
of C is a subset of ω (the relation = is assumed to be a congruence relation on
C and may differ form the normal equality relation on C). We can also treat the
atomic diagram of a presentation as a subset of ω, using some Gödel numbering
of the atomic formulas of the signature of M. So any presentation, identified
with its atomic diagram, can be considered as a subset of ω.

A mass problem, as introduced by Yu.T. Medvedev [7], is any set of total
functions from ω to ω. Intuitively, a mass problem can be considered as a set
of ”solutions” (in form of functions from ω to ω) of some ”informal problem”.
Below we list some examples of mass problems which correspond to well-known
informal problems from computability theory:

1) the problem of solvability of a set A ⊆ ω is the mass problem SA = {χA},
where χA is the characteristic function of A;

2) the problem of enumerability of a set A ⊆ ω is the mass problem
EA = {f : ω → ω | rng(f) = A};

3) the problem of separability of a pair of sets A,B ⊆ ω is the mass problem
PA,B = {f : ω → 2 | f−1(0) ⊇ A, f−1(1) ⊇ B}.

In this paper we consider another class of mass problems – problems of
presentability, which corresponds to the main informal problem in computable
model theory, the problem of presentability of structures on natural numbers.
For a structure M, we consider the set of all possible presentations of M. The set
of characteristic functions of the atomic diagrams of such presentations forms
the mass problem

M = { χD(C) | C is a presentation of M }.

We call this mass problem the problem of presentability of M.
Note that for any presentation C ∈ M its domain C is effectively recognizable

from (more precisely, Turing reducible to) the function χD(C), since c ∈ C iff
(c = c) ∈ D(C). It is also clear that if C,D are presentations (maybe of different
structures) then χD(C) 6T χD(D) if and only if χD(C) 6e χD(D).

For a structure M, one could also study the set

M
−−

= { χ∗D(C) | C is a presentation of M }

of partial characteristic functions of the atomic diagrams of all presentations of
M (recall that, for a set A ⊆ ω, χA(n) = 0 if n ∈ A, and χA(n) is undefined
otherwise). Any such set is a partial mass problem in the sense of E.Z. Dyment
[3], and we will call them partial problems of presentability. Such problems, in a
different terminology, were considered with respect to classes of finite structures
in [2]. In this case enumeration reducibility, the main object of study in [2], is
no longer equivalent to Turing reducibility.
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In [7] it was introduced a notion of reducibility between mass problems. If
A and B are mass problems, then A is said to be reducible to B (denoted by
A 6 B), if there exists a recursive operator Ψ such that Ψ(B) ⊆ A. Informally,
A is reducible to B if there exists an uniform effective procedure, which, given
any ”solution” from B, transforms it to some ”solution” from A.

The equivalence relation ≡ on mass problem is defined from 6 in the usual
way: A ≡ B if A 6 B and B 6 A. Equivalence classes of mass problems under ≡
(which are called degrees of difficulty), together with the relation of reducibility
6, form a distributive lattice known as the Medvedev lattice [7].

There is another important notion of reducibility between mass problems,
which was introduced by A.A. Muchnik [9]. Namely, if A and B are mass prob-
lems, then A is said to be weakly reducible to B (denoted by A 6w B), if, for any
f ∈ B, there is some recursive operator Ψ such that Ψ(f) ∈ A. So the weak (we
will also call it Muchnik) reducibility is obtained from the strong (Medvedev)
reducibility by dropping the uniformity requirement. The equivalence relation
≡w on mass problem is defined from 6w in the usual way; equivalence classes
of mass problems under ≡w with the relation of reducibility 6w also form a
distributive lattice known as the Muchnik lattice [9].

There is also another important notion – that of the Dyment lattice [3] –
which we recall now. If A and B are partial mass problems, A is said to be
enumeration reducible (or Dyment reducible) to B (denoted by A 6e B) if
for some partial recursive operator Ψ we have B ⊆ dom(Ψ) and Ψ(B) ⊆ A. The
Dyment lattice consists of the equivalence classes of partial mass problems under
the enumeration reducibility. In the same way as for the Medvedev lattice, we
introduce the nonuniform version 6ew of the Dyment reducibility.

In this paper we will consider the reducibilities 6 and 6w for the class of
problems of presentability and 6e and 6ew for the class of partial problems of
presentability. There is a syntactical characterization of these reducibilities in
the case of problems of enumerability, which follows from a result obtained by
A. Selman [11] and rediscovered by M. Rozinas [10]: for any A,B ⊆ ω, A 6e B
if and only if, for any X ⊆ ω, the fact that B is X-c.e. implies that A is X-c.e..
From this theorem we directly obtain that, for any A,B ⊆ ω,

EA 6w EB ⇐⇒ EA 6 EB ⇐⇒ A 6e B.

