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Abstract. In this survey paper we consider presentations of structures
in admissible sets and some effective reducibilities between structures
and their degrees of presentability. Degrees of Σ-definability of struc-
tures, as well as degrees of presentability with respect to different effec-
tive reducibilities, are natural measures of complexity which are total,
i.e. defined for any structure. We also consider properties of structures
invariant under various effective reducibilities, and study how a degree
of presentability of a structure depends from a domain for presentations
( i.e. from the choice of an admissible set).

In this survey paper we consider presentations of structures in admissible
sets and some effective reducibilities between structures and their degrees of pre-
sentability. The main object of study are semilattices of degrees of Σ-definability,
which can be considered as a theoretical model of object-oriented programming,
based on a generalization of oracle computability regarding oracles, as well as
the results of computation, as abstract structures. On the other hand, the notion
of Σ-definability of a structure in an admissible set is an effectivization of one
of central notions of model theory, the notion of interpretability of one structure
in another, and, at the same time, a generalization of the notion of construc-
tivizability of a structure on natural numbers. We show that the semilattices of
Turing and enumeration degrees of subsets of natural numbers are embeddable
in a natural way into the semilattices of degrees of Σ-definability. The notion
of a structure having a degree, known in computable model theory, gives only a
partial measure of complexity, since there are a lot of structures which do not
have a degree. Degrees of Σ-definability, as well as degrees of presentability with
respect to different effective reducibilities, are natural measures of complexity
which are total, i.e. defined for any structure. We can also consider properties
of structures invariant under various effective reducibilities, and study how a
degree of presentability of a structure depends from a domain for presentations
( i.e. from the choice of an admissible set).

Most of notations and terminology we use here are standard and corresponds
to [4, 3, 11]. We denote the domains of a structure M by M , and its signature by
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σM. In all that follows we consider only structures with computable signatures.
For arbitrary structure M, the hereditary finite superstructure HF(M), which
is the least admissible set containing M as a subset, is defined as a structure of
signature σ′M = σM∪{U1,∈2,Sat2}, whose universe is HF (M) =

⋃
n∈ω Hn(M),

where H0(M) = M , Hn+1(M) = Hn(M) ∪ {a|a ⊆ Hn(M), card(a) < ω}, the
predicate U distinguish the set of the elements of the set M (regarded as urele-
ments), the relation ∈ has the usual set theoretic meaning, and the interpretation
of Sat is the set {〈k, m̄〉|M |= Pk(m̄)}. We add Sat to the signature since σM is
allowed to be infinite. In case when σM is finite this is not necessary.

In the class of all formulas of signature σ′M the subclass of ∆0-formulas is
defined as the closure of the class of atomic formulas under ∧,∨,¬,→, and
bounded quantifiers ∃x ∈ y, ∀x ∈ y; the class of Σ-formulas is the closure of the
class of ∆0-formulas under ∧,∨,¬,→, ∃x ∈ y, ∀x ∈ y, and the quantifier ∃x; the
class of Π-formulas is defined in the same way, allowing the quantifier ∀x instead
of ∃x. A relation on HF(M) is called Σ-definable (Π-definable) if it is defined
by a corresponding formula, possibly with parameters; it is called ∆-definable if
it is Σ- and Π-definable.

Let M be a structure of relational signature 〈Pn0
0 , . . . , P

nk−1
k−1 〉 (the restriction

to relational signature is not essential and stands only for simplicity) and let A
be an admissible set (see [4, 3] for definition).

