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Abstract. We consider an approach to computability in admissible sets
based on a general notion of computable process, with Σ-predicates and
Σ-operators as special cases, inspired by ideas from the Ershov–Scott
theory of approximation spaces. We present some results from different
topics in generalized computability, including reducibilities on admissible
sets and structures, general notion of a jump, and computable analysis
(more exactly, computability over the reals), obtained with the help of
this approach, and state some open questions.
Keywords: computability theory, admissible sets, computable model
theory, approximation spaces, computable analysis.

1 Introduction

The present paper is a continuation of [15, 16, 18, 19] and especially [17]. It is
motivated by three questions in generalized computability which turned out to
be closely connected:
1) For a given admissible set A, what is computability on A?
2) What is a jump of a given computability or structure?
3) How to define a measure (degree) of complexity of a given structure or admis-
sible set?

First, a usual understanding of computability theory on admissible sets as the
study of Σ-definable objects (predicates, relations, subsets, etc.) is too stringent
when various formalizations of computable processes are considered, like in the
case of mass problems with reducibilities on them via computable operators in
the style of Medvedev, Muchnik and Dyment [15]. Degrees of presentability,
being a special case of mass problems on admissible sets in general, provide
natural tools for measuring the constructive complexity of structures, so the task
of extending this approach is quite actual. Concerning this problem, we present
a framework which allows to study both Σ-predicates and Σ-operators from a
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common viewpoint based on a notion of (constructive) process on a domain of
computation. Computability on admissible sets is generated from this point of
view by classes Σ-processes on Σ-admissible families (in the paper such pairs
are called computability components). It turns out that these notions in case
of HF-computabilities are naturally connected with another motivating problem
— the study of jumps of computabilities and jumps of structures. We apply the
methods constructed in the first part to formulate a general notion of jump of
computability, extending the notions of Turing jump and hyperjump of a set of
natural numbers, and the notion of Σ-jump of a structure, considered recently
by different authors [7, 9, 12, 18].

The results obtained in the paper explain how new notions and insights can
be helpful in quite different areas. We propose, formalize and study the following
approaches to the questions stated above:

1) Computability on A is a family of its components, with each component
defined as a pair: a family of objects — subsets of A, and a class of Σ-processes
acting on them, with the property that every finite fragment of an output can
be obtained using some finite fragments of the arguments and resources.

2) The jump of a component of computability on A is a structure with the
domain consisting of its objects and the diagram is obtained by the termination
of its processes.

3) The measure of (relative) complexity of a structure is given by its degrees
in semilattices of Σ-degrees and degrees of presentability, while the measure of
(relative) complexity of an admissible set is given by its equivalence class with
the equivalence relation generated by the Morozov reducibility [8].

There are three main classes of objects considered in this paper: admissible
sets, computabilities, generated by admissible sets, and structures, obtained as
jumps of computabilities. Note that a structure, in turn, generate admissible sets
like HF- or HYP-superstructures, so we can speak about, say, HF-computability
over that structure.

The new results in this paper are as follows. First, concerning computabil-
ities on admissible sets in general, we obtain a strengthening of the result of
A.S.Morozov [8] which states that a certain reducibility between admissible
sets implies an embedding of computable objects (i.e., Σ-predicates) on them.
Namely, we prove that this reducibility implies much more general fact: there ex-
ists an embedding of computabilities on these admissible sets. We show how the
theory of admissible sets and , in particular, the notion of Σ-admissible family
is connected with the Ershov–Scott theory of approximation spaces.

Second, we present results connecting 0�, the jump of the maximal component
of HF-computability over 0, with the reals in both algebraical and topological
settings. We show that these structures are constructible from, respectively, (0�)′

and 0�. These results can be considered as a first step in the study of jump in-
versions in general, established for the minimal component of HF-computability
over arbitrary structure in the strongest possible form [18, 19].
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In the text, we use definitions and notations from [6, 2]. In particular, for an
admissible set A, UA denotes the set of urelements from A, and A∗ denotes the
set of elements of A which are sets (i.e., not urelements).

2 Processes and Approximation Spaces

We will use very basic definitions and facts from the Ershov–Scott theory of
approximation spaces.

Definition 1 By a p-domain we mean a triple X = 〈X,F,6〉, where X is a
topological T0 space which is a ϕ-space [3, 5], F ⊆ X is the basic subset of finite
elements, and 6 is the specialization order on X.

