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We consider the problem of being Σ-de�nable for an uncountable
model of a c-simple theory in hereditarily �nite superstructures
over models of another c-simple theory. A necessary condition is
speci�ed in terms of decidable models and the concept of relative
indiscernibility introduced in the paper. A criterion is stated for
the uncountable model of a c-simple theory to be Σ-de�nable in
superstructures over dense linear orders, and over in�nite models
of the empty signature. We prove the existence of a c-simple
theory (of an in�nite signature) every uncountable model of which
is not Σ-de�nable in superstructures over dense linear orders.
Also, a criterion is given for a pair of models to be recursively
saturated.

INTRODUCTION

In the present paper we study into Σ-de�nability of algebraic systems in
hereditarily �nite superstructures, which, in particular, allows us to introduce
analogs of the concept of constructibility for uncountable models. Ershov in
[1, 2] dealt with the problem of characterizing a class of theories having
uncountable models, Σ-de�nable in hereditarily �nite superstructures over
dense linear orders. In [1], a criterion of this property was propounded
in terms of constructibility of the ∗ω-spectrum of a theory. In [2], it was
conjectured that all c-simple theories share this property.

In this paper we introduce a concept of relative indiscernibility, and then
use it to couch uniform criteria of being Σ-de�nable for the uncountable
model of a c-simple theory in hereditarily �nite superstructures over dense
linear orders, and over in�nite models of the empty signature (with equality).
As a consequence it is stated that there exists a c-simple theory (of an
in�nite signature) every uncountable model of which is not Σ-de�nable in
hereditarily �nite superstructures over dense linear orders.
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In dealing with relative indiscernibility, we treat pairs of models whose
universes have a non-empty intersection. Dealing in the theory of admissible
sets, we also consider pairs of models treated as algebraic systems of a
signature obtained by joining (disjoint) signatures of initial models and then
adding unary predicate symbols distinguishing universes of those models. As
the universe of such a system we take a join of the universes of the initial
models, with no limitations on their relative positions. For the thus de�ned
pairs of models, we establish a criterion of being recursively saturated. As a
consequence it is shown that a pair formed by models of c-simple theories is
recursively saturated. We furnish an example of a theory T (with a prime
model M0) all of whose models are recursively saturated, but for every model
M of T , the pair (M0, M) is recursively saturated i� M ∼= M0. The results
obtained allow us to point out an example of models M and N such that
O(M) = O(N) = ω, but O(M, N) > ω, where O(A) is the least ordinal not
lying in an admissible set HYP(A) (cf. [3, 4]).

The notation and terminology used in the paper are standard and are
borrowed from [3-6]. We consider algebraic systems of an at most countable
signature, assuming, without loss, that the signature contains predicate symbols
only. Writing σ = 〈Pn0

0 , . . . , Pnk
k , . . .〉 means that Pk is an nk-ary predicate

symbol of the signature σ, and if f(k) = nk is a computable function, then
σ is also said to be computable. If A is a model of the signature σ then by
PA

k we denote the interpretation of a predicate symbol Pk in a model A, and
by |A| the universe of A. Further, let M<ω be the set of all �nite tuples of
elements of an arbitrary set M .

1. Σ-DEFINABILITY OVER CLASSES OF MODELS OF
c-SIMPLE THEORIES

We recollect the notion of being Σ-de�nable for an algebraic system in an
admissible set (cf. [3]), which generalizes the concept of being constructible.
Let M be an algebraic system of a computable predicate signature 〈Pn0

0 , . . . ,
Pnk

k , . . .〉 and A be an admissible set of a signature σ0.
De�nition 1. A system M is said to be Σ-de�nable in an admissible set

A if there exists a computable sequence of Σ-formulas in the signature σ0

such as

Φ(x0, y), Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ0(x0, . . . , xn0−1, y),

Φ∗0(x0, . . . , xn0−1, y), . . . , Φk(x0, . . . , xnk−1, y), Φ∗k(x0, . . . , xnk−1, y), . . . ,
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for which the set M0 ® ΦA(x0, a) is non-empty for some parameter a ∈ A,
and η ® ΨA(x0, x1, a)∩M2

0 is a congruence relation on the algebraic system

M0 ® 〈M0, P
M0
0 , . . . , PM0

k , . . .〉,

where PM0
k ® ΦAk (x0, . . . , xnk−1) ∩Mnk

0 , k ∈ ω,

Ψ∗A(x0, x1, a) ∩M2
0 = M2

0 \ΨA(x0, x1, a),

Φ∗Ak (x0, . . . , xnk−1, a) ∩Mnk
0 = Mnk

0 \ ΦAk (x0, . . . , xnk−1)

for all k ∈ ω, and the system M is isomorphic to a quotient system M0�η. In
this case we say that the given sequence of formulas (with a ∈ A) Σ-de�nes
M in A.

Below, we will look into the case where an admissible setA is a hereditarily
�nite superstructure. Ordinals of any hereditarily �nite superstructure are
natural numbers only, and so the notion of Σ-de�nability, in this case, is
more close to that of constructibility. For A = HF(∅), being Σ-de�nable in A
coincides with being constructible. The case where A = HF(M) and M is an
in�nite countable model may be reduced to treating relative constructibility
in which the concept of being computable with an oracle is involved. Finally,
the case where A is a hereditarily �nite superstructure over an uncountable
model is of interest because it allows us to introduce a certain analog of
(relative) constructibility for uncountable systems also.

Obviously, every algebraic system M can be Σ-de�nable in an appropriate
hereditarily �nite superstructure � for instance, trivially in HF(M). Therefore
the question whether M is Σ-de�nable in hereditarily �nite superstructures
over models in some class K is more challenging. We say that a system M

is Σ-de�nable over a class K if M is Σ-de�nable in HF(A) for some model
A in K. Below, we will be interested in classes of the form Mod(T ), that is,
classes of models for some theories.

