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Abstract. We consider copies and constructivizations of structures in
admissible sets. It is well known that in classical computable model the-
ory (on natural numbers) these approaches are equivalent: a structure
has computable (decidable) copy if and only if it is constructivizable
(strongly constructivizable). However, in admissible sets the ”if” part
of this statement is not true in general. In the first section we survey
results about copies in hereditary finite superstructures and definabil-
ity (so called syntactical conditions of intrinsically computable proper-
ties). The second section is devoted to constructivizations of uncountable
structures in "simplest” uncountable admissible sets. The third section
contains some results on constructivizations of admissible sets within
themselves.

1 Copies of Structures in Admissible Sets

We denote by F(o) the set of finite first order formulas of a signature o. We
also fix some Gdodel numbering [-] : F(o) — w ([¢] — Goédel number of ).
In all that follows we consider only computable signatures and suppose that
Godel numberings are effective. We also denote by F,(0) (n < w) a set of (finite
first order) formulas of signature o with no more than n alterating groups of
quantifiers in prenex normal form. Fy(o) is a set of quantifier-free formulas of
signature o.

Let 9t be a structure of signature o, A an admissible set, and let M C A.
Then the atomic diagram

D) = {{[p],m)| p € Fy(o) — atomic formula, m € M<¥, M |= p(m)}
is a subset of A.

Definition 1. Let 9 be a structure of computadble structure o, A an admissible
set, and let M C A. Structure M is n-decidable in A (n < w) if

{(Tel,m) | ¢ € Fa(o),m € M=%, M = p(m)}
is A-definable in A.

Structure 9 is computable in A if M is 0-decidable in A, and decidable in A
if M is w-decidable in A. It is obvious that if 90t is n-decidable in A for some n
then M is A-definable in A.

Structure 9 is computable (decidable) in classical sense if and only if it is
computable (decidable) in the least admissible set HIF(&).



Definition 2. F : P(A)" — P(A) is a X-operator if there exists a X-formula
&(xo, ... ,Tn_1,y) such that for any So,...,Sn—1 € P(A)

F(S()a v :Snfl) = {(1 ‘ ElaO e Elanfl( /\ a; g Sz AA |: @(am e :anflaa))}'
i<n
Let F: P(A)" — P(A) be a X-operator, §.(F) — a set of elements of P(A)"
in which F' is strongly continous [1]. It is easy to show that in HF (9) any subset
belongs to d.(F') for any X-operator F.

Definition 3. Suppose B,C are subsets of an admissible set A. B is X -reducible
to C (B <x C) if there exists binary X-operator Fy such that (C, A\C) € 6.(Fp)
and B = Fo(C, A\ C). If except that there exists binary X-operator Fy such that
(C,A\C) € 6.(F1) and A\ B = F1(C, A\ C) then B is said to be T X -reducible
to C (B <TE C)

Let A be an admissible set, 9t a structure such that M C A, and let P C M™.
P is relatively computable in A if P is T X-reducible to D(90) in A, and relatively
c.e. in A if P is Y-reducible to D(9M) in A.

Definition 4. Let 9 be a structure of computable signature o, A an admissible
set, and let M C A. Structure M is relatively n-decidable in A (n < w) if

{([el.m) | ¢ € Fa(o),m € M=, M [= p(m)}
is T X-reducible to D(9M) in A.

Definition 5. A copy of a structure O in an admissible set A is a structure N
such that N~ M and N C A.

Theorem 1 (Ash, Knight, Manasse, Slaman [2], Chisholm [3]). Let M
be a countable structure and let P C M™. Then the following are equivalent:

- P is X-definable in HF(9M);

— for any copy M of M in HF (M) P is relatively c.e.;

— for any copy M of M in HF (@) P™ is relatively c.e..

Theorem 2 (Goncharov [4], Manasse [5]). There exists a countable struc-
ture MM with computable copy in HF (&) and P C M such that

~ for any computable copy M of M in HF (&) PN is c.e.;

- P is not X-definable in HEF (O0N).

Theorem 3. Let 9 be a countable structure, n < w. Then the following are
equivalent:

- M is n-decidable in HF(IN);

— any copy of M in HF(IM) is relatively n-decidable;

— any copy of M in HF(D) is relatively n-decidable.

Theorem 4 (Nurtazin [6]). Let 9 be a countable structure with computable
copy in HF (@), n < w. Then the following are equivalent:

- M is n-decidable in HF(IN);

— any copy of M in HF(@) is relatively n-decidable;

- any computable copy of M in HF () is n-decidable.



The previous theorem shows that in case of decidability it is impossible to
construct an analog of Goncharov-Manasse example from theorem 2. About the
existence of relatively decidable copies, there is

Theorem 5 (Harizanov, Knight, Morozov [7]). Let 9 be a countable struc-
ture. Then in HF (@) there exists a relatively decidable copy of IMN.

We prove the following

Theorem 6. Let I be a structure of computable signature. Then in HEF(IN)
there exists a relatively decidable copy of M.

Suppose 9t is arbitrary (possibly uncountable) structure of computable sig-
nature, S — structure of empty signature of the same cardinality as 9.