Definition 1 (Yu.L. Ershov [4]). M is said to be Σ-definable in A if there
exist Σ-formulas

Φ(x0, y), Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ0(x0, . . . , xn0−1, y),

Φ∗0(x0, . . . , xn0−1, y), . . . , Φk−1(x0, . . . , xnk−1−1, y), Φ∗k−1(x0, . . . , xnk−1−1, y)

of signature σA, such that for some parameter a ∈ A, and letting M0 ® ΦA(x0, a),
η ® ΨA(x0, x1, a)∩M2

0 , one has that M0 6= ∅ and η is a congruence relation on
the structure

M0 ® 〈M0;PM0
0 , . . . , PM0

k−1〉,

where PM0
i ® ΦAi (x0, . . . , xni−1) ∩ Mni

0 for all i < k, Ψ∗A(x0, x1, a) ∩ M2
0 =

M2
0 \ ΨA(x0, x1, a), Φ∗Ai (x0, . . . , xni−1, a) ∩Mni

0 = Mni
0 \ ΦAi (x0, . . . , xni−1) for

all i < k, and the structure M is isomorphic to the quotient structure M0�η.
If, in addition, there exists a Σ-formula Φ∗(x0, y) such that A |= ∀x0(Φ∗(x0, a)

↔ ¬Φ(x0, a)), then M is said to be ∆-definable in A. We say that M is ∆-
definable in A with no parameters if the above hold for a = ∅.

It is easy to show that, if we allow parameters, M is Σ-definable in A if and
only if M is ∆-definable in A. However, this is not so if we restrict ourselves to
definitions with no parameters.

For structures M and N, by M 6Σ N we denote the fact that M is Σ-
definable in HF(N). It is easy to see that the relation 6Σ is reflexive and tran-
sitive. For arbitrary infinite cardinal α, let Kα be the class of all structures of
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cardinality 6 α. We define on Kα an equivalence relation ≡Σ as follows: for
M, N ∈ Kα, M ≡Σ N if M 6Σ N and N 6Σ M. A structure

SΣ(α) = 〈Kα/ ≡Σ ,6Σ〉
is an upper semilattice with the least element, which is the degree consisting of
constructivizable structures, and, for any M,N ∈ Kα, [M]Σ∨ [N]Σ = [(M,N)]Σ ,
where (M, N) denotes the model-theoretic pair of M and N. For simplicity,
SΣ(ω) will be denoted by SΣ .

Let M be a structure of a computable signature and let A be an admissible
set. A presentation of M in A is any structure C such that C ∼= M and the
domain of C is a subset of A (the relation = is assumed to be a congruence
relation on C and may differ form the normal equality relation on C). We can
treat (the atomic diagram of) a presentation C as a subset of A, using some
Gödel numbering of the atomic formulas of the signature of M.

Definition 2. The problem of presentability of M in A is the set Pr(M,A)
consisting of all possible presentations of M in A:

Pr(M,A) = { C | C is a presentation of M in A }.
We denote by M the set Pr(M,HF(∅)) of all presentations of M in the

least admissible set. It is well-known (see [3, 4]) that computability (i.e. effective
definability) in HF(∅) is equivalent to the classical computability on natural
numbers.

There are natural embeddings of the semilattices D and De of Turing and
enumeration degrees into SΣ . To show this, we use the notion of a structure
having a degree, introduced by L. Richter [9].

Definition 3. Let M be a countable structure. M is said to have a degree (e-
degree) if there exists a least degree in the class of T -degrees (e-degrees) of all
possible presentations of M on natural numbers.

Using the classical result connecting ∀-computability and ∃-definability, first
proved by Y.N. Moschovakis [7] and lately rediscovered and generalized by J.
Knight [1], in [15] was proved the following

Theorem 1. For a countable M, M has a degree (e-degree) iff, for some C ∈ M,
C is ∆-definable (Σ-definable) in HF(M).

Define mappings i : D → SΣ and j : De → SΣ as follows: for any a ∈ D, let

i(a) = [Ma]Σ , where Ma is some structure with degree a.

In the same way, for any b ∈ De, let

j(b) = [Mb]Σ , where Mb is some structure with e-degree b.

Lemma 1. The definitions above are correct: for any countable structures M
and N, if M has (e-)degree a and M ≡Σ N, then N also has the same (e-)degree
a.