Every ϕ-space is an α-space [5]. In particular, we will use the property of p-
domains true for α-spaces in general: every element x ∈ X is a limit of its
F -approximations:

x = sup{a ∈ F | a 6 x}.

The set F can be viewed as the set of finite approximations for elements from
X, and the specialization order 6 is usually induced on X by a T0 topology
defined in some natural way. Typical examples we will consider in this paper
are built from an admissible set A, with F = A, 6 = ⊆X\UA ∪ =UA , and
X ⊆ A ∪ P (A) (see Example 1 below). To explain the role of set X we should
define the notions of process, constructive process, and computability.

Informally, processes are functions on p-domains which generate an output
as the limit of its approximations, using ‘finite’ fragments of arguments and
resources (like space or time). Each process is defined by its specification or
presentation, and constructive processes are defined by specifications which can
be ‘effectively checked’.

Definition 2 Let m,n ∈ ω. By a (m,n)-ary specification on X we mean a
total function α0 : Fm+n+2 → {0, 1} which is monotone with respect to the
last 2 arguments in the following sense: for any ā ∈ Fm, any b̄ ∈ Fn, and any
c, c′, d, d′ ∈ F ,

if c 6 c′ then α0(ā, b̄, c, d) 6 α0(ā, b̄, c′, d);

if d 6 d′ then α0(ā, b̄, c, d′) 6 α0(ā, b̄, c, d).

Informally, ā are finite arguments, b̄ are finite fragments of (possibly infinite)
arguments, c and c′ are finite fragments of the resources we can use, while d and
d′ are finite fragments of the result of the process defined by this specification.

Definition 3 Let X = 〈X,F,6, 〉 be a p-domain. For m,n ∈ ω, (m,n)-ary
process on X is a partial mapping α from (a subset of) Fm×Xn to X such that
there exists a specification α0 : Fm+n+1 → {0, 1} which defines α in the following
sense: for any ā ∈ Fm, x̄ ∈ Xn such that (ā, x̄) ∈ dom(α), and any d ∈ F ,
d 6 α(ā, x̄) iff there exist b0, . . . , bn−1, c ∈ F such that b0 6 x0, . . . , bn−1 6 xn−1,
and α0(ā, b̄, c, d) = 1.
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Let n ∈ ω. We use the following terminology to denote the fact that a given
process is either defined only on ‘finite’ arguments, or on arbitrary arguments
approached only via approximations. Namely, for n ∈ ω

– n-ary functional is a (n, 0)-ary process from (a subset of) Fn to X;
– n-ary operator is a (0, n)-ary process from (a subset of) Xn to X.

We denote classes of n-ary functionals and operators on X by Fn(X ) and On(X ),
correspondingly, and the class of all processes on X is denoted by P(X ).

Definition 4 1) Termination of a (partial) functional α : Fn → X is a total
function αt : Fn+1 → {0, 1} defined as follows: for any ā ∈ Fn, b ∈ F ,

αt(ā, b) = 1 iff b 6 α(ā).

2) Termination of a (partial) operator β : Xn → X is a total function βt :
Xn+1 → {0, 1} defined as follows: for any ā ∈ Xn, b ∈ X,

βt(ā, b) = 1 iff b = β(ā).

3) Termination of a (partial) (m,n)-ary process γ : Fm×Xn → X, n > 0, is a
total function βt : Fm ×Xn+1 → {0, 1} defined as follows: for any ā ∈ Fm,
b̄ ∈ Xn, c ∈ X,

γt(ā, b̄, c) = 1 iff c = γ(ā, b̄).

3 Computabilities and Reducibilities on Admissible Sets

Example 1. Let A be an admissible set. A p-domain X on A can be constructed
in the following way. Let X0 ⊆ P (A) be an arbitrary Σ-admissible family in
sense of [6], X = A ∪ X0, F = A, and 6 = ⊆X\UA ∪ =UA . So, the topology

on X ∩ P (A) is a strong topology from [6], and the topology on UA is trivial.
A class of processes can be taken as a suitable subclass of P(X ) — the set of
operators on A which are strongly continuous [6]. The set of all Σ-predicates
and Σ-operators on A is, in fact, a subset of P(X ) (and form a subclass of
‘computable processes’), by the axiom of ∆0-Collection and the definition of Σ-
admissible family, respectively. Note that in case when A = HF(M) it is possible
to take X0 = P (HF(M)) [6].