Besides the syntactical characterization, it implies the fact (observed also in [8])
that Medvedev and Muchnik reducibilities coincide on the class of problems of
enumerability.

It is clear that (strong) Medvedev reducibility always implies (weak) Much-
nik reducibility: for any mass problems A,B, A 6 B ⇒ A 6w B. In [9] was
established a sufficient condition under which these reducibilities are equivalent.
In this paper we will consider the problem of describing the relationship be-
tween uniform and nonuniform reducibilities in the case of mass problems of
presentability.

We recall a sufficient condition from [9]. By a finite function we will mean a
function f̃ : n → ω, where n < ω. An open interval is a mass problem of the form
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If̃ = {f : ω → ω | f̃ ⊆ f} for some finite function f̃ . The Baire topology on ωω

is generated by open intervals as a basis for the class of the open sets. A mass
problem is called closed if it is a closed subset of ωω in the Baire topology. A mass
problem A is called uniform if, for any open interval If̃ such that A ∩ If̃ 6= ∅,
we have A ∩ If̃ 6 A.

Let A be a mass problem. We define a game of two players on A as follows. At
the first step, the first player chooses an open interval If̃1

such that A∩If̃1
6= ∅.

At the second step, the second player chooses an open interval If̃2
such that

A ∩ If̃1
∩ If̃2

6= ∅. At the third step the first player chooses an open interval
If̃3

such that A∩ If̃1
∩ If̃2

∩ If̃3
6= ∅, and so on. The second player wins if the

intersection of If̃1
, If̃2

, If̃3
, . . . is a single function from A. A mass problem A

is called winning if the second player always has a winning strategy. Now the
sufficient condition from [9] can be stated in the following

Theorem 1 (A.A. Muchnik [9]). Let A and B be mass problems. If A is
closed and B is uniform and winning, then

A 6 B ⇐⇒ A 6w B.

Of course these requirements are rather strong, because of the generality of
the situation. In fact, most restricting is the requirement of closeness, which
makes it difficult to use this criterion in some special cases. For example, in the
case of problems of enumerability it was shown in [9] that, for any A ⊆ ω, EA

is uniform and winning, but closed if and only if card(A) 6 1. So the above
sufficient condition can not be applied to problems of enumerability. In spite of
this, we have seen that in this case these reducibilities coincide. The condition
from [9] is of no use also in the case of problems of presentability. One of the
requirements hold for free – we have

Lemma 1. Any mass problem of presentability is uniform.

Proof. For a structure M, let f̃ be a finite function such that If̃ ∩ M 6= ∅.
It means that f̃ represents some finite part of the atomic diagram of M. We
describe an effective procedure which transforms any C ∈ M to the presentation
in M ∩ If̃ . We effectively enumerate all finite pieces of the atomic diagram of C
until we find the piece isomorphic to one represented by f̃ , and then apply to
the domain of C a finite permutation witnessing this isomorphism.

Consider now the property of closeness. It is easy to prove the following

Lemma 2. Let M be a structure of relational signature. If M is closed then, for
any countable structure N of the same signature as M, such that N 6∼= M, there
exists an ∃-sentence ϕ with the following properties:

1) N |= ϕ;
2) for any structure N′ (of the same signature as M), N′ |= ϕ implies that

N′ 6∼= M.

From this lemma we get
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Theorem 2. Let M be a structure of relational signature. M is a closed mass
problem if and only if card(M) = 1.

Proof. It is enough to prove that M is not closed in the case then card(M) > 2.
So let M′  M be a proper finite substructure (it exists because there are no
functional symbols in the signature). Of course we have M′ � M, but any ∃-
sentence which is true on M′ is also true on M. From Lemma 2 it follows that
M is not closed.

2 Medvedev and Muchnik reducibilities in the case of
problems of presentability

We now look at the relationship between problems of presentability and some
other mass problems. Considering the problems of enumerability, in [15] we ob-
tain, by applying results and techniques due to J.F. Knight [5], the following
result, which is in some way analogous to Selman-Rozinas Theorem.

Theorem 3. Let M be a structure, and A ⊆ ω, A 6= ∅. Then the following are
equivalent:

1) EA 6w M;
2) EA 6 (M, m̄) for some m̄ ∈ M<ω;
3) A is Σ-definable in HF(M).