A theory, T , is said to be c-simple if it is countably categorical, model
complete, decidable, and has a decidable set of complete formulas (cf. [3]).
Throughout the paper, we assume that the signature of a c-simple theory is
computable (i.e., not necessarily �nite). Due to being ω-categorical, every c-
simple theory has a unique (up to isomorphism) countable model; moreover,
such has a decidable model, which is unique up to computable isomorphism.
A model is said to be decidable if its universe is a computable set of natural
numbers and all of its de�nable relations are likewise (uniformly) computable.
A model is computable if its universe is also a computable set of natural
numbers, but only relations de�nable by atomic formulas are uniformly
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computable. Along with the above concepts, we also use notions of a constructible
model and of a strongly constructible model (cf. [7]).

In terms of decidable models, we formulate a necessary condition for a
c-simple theory to have an uncountable model, Σ-de�nable over a class of
models of another c-simple theory. To do this, below we introduce a general
concept, which is meaningful for an arbitrary pair of models with intersecting
universes.

De�nition 2. If M and N are some algebraic systems then I ⊆ |M|∩|N|
is called the set of M-indiscernibles in N provided that

〈M, i0, . . . , in〉 ≡ 〈M, i′0, . . . , i
′
n〉 ⇒ 〈N, i0, . . . , in〉 ≡ 〈N, i′0, . . . , i

′
n〉,

for any i0, . . . , in, i′0, . . . , i
′
n ∈ I.

THEOREM 1. Let T1 and T2 be c-simple theories. If T2 has an uncountable
model Σ-de�nable over a class Mod(T1) then there exist decidable models M

and N of T1 and T2, respectively, such that N contains an in�nite computable
set of M∗-indiscernibles, where M∗ is an expansion of M by �nitely many
constants.

Proof. Let some uncountable model of T2 be Σ-de�nable in a hereditarily
�nite superstructure over some (uncountable) model M′ of T1 by a sequence
of Σ-formulas such as

Γ = 〈Φ, Ψ, Ψ∗, Φ0,Φ∗0, . . . , Φk, Φ∗k, . . .〉,

where Ψ and Ψ∗ de�ne an equality relation; moreover, there is no loss
of generality in assuming that the parameter is m̄′ ∈ |M′|<ω, a tuple of
urelements. Let M be a decidable model of T1. Since T1 is c-simple, there is a
tuple m̄0 of elements of M such that 〈M, m̄0〉 ≡ 〈M′, m̄′〉. Every model of a c-
simple theory is su�ciently saturated, and so 〈HF(M), m̄0〉 ≡ 〈HF(M′), m̄′〉.
(Recall that M0 is said to be su�ciently saturated if M0 4 M1 and HF(M0) 4
HF(M1) for some ω-saturated model M1; see [3].) Therefore the sequence
Γ of formulas with a parameter m̄0 properly de�nes in HF(M) a model N′,
which will be a model of T2. The sequence Γ of formulas with the given
tuple of parameters cannot de�ne a model with a �nite universe (otherwise,
a model de�ned by that tuple in HF(M′) would also be �nite), and so N′ will
be a countable model of T2. Moreover, given any strong constructivization
of M, Γ allows us to construct a constructivization of N′. In view of the
method of construction opted for N′, we write Γ(HF(M), m̄0).

It is known that every element of a hereditarily �nite superstructure
HF(M) is representable as the value of a term tκ(m̄), where m̄ ∈ |M|<ω is
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a tuple of urelements, and κ ∈ HF(ω) (cf. [3]). We claim that there exist an
element κ ∈ HF(ω), a tuple m̄1 ∈ |M|<ω, and an in�nite set X ⊆ M such
that HF(M) |= Ψ∗(tκ(m, m̄1), tκ(m′, m̄1), m̄0), for any distinct m and m′ in
X. Indeed, otherwise (since M is a prime model of T1), Γ would de�ne at
most countable models over any models of T1.

Since M is decidable, and Ψ∗ is a Σ-formula, we can �nd an in�nite
computable set I ⊆ X. To do this, it su�ces to take an arbitrary x0 ∈ X,
�nd (e�ectively) x1 = µx(HF(M) |= Ψ∗(x0, x1, m̄0)), and proceed further,
to arrive eventually at I ® {x0, x1, . . .}.

Of importance is the following property. Let M0 be a su�ciently saturated
model. If a0, a1 ∈ HF(M0) then types of the elements a1 and a2 coincide in
HF(M0) i� there exist n ∈ ω, κ ∈ HF(n), and m̄0, m̄1 ∈ Mn

0 such that a0 =
tκ(m̄0), a1 = tκ(m̄1), and the types of m̄0 and m̄1 coincide in M0 (for a proof,
see [3]). Since M is su�ciently saturated, for any i0, . . . , in, i′0, . . . , i

′
n ∈ I,

〈M, m̄2, i0, . . . , in〉 ≡ 〈M, m̄2, i
′
0, . . . , i

′
n〉 implies

〈HF(M), tκ(i0, m̄1), . . . , tκ(in, m̄1)〉 ≡ 〈HF(M), tκ(i′0, m̄1), . . . , tκ(i′n, m̄1)〉,

where the tuple m̄2 is the concatenation of m̄0 and m̄1. The model N′

is de�ned in HF(M) by a sequence of Σ-formulas; so, using an arbitrary
constructivization µ of M, we can construct a constructivization ν of a
hereditarily �nite superstructure HF(M), for which µ−1(i) = ν−1(tκ(i, m̄0))
with all i ∈ I. Based on this constructivization, it is easy to construct a
decidable model N ∼= N′ such that I is an in�nite computable set of 〈M, m̄2〉-
indiscernibles in N.