On the other hand, we can first fix a subclass of computable processes C ⊆
P(X ) and then take X0 ⊆ P (A) to be a Σ-admissible family relative to C. We
will use the following technical modifications of some basic notions from [2, 6].
Let A be an admissible set.

1) A mapping α : An → P (A) is called a Σ-predicate on A if there is a Σ-
formula ϕα(x1, . . . , xn, y) of signature σA (with no parameters from A) such
that, for all a1, . . . , an, b ∈ A, b ∈ α(a1, . . . , an) iff A |= ϕα(a1, . . . , an, b) (ϕα
is called Σ-specification, or Σ-presentation, of α).
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2) A mapping β : P (A)n → P (A) is called a Σ-operator on A if there is a
Σ-formula ϕβ(x1, . . . , xn, y) of signature σA (with no parameters from A)
such that, for all S1, . . . , Sn ∈ P (A), b ∈ A

b ∈ β(S1, . . . , Sn) iff ∃a1 ⊆ S1, . . . ,∃an ⊆ Sn s.t. A |= ϕβ(a1, . . . , an, b)

(here it is assumed that a1, . . . , an ∈ A∗). Again, ϕβ is called Σ-specification,
or Σ-presentation, of β.

We assume that if A is fixed, 6 denotes ⊆P (A) ∪ =UA .

Definition 5 Let A be an admissible set, and let m,n ∈ ω. Mapping γ from
Am × (A ∪ P (A))n to P (A) is called a ((m,n)-ary) Σ-process on A if there is
a Σ-formula ϕγ(x1, . . . , xm, y1, . . . , yn, z) of signature σA (with no parameters
from A) such that, for all a1, . . . , am ∈ A, x1, . . . , xm ∈ A ∪ P (A), c ∈ A,

c ∈ γ(ā, x̄) iff ∃b1 6 x1, . . . ,∃bn 6 xn s.t. A |= ϕγ(ā, b̄, c).

Formula ϕγ is called Σ-specification, or Σ-presentation, of γ. The set of all
Σ-presentations of a given process γ is denoted by PresΣ(γ).

Any Σ-presentation ϕγ(x̄, ȳ, c) of a process γ can be transformed into the
∆0-formula θγ(x̄, ȳ, c, d) which is a specification of γ in the sense of Definitions
2, 3: take

θγ(x̄, ȳ, c, d)� (∀c′ ∈ c)ϕγ(x̄, ȳ, c′)(d),

where ϕγ(x̄, ȳ, c′)(d) is the relativization of ϕγ to d [2].
We denote by FΣ(A) the class of all Σ-predicates on A, by OΣ(A) the class

of all Σ-operators on A, and by PΣ(A) the class of all Σ-processes on A (hence,
PΣ(A) ⊇ FΣ(A) ∪ OΣ(A)).

Definition 6 Let A be an admissible set and let C ⊆ PΣ(A) be a class of Σ-
processes on A. A family S ⊆ A ∪ P (A) is called Σ-admissible relative to C
if

1) S is closed relative to processes from C: for any (m,n)-ary process α ∈ C,

∀a1, . . . , am ∈ A∀x1, . . . , xn ∈ S α(a1, . . . , am, x1, . . . , xn) ∈ S;

2) processes from C are strongly continuous on elements from S: for any (m,n)-
process α ∈ C,

∀a1, . . . , am ∈ A∀x1, . . . , xn ∈ S∀c ∈ A(c 6 α(ā, x̄)→

→ ∃b1 ∈ A . . .∃bn ∈ A(b1 6 x1 ∧ . . . ∧ bn 6 xn ∧ c 6 α(ā, b̄))).

Definition 7 Let A be an admissible set. By a computability component on A
we mean a pair (S, C), where

1) A ⊆ S ⊆ P (A) is a Σ-admissible family relative to C, and
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2) FΣ(A) ⊆ C ⊆ PΣ(A) is a class of Σ-processes on A which is closed under
superposition.

For an admissible set A, by computability on A we mean the family Com(A)
of all computability components on A:

Com(A) = {(S, C) | (S, C) is a computability component on A}.