4

Proof. Suppose, for example, that M has an e-degree a. Since HF(M) 6Σ M 6Σ

N and some C ∈ M is Σ-definable in HF(M), we get that C is Σ-definable in
HF(N). Now, since N 6Σ M, by applying this Σ-definition to C we get C′ ∈ N
s.t. C′ 6e C, and hence C′ is Σ-definable in HF(N). So N has an e-degree which is
less or equal to the e-degree of M. The same argument in the opposite direction
shows that these degrees coincide.

However, in general the property of having a degree is not closed downwards
with respect to 6Σ . In the same way as Lemma 1 was proved, we can prove

Proposition 1. Mappings i : D → SΣ and j : De → SΣ are semilattice embed-
dings preserving 0 and ∨.

(The embedability of D into SΣ was previously noted by A.N. Khisamiev
[6].)

Let A be an arbitrary admissible set. A mapping F : P (A)n → P (A) (n ∈ ω)
is called a Σ-operator[4] if there is a Σ-formula Φ(x0, . . . , xn−1, y) of signature
σA such that for all S0, . . . , Sn−1 ∈ P (A)

F (S0, . . . , Sn−1) = { a | ∃a0, . . . , an−1 ∈ A(
∧

i<n

ai ⊆ Si ∧ A |= Φ(a0, . . . , an−1, a))}.

To guarantee transitiveness of reducibilities defined below, we need the following
notion. An operator F : P (A) → P (A) is strongly continuous in S ∈ P (A), if for
any a ⊆ F (S), a ∈ A,there exists a′ ⊆ S, a′ ∈ A, s.t. a ⊆ F (a′) (this definition
can be easily modified for operators of arbitrary arity).

For operator F : P (A)n → P (A), δc(F ) is the set of elements of P (A)n in
which F is strongly continuous. A set S ∈ P (A)n is called a Σ∗-set if S ∈ δc(F )
for any Σ-operator F : P (A)n → P (A). It is easy to show that in HF(M) any
subset is a Σ∗-set. However, in general this is not so: for example, in [12] were
studied Σ∗-sets of urelements in admissible set of kind HYP(L), where L is a
dense linear order. Even in this simplest case the class of Σ∗-sets is nontrivial.

Suppose B, C ⊆ A. The following reducibilities are natural generalizations of
e- and T -reducibilities on natural numbers:

1) B is eΣ-reducible to C (B 6eΣ C) if there exists a unary Σ-operator F
such that C ∈ δc(F ) and B = F (C);

2) B is TΣ-reducible to C (B 6TΣ C) if there exist binary Σ-operators F0

and F1 such that 〈C, A \ C〉 ∈ δc(F0) ∩ δc(F1) for which B = F0(C,A \ C) and
A \B = F1(C, A \ C).

Also, we consider some uniform reducibilities on families of subsets of A,
naturally generalizing Medvedev, Muchnik and Dyment reducibilities on mass
problems [11]. Suppose X ,Y ⊆ P (A), then

1) X is Medvedev reducible to Y (X 6 Y) if there exist binary Σ-operators
F0 and F1 such that, for all Y ∈ Y, 〈Y, A \ Y 〉 ∈ δc(F0) ∩ δc(F1) and, for some
X ∈ X , X = F0(Y, A \ Y ) and A \X = F1(Y, A \ Y );
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2) X is Dyment reducible to Y (X 6e Y) if there exists a unary Σ-operator
F such that, for all Y ∈ Y, Y ∈ δc(F ) and F (Y) ⊆ X ;

3) X is Muchnik reducible to Y (X 6w Y) if, for any Y ∈ Y, there exist
binary Σ-operators F0 and F1 such that 〈Y, A \ Y 〉 ∈ δc(F0) ∩ δc(F1) and, for
some X ∈ X , X = F0(Y,A \ Y ) and A \X = F1(Y,A \ Y );

4) X is nonuniformly Dyment reducible to Y (X 6e Y) if for all Y ∈ Y there
exists a unary Σ-operator F such that Y ∈ δc(F ) and F (Y) ⊆ X .