Now, we distinguish a subclass of the class of c-simple theories such that
the necessary condition for uncountable models to be Σ-de�nable is also
su�cient. To do this, we consider a relativized version of the Ryll-Nardzewski
function. For any ω-categorical model A and any subset X ⊆ A, de�ne a
function RA

X : ω → ω as follows: for every n ∈ ω, let RA
X(n) be the number

of n-types realized in A by the elements of X. For simplicity, replace RA
|A|

by RA. We say that an ω-categorical theory has wide models if RA
X = RA

for (any) model A of that theory and for any in�nite set X ⊆ |A|. In other
words, every in�nite subset of a wide model realizes all types of this model's
elementary theory. A theory, TE , of in�nite models of the empty signature
(with equality) and a theory, TDLO, of dense linear orders without endpoints
are examples of c-simple theories all models of which are wide.

THEOREM 2. Let T1 and T2 be c-simple theories; T1 has wide models.
In this case an uncountable model of T2 is Σ-de�nable over the class Mod(T1)
if and only if there exist decidable models M and N of T1 and T2, respectively,
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such that N contains an in�nite computable set of M∗-indiscernibles, where
M∗ is an expansion of M by �nitely many constants.

Proof. The necessity was shown in Theorem 1, and so we need only argue
for su�ciency. Let M and N be decidable models of, respectively, T1 and T2

of signatures σ1 and σ2 and let N possess an in�nite computable set I ⊆ |N|
of M∗-indiscernibles, where M∗ = 〈M, m̄0〉, m̄0 ∈ |M|<ω. We build up a
constructivization of N, taking as the universe the Skolem hull of a set |M|
relative to T2. (For this, it is required that �rst we �project"the set |M| onto a
set I ⊆ |M| ∩ |N|). In the course of the construction we arrive at a sequence
Γ of Σ-formulas, which for an appropriate model M′ of T1 of arbitrarily
large cardinality, de�nes in HF(M′) a model of T2 of the same cardinality. In
de�ning on |M| a submodel structure of some model of T2 by projecting onto
I, it is required that the model M be wide. A Skolem term corresponding to
a formula ∃yϕ(x̄, y) of the signature σ2 is denoted by tϕ(x̄); Skolem terms
have an e�ective representation in any hereditarily �nite superstructure due
to σ2 being computable. In constructing, new Skolem terms are added only
if a given formula fails to be satis�ed by any other element in the Skolem
hull at a given step.

Construction

For every step t, we e�ectively de�ne the following: the set, St, forming
part of the Skolem closure of |M| relative to T2; the function, pt : S<ω

t →
(St ¹ I)<ω, where St ¹ I is a subset of St forming an appropriate part of the
Skolem closure of a set I; the set, Ft, which is the full diagram of a set St in
the signature σ2. With an arbitrary model A, we associate the model A<ω,
whose universe is the set |A|<ω and whose signature consists of a binary
relation ∼ and a binary function ˆ de�ned as follows: ā1 ∼ ā2 i� tuples ā1

and ā2 are equal in length, 〈A, ā1〉 ≡ 〈A, ā2〉, and given a pair of tuples ā1

and ā2, the function ˆ yields a tuple ā1̂ ā2, which is their concatenation. If A

is a countable model of a c-simple theory then A<ω is constructible.
We �x some constructivization µ of M<ω, a constructivization ν of N<ω,

and some computable G�odel numbering {ϕn(x̄) | n ∈ ω} of formulas in the
signature σ2.

Step 0. Letting S0 ® |M|, for any tuple m̄ ∈ |M|<ω, we put p0(m̄) ® n̄,
where n̄ is a tuple of elements of I such that its number with respect to µ
is least possible and its type in M∗ is the same as m̄'s (i.e., the condition
that m̄0̂ m̄ ∼ m̄0̂ n̄, which is veri�ed e�ectively, is satis�ed). Now, we de�ne
(e�ectively) the set

F0 ® {ϕ(m̄) | m̄ ∈ |M|<ω, ϕ is a formula in the signature σ2, N |= ϕ(p0(m̄))}.
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Step t + 1. Assume that sets St and Ft and the function pt are already
constructed. For tuples of elements in St, the concept of being equivalent
relative to M∗ is de�ned as follows: the tuples s̄1 and s̄2 in S<ω

t are equivalent
relative to M∗ if they are equal in length and pt(s̄1) = pt(s̄2). For the case
where m̄1, m̄2 ∈ S0, m̄1 and m̄2 are equivalent relative to M∗ i� they are of
equal length and 〈M∗, m̄1〉 ≡ 〈M∗, m̄2〉.

Since T1 is ω-categorical, for every formula ϕn(x̄, y), n < t, in the signature
σ2, there exist not more than �nitely many tuples s̄ of elements of St which
are pairwise non-equivalent relative to M∗ and are such that ∃yϕk(s̄, y) ∈ Ft.
Let {〈ϕnk

, s̄k〉 | 1 6 k 6 k0} be a list of all such formulas with suitable tuples.
We introduce intermediate sets Sk

t , F k
t and a function pk

t , for all k 6 k0,
setting S0

t ® St, F 0
t ® Ft, p0

t ® pt, and for every k 6 k0, execute the
following:

Stage k. Let Sk
t ® Sk−1

t , F k
t ® F k−1

t , and pk
t ® pk−1

t . We determine
(e�ectively) whether there exists an element c ∈ Sk−1

t such that ϕnk
(s̄k̂ c) ∈

F k−1
t . (The e�ectiveness is established by induction on t. For t = 0, this is

clear from the following observation: I is the set of M∗-indiscernibles in N

and M∗ is ω-categorical; so, to verify that a given formula is not realized
by the elements of I, we can take �nitely many steps, covering all possible
M∗-types of the potential witnesses for the given formula to be realized in
N.) If such an element exists, we are done away; otherwise, we proceed as
follows.