Note that if, for a computability component (S, C), it is true that OΣ(A) ⊆ C,
then S should be a Σ-admissible family on A in the sense of [6].

To demonstrate the usefulness of these new notions, we prove a strengthen-
ing of the result of A.S.Morozov [8] which states that a certain reducibility on
admissible sets implies an embedding of computable objects (i.e., Σ-predicates)
on them.

The reducibility on admissible sets was defined by A.S.Morozov [8] as a mod-
ification of the notion of Σ-definability of a structure in an admissible set, in-
troduced by Yu.L.Ershov.

Definition 8 (Yu.L.Ershov [4, 6]) Let M be a structure of computable pred-
icate signature 〈Pn0

0 , Pn1
1 , . . .〉 and let A be an admissible set. M is Σ-definable

in A if there exist a computable sequence of Σ-formulas

Φ(x0, y), Φ=(x0, x1, y), Ψ=(x0, x1, y), Φ0(x0, . . . , xn0−1, y),

Ψ0(x0, . . . , xn0−1, y), Φ1(x0, . . . , xn1−1, y), Ψ1(x0, . . . , xn1−1, y), . . . ,

such that for some parameter a ∈ A, and letting

M0 � ΦA(x0, a), η � ΦA
=(x0, x1, a) ∩M2

0

one has that M0 6= ∅ and η is a congruence relation on the structure

M0 � 〈M0, P
M0
0 , PM0

1 , . . .〉,

where PM0
i � ΦA

i (x0, . . . , xni−1) ∩Mni
0 for all i,

ΨA
=(x0, x1, a) ∩M2

0 = M2
0 \ ΦA

=(x0, x1, a),

ΨA
i (x0, . . . , xni−1, a) ∩Mni

0 = Mni
0 \ ΦA

i (x0, . . . , xni−1)

for all i, and the structure M is isomorphic to the quotient structure M0�η.

A structure Σ-definable in A is called A-constructivizable. The relation of Σ-
reducibility 6Σ on (types of isomorphism of) structures was also defined using
this notion. Namely, for structures M and N, we denote by M 6Σ N the fact
that M is Σ-definable in HF(N). This relation is reflexive and transitive, and
the corresponding notion of Σ-degree gives a natural measure of complexity for
structures of arbitrary cardinalities, see [16–19].

We will also need a ‘positive’ version of Σ-definability: for a structure M and
an admissible set A, M is Σ+-definable in A if there exist a computable sequence
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of Σ-formulas Φ(x0, y), Φ0(x0, . . . , xn0−1, y), Φ1(x0, . . . , xn1−1, y), . . . such that,
for some parameter a ∈ A and an onto mapping ν : ΦA(x0, a) � M , for every
i ∈ ω and every a0, . . . , ani−1 ∈ ΦA(x0, a),

A |= Φi(a0, . . . , ani−1, a) ⇐⇒ M |= Pi(ν(a0), . . . , ν(ani−1)).

Again, for structures M and N, we denote by M 6+
Σ N the fact that M is Σ+-

definable in HF(N). It should be noted, however, that 6+
Σ is transitive only in

case when all structures are treated ‘positively’ in the sense that their atomic
diagrams are not necessarily closed under negations.

For a structure with an infinite computable signature, we assume that some
Gödel numbering of formulas of this signature is fixed. We assume that the signa-
ture of HF(B) contains a predicate symbol Sat2 interpreted by the satisfiability
relation for atomic formulas in B, with respect to a fixed Gödel numbering. In
the case of structures with a finite signature this assumption is not essential.

The next definition is a technical modification of the original one (it was used
in this form in [9]).

Definition 9 (A.S. Morozov [8]) Let A and B be admissible sets. A is Σ-
reducible to B ( denoted A vΣ B) if there is an onto mapping ν : B � A such
that

1) ν is a B-constructivization of A as a structure in sense of [4, 6];
2) there is a binary Σ-predicate E on B s.t. pr1(E) = B and, for all b, c ∈ B,

〈b, c〉 ∈ E implies ν(b) = {ν(z)|z ∈ c}.

Definition 10 If, for admissible sets A,B, there exist mappings ν : B � A and
µ : PresΣ(PΣ(A)) → PresΣ(PΣ(B)) such that µ is computable and, for every
(S, C) ∈ Com(A), there exists (S ′, C′) ∈ Com(B) such that

(ν−1(S), µ(Pres(C))) is isomorphic to (S ′, C′),

we say that Com(A) is Σ-embeddable into Com(B).