For any admissible set A and any ∗ ∈ {e, , w, ew}, let M∗(A) denotes the
structure 〈P (P (A))/ ≡∗, 6∗〉. For simplicity, we writeM∗ instead ofM∗(HF(∅)).
Each ofM∗(A) is a lattice with 0 and 1, and latticesM,Me,Mw are isomorphic
to the Medvedev, Dyment and Muchnik lattices, respectively.

For a countable structure M consider the cones of structures reducible to it:
KΣ(M) = {N | N 6Σ M},
Ke(M) = {N | N 6e (M, m̄) for some m̄ ∈ M<ω},
K(M) = {N | N 6 (M, m̄) for some m̄ ∈ M<ω},
Kew(M) = {N | N 6ew M}, Kw(M) = {N | N 6w M}.

It was proved in [15] that, for any structure M,

KΣ(M) ⊆ Ke(M) ⊆ K(M) ⊆ Kw(M),

as well as Ke(M) ⊆ Kew(M) ⊆ Kw(M). In general, all these inclusions are
proper.

For any ∗ ∈ {e, , w, ew}, define the relation 6∗ on Kω in the following way:
M 6∗ N if and only if K∗(M) ⊆ K∗(N), and let S∗ = 〈Kω/ ≡∗,6∗〉 be a
structure of degrees of presentability corresponding to this reducibility relation.

Theorem 2 ([15]). Each of S∗, ∗ ∈ {e, , w, ew}, is an upper semilattice with
0, and there are following embeddings (↪→) and homomorphisms (→)

D ↪→ De ↪→ SΣ → Se → S ↪→M.

For arbitrary structures M and M′ of the same signature and any n ∈ ω, we
denote by M ≡HF

n M′ the fact that HF(M) ≡n HF(M′). It is easy to verify that,
for n < 2, M ≡HF

n M′ if and only if M ≡n M′. For n = 2, M ≡HF
2 M′ if and

only if, for any computable sequence {ϕmn(x̄m, ȳn)|m,n ∈ ω} of quantifier-free
formulas of signature σM,

M′ |=
∨

m∈ω

∃x̄m

∧
n∈ω

∀ȳnϕmn(x̄m, ȳn)

if and only if the same infinitary sentence is true in M.
A structure M is called locally constructivizable [4] if Th∃(M, m̄) is c.e. for any

m̄ ∈ M<ω, or, equivalently, for any m̄ ∈ M<ω there exists a constructivizable
structure N and n̄ ∈ N<ω such that Th∃(M, m̄) = Th∃(N, n̄). For structures
M and N, we denote by M 6∃ N the fact that for any m̄ ∈ M<ω there is
n̄ ∈ N<ω such that Th∃(M, m̄) 6e Th∃(N, n̄). In particular, if M is locally
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constructivizable then M 6∃ N for any N. As it was first observed in [4], if M 6Σ

N, and N is locally constructivizable, then M is also locally constructivizable.
In fact, this observation can be easily generalized as follows: if M 6Σ N then
M 6∃ N. For stating a series of another necessary conditions of Σ-definability
(which are useful for proving negative results about reducibility 6Σ) we need
the following

Definition 4. A structure M is called locally constructivizable of level n (1 <
n 6 ω), if, for any tuple m̄ ∈ M<ω, there exist a constructivizable structure N
and a tuple n̄ ∈ N<ω such that (M, m̄) ≡HF

n (N, n̄). A countable structure M is
called uniformly locally constructivizable of level n (1 < n 6 ω) if there exists a
constructivizable structure N such that M 4HF

n N.

For example, well-ordering 〈ωCK
1 , 6〉 is uniformly locally constructivizable of

level ω, since 〈ωCK
1 , 6〉 4HF 〈ωCK

1 (1 + η),6〉, there the last ordering is well-
known computable Harrison ordering.