Add to Sk
t all Skolem terms equivalent to a Skolem term tϕnk

(s̄k) relative
to M∗, that is, all terms of the form tϕnk

(s̄) such that pk−1
t (s̄) = pk−1

t (s̄k).
Rede�ne the function pk

t on Sk
t by setting pk

t (tϕnk
(s̄)) ® tϕnk

(pk−1
t (s̄)) for

all the new terms. The set F k
t is rede�ned thus: for any newly added Skolem

term tϕnk
(s̄) and for every formula θ complete relative to T2 in the signature

σ2 with lh(s̄) + 1 variables (here, lh(s̄) is the length of s̄), we add to F k
t a

formula θ(s̄, tϕnk
(s̄)), provided that θ has the least G�odel number among all

complete formulas ρ in lh(s̄) + 1 variables for which

∃y(ρ(s̄, y) ∧ ϕnk
(s̄, y)) ∈ F k−1

t .

Further, for an arbitrary tuple s̄ ∈ Sk
t , we add a formula θ(s̄) to F k

t , if θ is
complete relative to T2 in the signature σ2, has a least G�odel number, and is
such that θ(s̄) is consistent relative to T2 with all formulas in F k

t ¹ s̄, where
F k

t ¹ s̄ ® {ϕ(s̄′) | ϕ(s̄′) ∈ Ft, s̄′ ∈ (sp(s̄))<ω} and the function sp is de�ned
inductively thus: put sp(m) ® {m} for m ∈ M , sp(tϕ(s̄)) ® {tϕ(s̄)} ∪ sp(s̄)
for all Skolem terms in St, and �nally, put sp(〈s1, . . . , sn〉) ® sp(s1) ∪ . . . ∪
sp(sn) for tuples.
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Then we also require that the set F k
t obtained as above be closed under

logical deducibility relative to T2. Our description shows that F k
t is de�ned

inductively; so, it is e�ective by the Gandy theorem (cf. [3, 4]). Stage k is
completed.

In order to end o� step t+1, we need only put St+1 ® Sk0
t , Ft+1 ® F k0

t ,
and pt+1 ® pk0

t .
The construction is completed. Its properties immediately imply that the

resulting model with the universe
⋃
t∈ω

St and (full) diagram
⋃
t∈ω

Ft is a model

of T2. Consequently, given a constructivization of M<ω, we can build up a
strong constructivization of N. Obviously, such a construction can be realized
via a computable sequence of Σ-formulas in the signature σ1∪{∈, U}, which
de�nes an uncountable model of T2 in a hereditarily �nite superstructure
over a suitable model M′ of T1. In fact, let θ(x, ȳ) be a complete formula in
T1 such that the set Iθ ® {i ∈ I | M |= θ(i, m̄0)} is in�nite. (Such a formula
exists in virtue of T1 being ω-categorical). Take a model M′ and a tuple m̄′

of its elements such that θ(x, m̄′) de�nes an uncountable subset in M′. If Γ is
a sequence of Σ-formulas de�ned via the process above, then the properties
of the construction imply that Γ(HF(M′), m̄′) is an uncountable model of
T2. Thus the uncountable model of T2 is Σ-de�nable over Mod(T1).

Actually we can somewhat extend the range of application of the previous
theorem. For instance, no dense linear order with endpoints can be a wide
model, though it is easy to verify that the statement that an uncountable
model of a c-simple theory is Σ-de�nable would equally do for dense linear
orders with or without endpoints. Theorem 2 remains true if we weaken
the requirement on a countable model M of T1 speci�ed in its formulation.
Namely, if the set of all n-types realizable in M by elements of a set X ⊆
|M| is denoted by SM

X (n) then it su�ces to impose on M the following
restrictions: for any in�nite set X ⊆ |M|, there exists a (in�nite) de�nable
set D ⊆ |M| such that SM

X = SM
D . The conditions SM

X = SM and RM
X = RM

are equivalent, and so every wide model possesses this property. A proof in
this � more general � case di�ers from the previous one only in that at the
initial step, we need take, not the whole set |M|, but its de�nable subset
D. (Recall that for every model of a c-simple theory, the Σ-de�nability of
its subsets in a hereditarily �nite superstructure is equivalent to ordinary
de�nability.)

From the Ramsey theorem, using the argument of the Ehrenfeucht�
Mostowski theorem, we infer the following property of ω-categorical models:
if M is an ω-categorical model then, for any in�nite set I ⊆ |M| and any
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tuple m̄0 ∈ |M|<ω, there exists an in�nite set J ⊆ I such that

〈M, j̄1〉 ≡ 〈M, j̄2〉 ⇒ 〈M∗, j̄1〉 ≡ 〈M∗, j̄2〉,
where M∗ = 〈M, m̄0〉 for all tuples j̄1 and j̄2 of elements in J .

An e�ective version of this property is as follows. We say that a c-simple
theory T admits an e�ective elimination of constants if every decidable model
M of T satis�es the following: for every in�nite computable set I ⊆ |M| and
every tuple m̄0 ∈ |M|<ω, there exists an in�nite computable set J ⊆ I such
that for all tuples j̄1 and j̄2 of elements in J ,

〈M, j̄1〉 ≡ 〈M, j̄2〉 ⇒ 〈M∗, j̄1〉 ≡ 〈M∗, j̄2〉,
where M∗ = 〈M, m̄0〉 and J is determined from I and m̄0 e�ectively.