As an immediate consequence of Theorem 3 we get

Theorem 4. Let M be a structure, and A ⊆ ω. Then the following are equiva-
lent:

1) SA 6w M;
2) SA 6 (M, m̄) for some m̄ ∈ M<ω;
3) A is ∆-definable in HF(M).

Proof. Follows from Theorem 3, because, for any mass problem B, SA 6w B if
and only if EA 6w B and EA 6w B (the same hold also for 6).

Consider now the relations of Medvedev and Muchnik reducibility for the
class of mass problems of presentability. Let M be a structure of relational sig-
nature 〈Pn0

0 , . . . , P
nk−1
k 〉 (the restriction to predicative signature is not essential

and stands only for simplicity) and let A be an admissible set (see [4, 1] for
definition).

Definition 1 (Yu.L. Ershov [4]). M is said to be Σ-definable in A if there
exist Σ-formulas

Φ(x0, y), Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ0(x0, . . . , xn0−1, y),

Φ∗0(x0, . . . , xn0−1, y), . . . , Φk−1(x0, . . . , xnk−1−1, y), Φ∗k−1(x0, . . . , xnk−1−1, y)
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such that for some parameter a ∈ A, and letting M0 ® ΦA(x0, a), η ®
ΨA(x0, x1, a) ∩ M2

0 , one has that M0 6= ∅ and η is a congruence relation on
the structure

M0 ® 〈M0;PM0
0 , . . . , PM0

k−1〉,
where PM0

i ® ΦAi (x0, . . . , xni−1) ∩ Mni
0 for all i < k, Ψ∗A(x0, x1, a) ∩ M2

0 =
M2

0 \ ΨA(x0, x1, a), Φ∗Ai (x0, . . . , xni−1, a) ∩Mni
0 = Mni

0 \ ΦAi (x0, . . . , xni−1) for
all i < k, and the structure M is isomorphic to the quotient structure M0�η.

If, in addition, there exists a Σ-formula Φ∗(x0, y) such that A |= ∀x0(Φ∗(x0, a)
↔ ¬Φ(x0, a)), then M is said to be ∆-definable in A. We say that M is ∆-
definable in A with no parameters if the above hold for a = ∅.

It is easy to show that, if we allow parameters, M is Σ-definable in A if and
only if M is ∆-definable in A. However, this is not so if we restrict ourselves to
definitions with no parameters.

Given arbitrary structures M and N, consider the following properties:

1) M 6w N;
2) M 6 (N, n̄) for some n̄ ∈ N<ω;
3) M is ∆-definable in HF(N).

It is easy to see that, for any M and N, 3 implies 2 and 2 implies 3. To
prove that 3 ⇒ 2, suppose that M is ∆-definable in HF(N) by means of some
sequence Γ of Σ-formulas with parameters n̄ ∈ N<ω (without loss of generality
we may assume that all parameters are elements of N). Then a recursive operator
witnessing that M 6 (N, n̄) can be defined from Γ , using the fact that for
witnessing the truth of a Σ-formula in HF(N, n̄) it is enough to provide a finite
subset of the atomic diagram of (N, n̄) together with some natural number. To
prove that 2 ⇒ 1, note that, for any presentation of N, distinguishing in it any
tuple of representatives of n̄ and applying the s-m-n Theorem to an operator
witnessing that M 6 (N, n̄), we get an operator which maps this presentation
into some presentation of M.

We now distinguish the class of structures N for which the conditions 1, 2 and
3 are equivalent for any structure M. The next important notion was introduced
by L. Richter in [16]. A structure M is said to have degree d if

d = min{degT (C) | C is a presentation of M}.

The original definition from [16] was formulated with respect to presentations
with domains ω only, but it is easy to see that, for any M and any its presentation
C, there is a presentation C′ of M, with ω as the domain, such that C′ 6T C. So
our definition coincides with that of Richter. There are examples of structures
which have or fail to have a degree (see [16]). Below we show that the class of the
structures having a degree is naturally described in terms of effective definability
in admissible superstructures.
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Theorem 5. Let M and N be a structures, and let N has a degree. Then the
following are equivalent:

1) M 6w N;
2) M 6 (N, n̄) for some n̄ ∈ N<ω;
3) M is ∆-definable in HF(N).

The only thing we need to prove is the implication 1 ⇒ 3. For this we will use
the following result, which characterizes the class of structures having a degree by
means of definability in hereditary finite superstructures. For arbitrary countable
structure M of a signature σ, we consider its expansion M′ as a structure of the
signature σ ∪ {s1; 0}, where s is the symbol of an unary function and 0 is a
constant symbol, such that

〈M, sM′
, 0M′〉 ∼= 〈ω, s, 0〉.