Proposition 2. If M 6Σ N and N is (uniformly) locally constructivizable of
level n (1 < n 6 ω) then M is also (uniformly) locally constructivizable of level
n.

The next result shows that the class of locally constructivizable (of level 1)
countable structures is closed downwards with respect to 6w, i.e. weakest of
considered effective reducibilities.

Proposition 3 ([15]). For arbitrary structures M and N, N ∈ Kw(M) implies
that N 6∃ M. In particular, if M is locally constructivizable, then any N ∈
Kw(M) is also locally constructivizable.

Since (M,N) is locally constructivizable in case then M and N are locally
constructivizable, the sets of degrees generated by locally constructivizable struc-
tures form the ideals in semilattices S∗, ∗ ∈ {Σ, e, , w, ew}. The classes of locally
constructivizable structures of level n for n > 1, however, are closed downwards
only with respect to 6Σ (and so form initial segments in SΣ). For weaker re-
ducibilities this is not so. For example, there is

Theorem 3 ([15]). If a structure M is locally constructivizable of level n > 1
and not constructivizable, then there is a structure M0 ∈ K(M) which is locally
constructivizable of level 1 sharply. In particular, KΣ(M)  K(M).

The proof of Theorem 3 uses the result of T. Slaman [10] and S. Wehner [16]:
there exists a structure with problem of presentability belonging to the least non-
zero degree in the Medvedev lattice (in fact, this implies that the semilattice S
has a least non-zero element). From a relativization of Slaman construction it
also follows that in the Muchnik lattice any degree which is the least over a
degree of solvability is a degree of presentability. Using the similar ideas, we can
also prove
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Theorem 4 ([15]). There exist a structure M and an unary relation P ⊆ M
such that (M, P ) ≡ M, but (M, P ) 66Σ M.

Theorem 4 is interesting with respect to the following result from [2]: for a
countable structure M and relation P ⊆ Mn, P is Σ-definable in HF(M) if and
only if, for any C ∈ (M, P ), P C is C ¹ σM-c.e..

The next theorem gives sufficient conditions for the equality of different
classes of structures, effectively connected with a countable structure M.

Theorem 5 ([15]). If M has a degree then KΣ(M) = Ke(M) = K(M) =
Kw(M). If M has an e-degree then KΣ(M) = Ke(M) = Kew(M).

It seems to be a natural open question whether these sufficient conditions
are also necessary or not.

For structures M and N s.t. card(M) 6 card(N), consider the class

K(M, N) = {M′ | Pr(M′,HF(N)) 6 Pr((M, m̄),HF(N)), m̄ ∈ M<ω}.

In the same way, classes Ke(M,N), Kw(M, N) and Kew(M, N) are defined.

Proposition 4. Let M be a countable structure, and let a countable N be either
an infinite structure of empty signature, or a dense linear order. Then KΣ(M) =
Ke(M, N) = K(M,N).

As a consequence we get that there exist natural isomorphisms between the
semilattice SΣ of degrees of Σ-definability and semilattices S(HF(N)) of degrees
of presentability for N as in the proposition above.

Another generalization of the result connecting ∀-recursiveness and ∃-definability
is the following

Theorem 6 ([15]). For any countable structures M and N and any R ⊆ HF(N),
the following are equivalent:

1) for any presentation C of M in HF(N), R 6eΣ C;
2) R is Σ-definable in HF(M,N).

Definition 5. Let M and N be a countable structures. M is said to have a
degree (e-degree) over N if there exists a least degree in the class of TΣ-degrees
(eΣ-degrees) of all possible presentations of M in HF(N).

From Theorem 6 we get a corollary, which is a generalization of Theorem 1.