Proposition 1. Theories TDLO and TE admit an e�ective elimination of
constants.

Proof. Let 〈L,<〉 be a decidable dense linear order and l̄ = 〈l0, . . . , ln〉 ∈
L<ω. If k is the number of pairwise distinct elements of l̄ then these elements
partition L into �nitely many intervals U0, . . . , Uk; so, for any in�nite set
I ⊆ L, there is an interval Ui, i 6 k, such that J ® I ∩ Ui. Obviously, for
any j̄1, j̄2 ∈ J<ω, 〈L,<, j̄1〉 ≡ 〈L,<, j̄2〉 implies 〈L,<, l̄, j̄1〉 ≡ 〈L,<, l̄, j̄2〉.
Since J is the intersection of I and a de�nable subset of L, J is computable
if so is I.

Now, let 〈S〉 be a decidable in�nite model of the empty signature, s̄ =
〈s0, . . . , sn〉 ∈ S<ω, and I ⊆ S be an in�nite computable set. It su�ces to
put J ® I \ {s0, . . . , sn}.

The two preceding statements immediately imply criteria determining
whether an uncountable model of a c-simple theory is Σ-de�nable over a
class of dense linear orders and over a class of in�nite models of the empty
signature. In correspondence with the general notion of M-indiscernibility
in both of these two cases are the concepts of ordered indiscernibility and
of total indiscernibility, which are well known in model theory (cf. [6]). Let
TDLO be the theory of dense linear orders and TE be the theory of in�nite
models of the empty signature.

We say that a subset of a computable model is computable if it is a
computable subset of natural numbers; an ordered subset is computable if
the order relation on it is computable.

THEOREM 3. Let T be a c-simple theory. Then:
(1) T has an uncountable model Σ-de�nable over the class Mod(TDLO)

i� some decidable model of T contains an in�nite computable set of orderly
indiscernible elements.

9



(2) T has an uncountable model Σ-de�nable over the class Mod(TE) i�
some decidable model of T contains an in�nite computable set of totally
indiscernible elements.

The proof follows immediately from Theorem 2 and Prop. 1.
Ershov in [2] came up with the hypothesis that every c-simple theory T

has an uncountable model, Σ de�nable over the class Mod(TDLO). Appealing
to Theorem 3, however, we can point out an example of a c-simple theory
(of an in�nite signature) for which this is not the case. To do this, we make
use of a construction in [8, 9].

Let T ⊆ 2<ω be a binary tree; here, 2 = {0, 1}. Denote by P (T ) the
set of in�nite paths in this tree. For a model M with the universe ω, I(M)
denotes the set of all �nite sequences of orderly indiscernible elements in M,
that is, I(M) ⊆ ω<ω and the order is de�ned by the successor relation in
a sequence. We say that the problem of searching an in�nite path in T is
e�ectively equivalent to searching an in�nite sequence of orderly indiscernible
elements in M, and write P (T ) ≈ I(M), if there exist e, f ∈ ω such that:

(i) ϕI
e ∈ P (T ) if I ∈ I(M);

(ii) ϕπ
f ∈ I(M) if π ∈ P (T );

(iii) ϕI
e = π for all π ∈ P (T ) if ϕπ

f = I,
where {ϕn | n ∈ ω} is some computable numbering of all unary partial
computable functions with an oracle (cf. [5]).

THEOREM 4 [9]. For every in�nite computable binary tree T , there
exists a decidable model complete ω-categorical theory T with a decidable
set of complete formulas such that P (T ) ≈ I(M), for any decidable model
M of T .

Let T0 be an in�nite recursive binary tree without in�nite recursive
branches and T0 be the theory constructed from T0. If M0 is a countable
model of T0 then every in�nite set of orderly indiscernible elements of M0 is
non-computable. By Theorem 3, therefore, no uncountable model of T0 can
be Σ-de�nable over Mod(TDLO). At the same time, T0 is a c-simple theory.
Thus we arrive at

THEOREM 5. There exists a c-simple theory T0 every uncountable
model of which is not Σ-de�nable over the class Mod(TDLO).

The theory obtained by using the construction in [7] has an in�nite
signature. Whether it is possible to construct a c-simple theory of a �nite
signature satisfying the assumption of Theorem 5 is not known.

Therefore it seems interesting to consider the following question: Is it true
that for any c-simple theory T (of a �nite signature), there exists a c-simple
theory T ′ such that every uncountable model of T ′ is not Σ-de�nable over
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Mod(T ). In this connection, it is worth mentioning the following consequence
of Theorem 1.

If T1 and T2 are c-simple theories, and an uncountable model of T2 is
Σ-de�nable over Mod(T2), then the necessary condition of being Σ-de�nable
for uncountable models implies that there exist decidable models M |= T1

and N |= T2 such that for some in�nite computable set I ⊆ |M| ∩ |N|,
RN

I (n) 6 RM
I (n) for all n ∈ ω.

To conclude this section, we couch yet another notion. Let K1 be some
class of models of an arbitrary �nite signature σ1 and K2 be some class
of models of a computable predicate signature σ2 = 〈Pn0

0 , . . . , Pnk
k , . . .〉.