Any such structure M′ is called an s-expansion of M.

Theorem 6. For a structure M the following are equivalent:

1) M has a degree;
2) some presentation of M is ∆-definable in HF(M) (as a subset of ω);
3) some s-expansion of M is ∆-definable in HF(M).

Proof. 2 ⇒ 3. Let C ∈ M be such that C is ∆-definable in HF(M). It is easy
to define by C the corresponding s-expansion of M, which therefore would be
∆-definable in HF(M).

3 ⇒ 2. Suppose M′ is ∆-definable in HF(M). We will show that in this case
some C ∈ M is ∆-definable in HF(M), with domain of C equal to ω. We estimate
an isomorphism f from M′ (more precisely, from its presentation inHF(M)) to C,
which will be ∆-defanable in HF(M), in the following way: for any a ∈ HF (M)
and any n ∈ ω, let f(a) = n if and only if there are a0, . . . , an ∈ HF (M) such
that, accordingly to the given presentation of M′, a0 = 0M′

, a1 = sM′
(a0), . . . ,

a = an = sM′
(an−1).

2 ⇒ 1. Suppose that, for some C ∈ M, the atomic diagram of C is ∆-
definable in HF(N) with parameters n̄ ∈ N<ω (again, we may assume that all of
the parameters are from N). But from this we immediately obtain that C 6T C′
for any C′ ∈ M. Indeed, the recursive operators witnessing this are derived from
the Σ-formulas defining C.

1 ⇒ 2. Suppose that there is some C ∈ M such that C 6T C′ for any C′ ∈ M.
This is equivalent to saying that, in terms of the mass problems, SC 6w M. So,
by the Theorem 4, C is ∆-definable in HF(M) (as a subset of ω).

Finally, let us prove the implication 1 ⇒ 3 of the Theorem 5. So suppose M
is such that M 6w N. Let also fix some C0 ∈ N such that C0 is ∆-definable in
HF(N). Then from M 6w N it follows that there is a presentation C ∈ M such
that C 6T C0. Since C0 is ∆-definable in HF(N), the same is true for C, hence it
follows that M is ∆-definable in HF(M) via the presentation C.
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In [15] we show that the requirement that a structure N have a degree in
the Theorem 5 is essential and can not be dropped. For this we use the fact (
obtained independently by S. Wehner [17] and T. Slaman [12]) that there exist
structures which mass problems of presentability belongs to the least non-zero
degree of difficulty in the Medvedev lattice.

Now we introduce some class of structures for which, considering their prob-
lems of presentability, Medvedev and Muchnik reducibilities are equivalent. In
fact, we adjust the notion of uniformity to our model theoretical setting.

Definition 2. A structure M is called ∗-uniform if (M, m̄) 6 M for any
m̄ ∈ M<ω.

From Theorem 5 we immediately obtain

Corollary 1. If N is ∗-uniform and has a degree then, for any structure M,

M 6 N ⇐⇒ M 6w N.

We remind the following definition from the model theory: a structure M
is called ultrahomogeneous if any isomorphism between finitely generated sub-
structures of M can be extended to an automorphism of M. It is clear that, if
M is homogeneous structure of relational signature, then M is ∗-uniform. Also
clear that, if M is constructivizable (i.e. have a computable presentation), then
M is ∗-uniform. We establish now an example of nonhomogeneous and noncon-
structivizable structure which is ∗-uniform.

Lemma 3. If α1, . . . , αn are constructive ordinals, then 〈ωCK
1 ; 6, α1, . . . , αn〉 is

∆-definable in HF(〈ωCK
1 , 6〉) with no parameters.

Proof. We use the fact that α + ωCK
1 = ωCK

1 for any constructive ordinal α.
Indeed, if α is constructive, then so is α·ω, hence α·ω < ωCK

1 . But α+α·ω = α·ω,
so α + ωCK

1 = ωCK
1 .

Let us suppose that α1 < . . . < αn, for simplicity. Since all of these ordinals
are constructive, the structure 〈αn; 6, α1, . . . , αn−1〉 is ∆-definable in HF(∅)
(with no parameters, of course). So the sum 〈αn + ωCK

1 ; 6, α1, . . . , αn〉 is ∆-
definable in HF(〈ωCK

1 ;6〉) with no parameters. By the fact mentioned above,
the lemma is proved.

Corollary 2. Suppose α1, . . . , αn ∈ ωCK
1 are constructive ordinals.

Then 〈ωCK
1 ; 6, ᾱ〉 6 〈ωCK

1 , 6〉. As a consequence, 〈ωCK
1 ; 6〉 is ∗-uniform.