Theorem 7 ([15]). Let M and N be countable structures. The following are
equivalent:

1) M has a degree (e-degree) over N;
2) some presentation C ⊆ HF (N) of M is ∆-definable (Σ-definable) in HF(M, N).
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It is clear that, if M 6∃ N, then M has a degree (e-degree) over N if and
only if M 6Σ N. It is also clear that, if M has a degree (e-degree) over N and
N 6Σ N′, then M has a degree (e-degree) over N′. It is easy to verify that for
any countable structure A there exists a structure M which has a degree but is
not Σ-definable in HF(A). As in the nonrelativised case, we also have

Theorem 8 ([15]). Let M and N be countable structures. If M has a degree
over N then KΣ(M) = Ke(M, N) = K(M,N). If M has an e-degree over N then
KΣ(M) = Ke(M, N).

Another necessary condition of Σ-definability of one structure in another is
the existence of some effective uniform reducibility between local HF-theories
of these structures. Further on, by a family we mean any set of subsets of ω.
We define effective operators on families, by expanding domains of recursive
operators to the set P (P (ω)) in the following way: for any family X ⊆ P (ω) and
any enumeration operator Φ : P (ω) → P (ω), let

Φ(X ) = {Φ(D)|D ∈ X<ω is a finite tuple}.

Here by Φ(D) for D = 〈X1, . . . , Xn〉 we mean the set Φ(X1 ⊕ . . .⊕Xn).
Let A,B ⊆ P (P (ω)) be arbitrary collections of families. We say that A is

Dyment reducible to B (denoted by A 6e B) if Φ(B) ⊆ A for some enumeration
operator Φ.

On the set of families we define mappings i : P (P (ω)) → P (P (P (ω))) and
j : P (P (ω)) → P (P (P (ω))) in the following way: for a family X , let i(X ) = {X}
and j(X ) = {{X}|X ∈ X}. It is clear that, for any families X ,Y ⊆ P (ω),
j(X ) 6e j(Y) if and only if X 6e Y (in the latter case by 6e we mean the
Dyment reducibility on families). Further on, by X 6o

e Y we denote the fact
that i(X ) 6e i(Y).

Let X ⊆ P (P (ω)), and let X̄0 = 〈X0
1 , . . . , X0

k〉, X0
1 , . . . , X0

k ⊆ ω. The shift of
X by X̄0 is the family X̄0 ∗ X = {X0

1 ⊕ . . .⊕X0
k ⊕X|X ∈ X}.

The Dyment reducibility on the set P (P (P (ω))) of collections of families is
reflexive and transitive. Equivalence relation ≡e is defined as usual: A ≡e B if
A 6e B and B 6e A. We denote the poset of degrees 〈P (P (P (ω)))/ ≡e,6e〉 by
M′

e, having in mind the Dyment lattice Me.

Proposition 5. M′
e is a lattice with 0 and 1, and j : Me →M′

e is an embed-
ding preserving ∧,∨, 0, 1.

Proof. The greatest element ofM′
e is, evidently, [∅]e, while the least is [{{∅}}]e,

and j(0Me) = i(0Me) = {{∅}}, j(1Me) = ∅, i(1Me) = {∅}, ∅ ≡e {∅}.
Join and meet operations on M′

e are defined as follows: for collections A,B ⊆
P (P (ω)), A ∨ B = {X ∨ Y|X ∈ A,Y ∈ B}, where X ∨ Y = {X ⊕ Y |X ∈
X , Y ∈ Y}; and A ∧ B = {0} ∗ A ∪ {1} ∗ B, where {0} ∗ A = {{0} ∗ X |X ∈ A},
{1} ∗ B = {{1} ∗ Y|Y ∈ B}.
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In the same way as the nonuniform analog Mew of the Dyment lattice is
defined, we can define a nonuniform analog M′

ew of M′
e. Besides, in the same

way as Medvedev and Muchnik lattices are defined, we can define the lattices
M′ and M′

w, generated by collections of families of total sets (or functions).