Conjecture 1. There exists a relatively decidable copy of 91 in HF(S).

Congjecture 2. For any n < w the following are equivalent:
— 9 is n-decidable in ]HI]F(QJI),
— any copy of M in HF(9N) is relatively n-decidable;
— any copy of 9 in HF(S) is relatively n-decidable.

Conjecture 8. Suppose I is a structure with computable copy in HF(S), n < w.
Then the following are equivalent:

— 9 is n-decidable in HIF(9);

— any copy of 9 in HF(S) is relatively n-decidable;

— any computable copy of 9t in HF(S) is n-decidable.

A theory T is regular [1] if it is model complete and decidable.
Proposition 1. If Th(ON) is regular then 9 is decidable in HF(IN).
Ezample 1. R, Q,, C are structures with regular elementary theories.

We describe decidable linear orders in the following way:

Theorem 7. A linear order £ is 1-decidable in HF(L) iff £ is a sum of a finite
number of dense linear orders and points.

A structure M is n-complete [4] (n < w) if for any formula p(zZ) € F,(0)
and for any m € M<¥ s.t. MM = p(m) there exists a I-formula ¢ (z) such that
M = ¢p(m) and M = VE((z) = ¢(7)).

Proposition 2. Suppose M is n-decidable in HF(M) (n < w). Then M is n-
complete in some constant expansion.

Proposition 3. Suppose M is n-complete and Th(IM) is decidable. Then M is
n-decidable in HEF (O0).



Suppose 9 is 1-decidable in HIF (). Then HF(9M) has universal X-function
and reduction property, but not necessarily uniformization property.

Let 9 be a structure of signature o and let signature o, consists of all sym-
bols of ¢ and new functional symbols f,(z1,... ,zy) for all existential formulas
p(zo,1,... ,%,) of signature o. Structure M, of signature o, is called ezisten-
tial Skolem expansion of M if || = ||, M [,= M. [, and for any existential
formula ¢(xg,x1,... ,z,) of signature o

M, =Ver .. . Ve,(Fzp(x, 21, ... ,2n) = @(folz,. .., 2n), 21, .. ,2Tn)).
The next theorem is a generalization of the main result from [12].

Theorem 8. Suppose M is 1-decidable in HF (). Then HF(IN) has uniformiza-
tion property iff some existential Skolem expansion of M is computable in HIF ().

Theorem 9. For any n € w there exists w-categorical structure I such that
M is n-decidable in HF (OMN) but not (n + 1)-decidable HF(9N). There also exists
w-categorical structure MM such that for any n € w M is n-decidable in HF (M)
but M is not decidable in HIF(IMN).

Admissible set A is quasiresolvable [1] if there exists a sequence By C By C
...C By C..., a€ OrdA of transitive subsets of A such that UycorqaBa= A4,
and subsets {{a,a)|a € B,} and

{(a, [#],3) | a € OrdA,&(z) € F(on),a € BS*, A By k= 8(a)}

are A-definable in A.

Admissible set A is I-quasiresolvable if there exists a sequence By C By C
...C By C ..., a € OrdA of transitive subsets of A such that UycorqaBa = 4,
and subsets {{a,a)|a € B,} and

{{a, [®],a) | o € OrdA, (%) — II-formula of op,a € BSY, A | B, |= $(a)}

are A-definable in A.

If admissible set A is 1-quasiresolvable then A has universal X-function
and reduction property [1]. If 9 is (1-)decidable in HF(91) then HF(9M) is
(1-)quasiresolvable. The converse is not true in general.

Theorem 10. Suppose M is w-categorical. Then

1) M is decidable in HF (ON) iff HF(ON) is quasiresolvable;
2) M is 1-decidable in HF(IN) iff HF(ON) is 1-quasiresolvable.

2 Constructivizations of Structures in Admissible Sets

Let M be a structure of relational computable signature (P, ..., P/, ...) and
let A be an admissible set.



Definition 6 (Ershov [1]). 91 is X-definable (constructivizable) in A if there
exists a computable sequence of X -formulas

¢($07y))w(w(];wlay))w*(wﬂawlay)ﬂ¢0($07 s axno—lay)a

B5(x0y - o s Trg—1,Y), - s Pr(Tos oo Tnp =1, ), Pr(Toy -+ o Trg—1,Y), - - -

such that for some parameter a € A
Ny = &4 (z0,a) # @, 1= (g, 21,a) N N
is a congruence relation on the structure
Ny = (No, B0, ..., P0,...),
where P,;no = PR (3o, ..., Tn—1) NNG*, k € w,

&T/*A(xg,azl,a) ﬂNg = Ng\WA(arg,arl,a),
@2A(w0,... s Eng—1,@) N NG* = Ng* \(15?(1:0,... s g —1)

for all k € w and the structure N is isomorphic to the quotient structure Ny /1.

Definition 7. A theory T is c-simple [1] if it is w-categorical, model complete,
decidable and has decidable set of complete formulas.

Congecture 4 (Ershov [8]). If T is c-simple theory then some uncountable model
of T is X-definable in HF (L) for some (uncountable) dense linear order £.