The class K2 is said to be spectrally Σ-de�nable over K1 if there exists a
computable sequence

Γ = 〈Φ,Ψ,Ψ∗,Φ0, Φ∗0, . . . ,Φk,Φ∗k, . . .〉

of Σ-formulas in the signature σ1 ∪{∈, U} such that for any model M in K1

and for an element a ∈ HF(M), the sequence Γ of formulas with a parameter
a properly de�nes in HF(M) a model of the signature σ2 belonging to K2,
and the following condition holds:

Sp(Γ(K1)) = Sp(K2),

where Sp(K) stands for the class of cardinalities of models in K and Γ(K)
denotes the class of all models that are Σ-de�nable in hereditarily �nite
superstructures over models of K by a sequence Γ of formulas with an
arbitrary parameter.

Proposition 2. If T1 and T2 are c-simple then the class Mod(T2) is
spectrally Σ-de�nable over Mod(T1) if and only if some uncountable model
of T2 is Σ-de�nable over Mod(T1).

Proof. The necessity being obvious, we need only argue for su�ciency.
Suppose that for some model M′ of T1, the uncountable model of T2 is
de�nable in HF(M) by a sequence Γ of Σ-formulas, in which case we may
assume that the parameter of the formulas in Γ is a tuple m̄′ ∈ |M′|<ω of
urelements. Since T2 is c-simple it contains a computable model N0 which
is, obviously, Σ-de�nable in any hereditarily �nite superstructure. In view of
this, we may de�ne a sequence Γ∗ of Σ-formulas such that for any model M

of T2 and any element a ∈ HF(M),

Γ∗(HF(M), a) ®
{

Γ(HF(M), a) if a = m̄ and 〈M, m̄〉 ≡ 〈M′, m̄′〉;
N0 otherwise.
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This condition can be veri�ed e�ectively since T1 is also a c-simple theory.
From 〈M, m̄〉 ≡ 〈M′, m̄′〉 it follows that 〈HF(M), m̄〉 ≡ 〈HF(M′), m̄′〉, and
so the sequence Γ∗ of formulas in a hereditarily �nite superstructure over
any model of T1, for any parameter, de�nes a model of T2 properly. The fact
that a model of any in�nite cardinality can be de�ned in a similar fashion is
established as in the proof of Theorem 2.

2. PAIRS OF RECURSIVELY SATURATED MODELS

Let σ1 = 〈Pn0
0 , . . . , Pnk

k , . . .〉 and σ2 = 〈Qm0
0 , . . . , Qml

l , . . .〉 be predicate
signatures (we may assume that σ1 ∩ σ2 = ∅) and M and N be models
of signatures σ1 and σ2, respectively. By a pair (M, N) we mean a model
of the signature σ ® 〈M1, N1, Pn0

0 , . . . , Pnk
k , . . . , Qm0

0 , . . . , Qml
l , . . .〉, whose

universe is the union |M| ∪ |N| and predicate symbols are interpreted thus:
M (M,N) = |M|, N (M,N) = |N|, P

(M,N)
i = PM

i , i = 1, . . . , k, . . . , Q
(M,N)
j =

QN
j , j = 1, . . . , l, . . . .
Fixing some G�odel numberings of formulas in the signatures σ1, σ2, and σ,

we identify arbitrary sets of formulas in these signatures with corresponding
sets of their G�odel numbers. In particular, a set of formulas is said to be
recursive if the set of G�odel numbers of those formulas is recursive (provided
that σ1 and σ2 are computable). Throughout this section, for uniformity
of the terminology adhered to here, we use the term �recursive� instead of
�computable� in describing properties of the objects in question.

An algebraic system A of a computable signature σ′ is said to be recursively
saturated if, for any �nite tuple ā of elements of |A|, every recursive set of
formulas (with a same set of free variables) of the signature σ′ ∪ 〈ā〉 locally
realizable in (A, ā) is realizable in (A, ā). Relativizing this de�nition, we
arrive at a concept of an X-recursively saturated model for an arbitrary
set X ⊆ ω (in which case sets of formulas recursive with an oracle X are
treated).

THEOREM 6. Let M and N be models of computable signatures. Then
the model (M, N) is recursively saturated if and only if:

(1) M is Th(N, n̄)-recursively saturated, for all n̄ ∈ |N|<ω;
(2) N is Th(M, m̄)-recursively saturated, for all m̄ ∈ |M|<ω.
Proof. Let σ1 and σ2 be signatures of M and N, respectively. (Without

loss, these can be conceived of as predicate signatures.) Suppose that M

and N satisfy (1) and (2), respectively. We claim that (M,N) is recursively
saturated. Assume that {θk(z̄) | k ∈ ω} is a recursive set of formulas in the
signature σ, which is locally realized in (M, N). There is no loss of generality

12



in assuming that θk+1(z̄) → θk(z̄) holds for any k ∈ ω (in which case it is
required that we pass to a set of formulas θk∗(z̄) ® θ0(z̄)∧ . . .∧θk(z̄), k ∈ ω).

For convenience of the presentation, below, instead of unary predicates
M and N , distinguishing the universes |M| and |N|, we treat a language with
variables of two kinds: x̄ and m̄, for variables and constants corresponding to
the elements of M, and ȳ and n̄ for the elements of N. In what follows, it is
assumed that the set of formulas in question has the form {θk(x̄, ȳ) | k ∈ ω},
and that all bound variables in these formulas are also of one of the two
kinds possible. In fact, every formula θ(. . . , z, . . .) in (M,N) is equivalent to
the disjunction (M(z)∧θ)∨ (N(z)∧θ), or, in our notation, to θ(. . . , x, . . .)∨
θ(. . . , y, . . .).