Proposition 6. Let M and N be a structures of arbitrary cardinality, and let
M 6Σ N. Then, for some n̄0 ∈ N<ω, for any 1 < n 6 ω holds

{ThHF
Σn

(M, m̄)|m̄ ∈ M<ω} 6o
e {ThHF

Σn
(N, n̄0, n̄)|n̄ ∈ N<ω},

{ThHF
Πn

(M, m̄)|m̄ ∈ M<ω} 6o
e {ThHF

Πn
(N, n̄0, n̄)|n̄ ∈ N<ω},

{ThHF
n (M, m̄)|m̄ ∈ M<ω} 6o

e {ThHF
n (N, n̄0, n̄)|n̄ ∈ N<ω}.

For a structure M, consider the family E(M) = {Th∃(M, m̄)|m̄ ∈ M<ω}
consisting of the existential theories of arbitrary expansions of M by a finite
number of constants. From the previous proposition we get a

Corollary 1. For any structures M and N,

M 6Σ N ⇒ E(M) 6o
e E(N, n̄0) for some n̄0 ∈ N<ω.

There exist structures for which the necessary condition of Σ-definability
from Corollary 1 is also sufficient. With any family X ⊆ P (ω) we connect a
structure AX defined in the following way: the domain of this structure is the
set ω ∪ S, where S is the set of cardinality 2ω. The signature consists of unary
functional symbol s, defined in the usual way on ω (s(n) = n + 1) and identical
on S, and a binary relation symbol R, which is interpreted as follows: R ⊆ S×ω,
X = {{n ∈ ω|R(s, n)}|s ∈ S}, and to any member of X correspond uncountably
many elements from S, and there are also uncountably many elements from S
which are not connected by R with elements from ω, and uncountably many
connected with every element from ω.

We also define a structure BX , with domain C ∪ S, where C and S are
disjoint sets of cardinality 2ω, and the signature consists of an unary relation
symbol P separating the set S, and a binary relation symbol R, forming finite
cycles (loops are possible only on elements from S), in which only one element
is from S, for different cycles the sets of involved in them elements of C are
disjoint, X = {{n ∈ ω|∃c0 . . . ∃cn(R(s, c0) ∧ R(c0, c1) . . . ∧ R(cn, s))}|s ∈ S}, for
any member of X there are uncountably many elements from S corresponding to
it, there are uncountably many elements from S involved in cycles of all possible
sizes, there are also uncountably many elements from S which are not connected
by R with any other element, and there are uncountably many elements of C
which are not involved in cycles.

Immediately from the definitions of AX , BX and Corollary 1 we get

Proposition 7. For any families X ,Y ⊆ P (ω),

AX 6Σ AY ⇐⇒ X ∪ {∅, ω} 6o Ȳ0 ∗ (Y ∪ {∅, ω}) for some Ȳ0 ∈ Y<ω,
BX 6Σ BY ⇐⇒ X ∪ {∅, ω} 6o

e Ȳ0 ∗ (Y ∪ {∅, ω}) for some Ȳ0 ∈ Y<ω.
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In particular, if structures M, N are both of kind AX or BX , then M 6Σ N
if and only if E(M) 6o

e E(N, n̄0) for some n̄0 ∈ N<ω.
We say that a structure M is locally n-low (n ∈ ω) if ThHF

Σn
(M, m̄) ∈ Σ0

n for
all m̄ ∈ M<ω. It is clear that if M is localy constructivizable of level n then M is
locally n-low (for n = 1 the converse is also true). From Proposition 6 it follows
that, for any n, the property of being locally n-low is also closed downwards
with respect to 6Σ .

As a corollary of Proposition 1 we have that card(SΣ) = 2ω. Consider the
question about the cardinality of the semilattice SΣ(2ω). It is also maximal, as
follows from

Theorem 9. There exists an antichain in SΣ(2ω) of cardinality 22ω

. In partic-
ular, card(SΣ(2ω)) = 22ω

.
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