Theorem 11 (Schmerl [9]). If A is countably infinite, w-categorical structure,
then there is a linear order < of A with order type of rationals such that (2, <)
s w-categorical.

Definition 8. For arbitrary structures 2 and B a set I C AN B is called a set
of A-indiscernibles in B if for any tuples i,i' € I<* of the same length

(A1) = (A,4") implies (B,1) = (B, 1').

Let T and T' be c-simple theories. If some uncountable model of T is X-
definable in HF-superstructure over some model of T, then there are decidable
models 20 and B of T' and T" respectively such that there is an infinite computable
set of A*-indiscernibles in B, where B* is expansion of % by finite number of
constants.

For some c-simple theories this necessary condition of X-definability is also
sufficient. We denote by Tpro theory of dense linear order and by Tg theory of
infinite models of equality.

Theorem 12 ([13]). Let T' be c-simple theory and 2 be any decidable model of
T. Then



1) T has uncountable model which is X -definable in HF(L) for some £ |= Tpro
iff there exists an infinite computable set of order indiscernibles in 2A;

2) T has uncountable model which is X-definable in HF(S) for some S = Tg
iff there exists an infinite computable set of total indiscernibles in 2.

Theorem 13 (Kierstead, Remmel [10]). There exists c-simple theory T s.t.
any infinite set of (order) indiscernibles in decidable model of T is not com-
putable.

By using this result we obtain a counterexample for Ershov conjecture.

Corollary 1 ([13]). There exists c-simple theory (of infinite signature) such
that none of it’s uncountable models is X-definable in HF (L), where £ is a dense
linear order.

Conjecture 5. For any c-simple theory T there exists a c-simple theory T" such
that for any uncountable 9t = T and 9 |= T' M’ is not X-definable in HIF(IN).

3 Inner Constructivizability of Admissible Sets

Consider a signature ¢ and let P be unary predicate symbol not in . For QR-
formula (i.e. formula which possibly contain restricted quantifiers of kind Vz € y
and 3z € y) @ of signature o U {€} we define inductively relativization ¥ of
formula @ by predicate P :

— if @ is atomic then #F = &;

—if @ = (1 % P2), x € {A,V, =} then &F = (&F x ¢I);

— if & = ~W then ¢ = —@SP;

~if & = (Qz € y)¥, Q € {V,3} then ¥F = (Qx € y)¥T;

—if & = 3z¥ then ¥ = Jz(P(z) ATF);

—if & = Vz¥ then ¥ = Vz(P(z) —» ¥F).

In case then A is admissible set, B C A and $(zq,... ,2,_1) is a QR-formula
of signature o, we define

(@0, ,@0-1))® = {{do,.. san_1) € A" | (A, B) = & (ao,... ,an_1)}.

Definition 9. A structure MM of computable predicate signature (Py°, P**,...)
is constructivizable in an admissible set A inside B C A if there exists computable
sequence of formulas

@(xo,y),W(afg,$1,y),w*($0,$1,y),¢0($0, v :xnoflay%

PG (x0y e s Trg—1,Y); - s Pr(Tos oo Ty =1, ) Pr(Toy oo Tpp—1,Y), - - -
and b € B such that

MO = ¢B($Oab) # Q’ MO g Ba n = WB(:I:();ml;b) N Mg
is a congruence relatin on the structure

Moy = (Mo, P, . ..



where P,imo = (P20 Tng—1)) BN MY k€ w,

(#* (20, 21,0))” N Mg = Mg \ (¥ (20, 21,0))”

Y

(P (g, . .. ,ajnk_l,a))B NMI* = Mg* \ (Pr (0, . .. ,a:nk_l))B

for all k € w, and M is isomorphic to My 1.

If A is an admissible set then for arbitrary B C A we define rnk(B) in the
usual way:

rnk(B) = sup{rnk(b)|b € B}.

Definition 10. Rank of inner constructivizability of an admissible set A is an
ordinal

cr(A) = inf{rnk(B) | A is constructivizable in A inside B}.

The next theorem gives the precise estimates of the rank of inner construc-
tivizability for hereditary finite superstructures.

Theorem 14 ([14]). Suppose M is a structure of computable signature. Then
1) if M is finite then cr(HF(IM)) = w,
2) if M is infinite then cr(HF(IM)) < 2.

From this theorem we obtain effective analogs of some results from [11] about
definability in multisorted languages.

Examples of structures 9 for which ¢r (HF(9)) = 2 are infinite models of
empty signature, dense linear orders, and, more interesting, the structure {(w, s)
of natural numbers with successor function. Indeed, if we denote by T hw ps (91)
a theory of 91 in the language of weak monadic second order logic, then the
following lemma is true:

Lemma 1. If Thwp (9M) is decidable then cr(HF(9)) = 2.

From Biichi result about decidability of Thy a({w, s)) and the previous lem-
ma we get that

cr(HF ({w, s))) = 2.

An example of structure 9t for which er(HF(9)) = 0 is, obviously, the
standard model of arithmetic N. An example of structure for which rank of
inner constructivizability is equal to 1 is the field R of real numbers.

Theorem 15 ([14]).
cr(HF(R)) = 1.
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