3 Partial mass problems of presentability and
e-reducibility

We will say that a structure M has e-degree d if

d = min{dege(C) | C is a presentation of M}.
The following theorem gives the syntactical characterization for structures

with an e-degree.
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Theorem 7. For a structure M the following are equivalent:

1) M has an e-degree;
2) some presentation of M is Σ-definable in HF(M) (as a subset of ω).

Proof. Analogous to the proof of Theorem 6.

As an immediate consequence of this theorem and Theorem 6 we get

Proposition 1. If M has a degree then M has an e-degree.

There are examples (implicitly presented in [16]) of structures which have an
e-degree but does not have a degree. The analog of Theorem 5 for the partial
mass problems of presentability is the following

Theorem 8. Let M and N be a structures, and let N has an e-degree. The
following are equivalent:

1) M
−−

6ew N
−−

;

2) M
−−

6e (N, n̄)
−−−

for some n̄ ∈ N<ω;

3) M is Σ-definable in HF(N).

Proof. Analogous to the proof of Theorem 5.

Theorem 9. For any structures M,N,

M
−−

6e N
−−

implies M 6 N, and M
−−

6ew N
−−

implies M 6w N,

Proof. Analogous to the proof of Lemma 1. Suppose, for example, that M
−−

6e

N
−−

by means of the partial recursive operator Ψ . It is easy to build from Ψ a

partial recursive operator Ψ ′, defined on N, such that for any f ∈ N we have
Ψ ′(f) = Ψ(f ′), where f ′ ∈ N

−−
corresponds to f . So Ψ ′(N) ⊆ M

−−
. We describe an

effective procedure which transforms any characteristic function f ∈ N to the
characteristic function of some presentation C(f) of M. We define the domain
of C(f) together with the bijection π which maps it onto the domain of the
presentation defined by f . Namely, at the step s we define the subset Cs ⊇ Cs−1

of the domain C(f) as follows: consider all numbers from 0 to s which are not
in π(Cs−1); add the number s to Cs and the pair 〈s, c〉 to π if and only if
c 6 s, c /∈ π(Cs−1) is the least for which there exist a finite set Dk ⊆ f with the
number k 6 s in some fixed enumeration, for which 〈(c = c), 1〉 ∈ Ψ ′(Dk). The
construction defined above gives the domain Cf and bijection π which define the
characteristic function of desired presentation.
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4 Presentability dimensions

It is reasonable, having a problem of presentability, which consists of all possible
presentations of some structure, to try to find a subset of it, with the same
properties with respect to Medvedev (Muchnik) reducibility, which is as small
as possible.

Definition 3. A countable structure M is said to have (strong) presentability
dimension α (denote Pr-dim(M) = α), where α is a cardinal, if M ≡ B for some
B ⊆ M, card(B) = α, and α is the least cardinal satisfying these conditions.

In the same way we can introduce the notion of weak presentability dimension
Pr-dimw(M), changing in the above definition ≡ to ≡w. It is clear that for any
(countable) structure M we have

1 6 Pr-dimw(M) 6 Pr-dim(M) 6 2ω.

It is also easy to see that, for any structure M, Pr-dimw(M) = 1 if and only if
M has a degree. Next, there is the following

Theorem 10. For a structure M the following are equivalent:

1) Pr-dimw(M) = 1;
2) Pr-dim(M, m̄) = 1 for some m̄ ∈ M<ω.

Proof. Immediately follows from Theorem 6.

So, a structure has a degree if and only if some of its constant expansions
has a strong degree.

Corollary 3. If M is ∗-uniform then

Pr-dim(M) = 1 ⇐⇒ Pr-dimw(M) = 1.

Let M be a structure, and suppose that some presentation of M is ∆-definable
in HF(M) with no parameters. Then Pr-dim(M) = 1. The author does not know
whether this sufficient condition is also necessary or not.

The following question also seems reasonable: are there structures of finite
or countable strong presentability dimension, i.e. is there M such that

1 < Pr-dim(M) 6 ω?

For such M we necessarily must have Pr-dimw(M) = 1. Indeed, this follows from
the inequality Pr-dimw(M) 6 Pr-dim(M) and the next result observed indepen-
dently by J.F. Knight [6] and I.N. Soskov [14]: for any M, Pr-dimw(M) is either
1 or uncountable. From this we immediately obtain that, for any M, Pr-dim(M)
is either 1 or infinite. Recently I. Kalimullin (personal communication) showed
that there are structures with strong presentability dimension ω.
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