Given any formula θk(x̄, ȳ), we can e�ectively �nd its prenex normal
form. In view of Pi(. . . , z, . . .) ∧ N(z) ≡ Qj(. . . , z, . . .) ∧ M(z) ≡ ¬(z =
z), every disjunctive term θk

i (x̄i, ȳi) in the prenex normal form matrix is
equivalent to the conjunction ϕk

i (x̄i) ∧ ψk
i (ȳi), where ϕk

i (x̄i) and ψk
i (ȳi) are

elementary conjunctions containing only predicates and variables de�ned on,
respectively, M and N. We describe the procedure allowing of quanti�ers in
the quanti�er pre�x to be carried over inside the matrix, in the course of
which the prenex normal form of θk(x̄, ȳ), via a chain of equivalent transformations,
turns into a formula of the form (ϕk

1(x̄) ∧ ψk
1(ȳ)) ∨ . . . ∨ (ϕk

nk
(x̄) ∧ ψk

nk
(ȳ)),

where ϕk
i (x̄) and ψk

i (ȳ) are arbitrary formulas all of whose predicates as
well as free and bound variables are de�ned on M and N, respectively. The
quanti�ers ∃x and ∃y are carried over inside the disjunction in the obvious
manner because

∃y(θk
1(x̄1, ȳ1) ∨ . . . ∨ θk

nk
(x̄nk

, ȳnk
)) ≡

(ϕk
1(x̄1) ∧ ∃yψk

1 (ȳ1)) ∨ . . . ∨ (ϕk
nk

(x̄nk
) ∧ ∃yψk

nk
(ȳnk

))

(similarly for ∃x). For the quanti�ers ∀x and ∀y, we have

∀y(θk
1(x̄1, ȳ1)∨. . .∨θk

nk
(x̄nk

, ȳnk
)) ≡

∨

S⊆{1,...,nk}

(∧

s∈S

ϕk
s(x̄s) ∧

(
∀y

(∨

s∈S

ψk
s (ȳs)

)))
.

Exercising this process with all quanti�ers in the quanti�er pre�x of the
prenex normal form of θk(x̄, ȳ), we ultimately arrive at a formula of the form

(ϕk
1(x̄, m̄) ∧ ψk

1 (ȳ, n̄)) ∨ . . . ∨ (ϕk
nk

(x̄, m̄) ∧ ψk
nk

(ȳ, n̄)),

where m̄ and n̄ are tuples of parameters in M and N, respectively, occurring
in the formulas θk(x̄, ȳ). For every k ∈ ω, put

Ψk(ȳ, n̄) ®
∨

S∈Sk

∧

s∈S

ψk
s (ȳ, n̄),
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where Sk =
{

S ⊆ {1, . . . , nk}
∣∣∣∣M |= ∃x̄

( ∨
s∈S

ϕk
s(x̄, m̄)

)}
by de�nition. The

initial type {θk(x̄, ȳ) | k ∈ ω} is locally realized in (M, N); so, Sn 6= ∅ for all
n ∈ ω. The set {Ψk(ȳ, n̄) | k ∈ ω} is Th(M, m̄)-recursive, and by assumption,
it is locally realized in N. Since N is Th(M, m̄)-recursively saturated, this
type is realized in N by some tuple c̄ of elements. Consider formulas such as

Φk(x̄, m̄) ®
∨

s∈Sk(c̄)

ϕk
s(x̄, m̄),

where Sk(c̄) = {l ∈ {1, . . . , nk} | N |= ψk
l (c̄, n̄)}. The set {Φk(x̄, m̄) | k ∈ ω}

is Th(N, n̄, c̄)-recursive, and it is locally realized in M by the choice of c̄. Since
M is Th(M, n̄, c̄)-recursively saturated, there exists a tuple ā of elements
in M such that M |= Φk(ā, m̄) for all k ∈ ω. Thus 〈ā, c̄〉 realizes type
{θk(x̄, ȳ, m̄, n̄) | k ∈ ω} in (M, N), as required.

To argue for the way back, assume that the model (M, N) is recursively
saturated. Let n̄ be an arbitrary tuple of elements in |N| and let Q =
γ(Th(N, n̄)), where γ is some G�odel numbering of formulas in the signature
σ2. We claim that M is Q-recursively saturated. Let {ϕk(x̄, m̄) | k ∈ ω} be a
Q-recursive set of formulas (with parameters m̄ in |M|), which we represent
as

{θk(x̄, m̄) | ∃Du ⊆ Q 〈k, u〉 ∈ Wz},
for some z, where θk = γ−1(k) (since Q is a complete type, the quanti�er
∃Dv ⊆ N \Q can be dropped). Then the fact that this set is (locally) realized
in M is equivalent to the recursive set

{(θk(x̄, m̄) ∧ ψu(n̄)) | 〈k, u〉 ∈ Wz}
of formulas of the signature σ, where ψu = γ(i1) ∧ . . . ∧ γ(in) for Du =
{i1, . . . , in}, being (locally) realized in (M,N). Since (M, N) is recursively
saturated, the condition that this set is locally realizable implies that it is
also realized in (M,N), which is equivalent to the initial type being realizable
in M. Similarly we can state that N is P -recursively saturated for all P of
the form Th(M, m̄).

We say that a model M of a signature σ is locally decidable if Th(M, m̄)
is decidable for any tuple m̄ of elements in |M|. In particular, every model
of a c-simple theory is locally decidable. A consequence of Theorem 6 is the
following:

COROLLARY 1. Let models M and N be locally decidable. The pair
(M, N) is recursively saturated if and only if M and N are recursively
saturated.
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Proposition 3. Let M and N be recursively saturated so that Th(M) =
Th(N) and M is locally decidable. The pair (M, N) is recursively saturated
if and only if N is locally decidable.

Proof. Let (M, N) be recursively saturated. Assume that N is not locally
decidable, that is, there exists a tuple n̄ of elements in |N| such that Th(N, n̄)
is not decidable. Since Th(M) = Th(N), a type realizable in N by n̄ is also a
type relative to Th(M), and, since M is Th(N, n̄)-saturated by Theorem 1,
this type should be realized in M by some tuple m̄. Hence Th(M, m̄) =
Th(N, n̄), which contradicts the assumption that M is locally decidable.

Conversely, let N be locally decidable. In this instance (M, N) is recursively
saturated in view of Corollary 1.

Appealing to Theorem 6, we furnish an example of a pair of models M

and N such that M and N are recursively saturated, but (M, N) is not. The
models under construction, among other things, are elementary equivalent.
Take a signature σ ® {P 1

ε | ε ∈ E}, E = {0, 1}<ω, consisting of countably
many unary predicates indexed by �nite sequences of 0's and 1's. Let D ⊆ E
be an in�nite recursive binary tree without in�nite recursive branches. Such
a tree was used in [3] to construct a theory, TD, with the following set of
axioms:

∀xPΛ(x),
∀x(Pε0(x) ∨ Pε1(x) → Pε(x)), ε ∈ E,
∀x((Pε0(x) → ¬Pε1(x)) ∧ (Pε1(x) → ¬Pε0(x))), ε ∈ E,
∃x(Pε(x) ∧ ¬Pε0(x) ∧ ¬Pε1(x)), ε ∈ D,
∀x¬Pε(x), ε ∈ E \D,
∀x∀y(Pε(x) ∧ ¬Pε0(x) ∧ ¬Pε1(x) ∧ Pε(y) ∧ ¬Pε0(y) ∧ ¬Pε1(y) → x = y),

ε ∈ E.
The theory TD is complete and decidable. Since D has no in�nite recursive

branches, it follows that every model of TD is recursively saturated. By the
same token, the sole locally decidable model of TD is its prime model � M0.
Therefore if M is a model of TD non-isomorphic to M0, then (M,N) is not
recursively saturated by Prop. 6. Thus we have

Proposition 4. If M0 is a prime model of TD then, for any model M of
TD, the model (M, M0) is recursively saturated if and only if M ∼= M0.

Let M be a model of a �nite signature; then an admissible set HYP(M)
is de�ned. If O(M) is the least ordinal not in HYP(M) then M is recursively
saturated i� O(M) = ω (cf. [3, 4]). We know that every model has a
recursively saturated elementary extension, and so there exist recursively
saturated models whose elementary theory is as complex as is wished. If we
�x the thus obtained model M with a su�ciently complex elementary theory
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then, choosing a recursively saturated but not Th(M)-recursively saturated
model N (such exists by [10]) and using Theorem 6, we can ascertain that
the pair (M, N) is not recursively saturated. We thus arrive at the following:

Proposition 5. There exist models M and N with �nite signatures such
that O(M) = O(N) = ω, but O(M,N) > ω.

Denote by pp(HYP(M)) the pure part of an admissible set HYP(M),
that is, the set of elements whose transitive closure is freed of urelements.
Consider the case where M is a recursively saturated model. In this instance
we can �x a computable numbering ν : ω → pp(HYP(M)) (such numberings
are all computably equivalent). Pure Σ-subsets of HYP(M) for the case
where Th(M) is a c-simple theory are described in the following:

LEMMA 1. Let T = Th(M) be a c-simple theory. An arbitrary subset
P ⊆ pp(HYP(M)) is a Σ-subset of HYP(M) if and only if ν−1(P ) is computably
enumerable.

Proof. Let P ⊆ pp(HYP(M)) be de�ned by a Σ-formula Φ(x, c̄) with
a tuple c̄ of parameters. Given Φ, we can e�ectively construct an ∃-formula
Φ∗(x) in the signature 〈+, ·, 0, 1〉 such that for any x0 ∈ pp(HYP(M)),

HYP(M) |= Φ(x0, c̄) ⇔ N |= Φ∗(ν−1(x0)).

In fact, if Th(M) is c-simple, then the set HYP(M) being admissible is
Σ-de�nable in HF(M) (cf. [11, 12]), and the relevant result for HF(M) can
be applied to it.

The statement from [11, 12] used in the proof of the previous lemma
implies that for a model M of a c-simple theory, an arbitrary algebraic system
A is Σ-de�nable in HYP(M) i� A is Σ-de�nable in HF(M).

In [13], the concept of being ΣA-saturated was de�ned for an arbitrary
admissible set A. Namely, a model N of a signature σ is said to be ΣA-
saturated if, for every set p(x̄, ȳ) of formulas in the signature σ that is Σ-
de�nable in A, the fact that every A-�nite subset q(x̄, n̄) is realizable in
N implies that p(x̄, n̄) is realizable in N, where n̄ ∈ |N|<ω is a tuple of
parameters.

For any models M and N, we consider the following conditions:
(1) N is recursively saturated;
(2) N is Th(M, m̄)-recursively saturated, for all m̄ ∈ |M|<ω.
(3) N is ΣHYP(M)-saturated.
For any M and N, (3) ⇒ (2) and (2) ⇒ (1). In the general case, however,

the reverse implications fail. We distinguish a class of models for which the
three conditions are equivalent.
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Proposition 6. If Th(M) is a c-simple theory then

(1) ⇔ (2) ⇔ (3)

for any model N.
Proof. Suppose that M satis�es the conditions of the proposition. Then

Th(M, ā) is decidable for any tuple ā ∈ M<ω, and so (1) ⇒ (2). It remains
to show that the property of N being recursively saturated implies that N

is ΣHYP(M)-saturated. This is so since every pure Σ-subset of HYP(M), for
the case where Th(M) is c-simple, is computably enumerable in the sense of
Lemma 1.
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