Theorem 1 Let A,B be admissible sets. If A vΣ B then Com(A) is Σ-embedd-
able into Com(B).

Proof. We prove that if A is Σ-reducible to B then Σ-processes on A are rep-
resented, in an effective and uniform way, by Σ-processes on B working with
the names of elements from A. So, the result is somethat similar to one on
relationship between Σ-degrees and degrees of presentability of structures.

We present a uniform effective procedure which transform anyΣ-specification
of a Σ-process on A into some Σ-specification of Σ-process on B representing
the first one. In a standard way, we define an effective uniform transformation
Φ(x̄, ā) 7→ Φ∗(x̄, b̄) of Σ-formulas of signature σA with parameters ā from A,
to Σ-formulas of signature σB with parameters b̄ from B, by induction on the
complexity:
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– (P (x̄))∗ = (Φ(x0) ∧ . . . ∧ Φ(xn−1) ∧ ΦP (x̄)), Pn ∈ σA;
– (¬P (x̄))∗ = (Φ(x0) ∧ . . . ∧ Φ(xn−1) ∧ ΨP (x̄)), Pn ∈ σA;
– ((∃x ∈ y)Θ)∗ = (Φ(y) ∧ ∃x(Φ∈(x, y) ∧Θ∗));
– ((∀x ∈ y)Θ)∗ = (Φ(y) ∧ ∃z((〈y, z〉 ∈ E) ∧ ((∀v ∈ z)Θ∗));
– (Θ1 ◦Θ2)∗ = (Θ∗1 ◦Θ∗2), ◦ ∈ {∧,∨},

and so on. Now, anyΣ-specification Φα of (m,n)-aryΣ-process α on A is mapped
to a Σ-formula (Φα)∗ which is a Σ-specification of (m,n)-ary Σ-process α∗ on B
such that, if 〈S0, . . . , Sn−1〉 ∈ δc(α) (δc denotes the domain of strong continuity),
then 〈ν−1(S0), . . . , ν−1(Sn−1)〉 ∈ δc(α∗) and

ν−1(α(S0, . . . , Sn−1)) = α∗(ν−1(S0), . . . , ν−1(Sn−1)).

Hence, defining mapping µ on Σ-processes as µ(p) = (p)∗, the pair (ν−1, µ)
establish the desired isomorphism.

4 Jumps of Computabilities: Σ-Jump of a Structure
as the Jump of the Minimal Component of
HF-Computability

Definition 11 Let A be an admissible set, and let (S, C) be a computability
component on A. The jump of (S, C) is the structure JA(S, C) with S as the
domain and the atomic diagram consisting of unary predicate distinguishing the
set A of finite objects, and the predicates distinguishing terminations t(C) of
processes from C (given by their Σ-presentations in some fixed Gødel number-
ing).

This extends in a natural way all existing definitions of jump operations
defined on subsets of natural numbers or on structures. Indeed, in the last case,
we use the fact that every structure generates the least admissible set containing
it — its HF-superstructure. If we take the least computability component on that
HF-superstructure and terminate all its processes (i.e., all Σ-predicates), we get
the structure which is called Σ-jump of the original one. The formal definition
is as follows:

Definition 12 Let A be a structure. By Σ-jump, or minimal Σ-jump, of A, we
mean the structure

A′ = (X;F, T ),

with the domain X = HF (A), and relations F = HF (A) (domain consists of
finite objects only, so the unary relation F is trivial in this case and usually
skipped), and T = t(FΣ(HF(A))) as the termination of all Σ-predicates on
HF(A) (denoted here, as in [18, 19], by Σ-SatHF(A)).

In a similar way the jump operation was introduced in [1] for the semilattice
of s-degrees of countable structures. Also, in the same way a notion of the jump
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of an admissible set with respect to various effective reducibilities was introduced
in [8, 9].

It should be noted, however, that, to make Definition 12 a special case of
Definition 11, one should formally extend the domain X of A′ by adding all
Σ-definable relations (given as elements). But it is easy to prove that this for-
malization is Σ-equivalent to the one in Definition 12.

The operation of Σ-jump agrees with the jump operations for Turing and
enumeration degrees w.r.t. the natural embeddings i and j: if a structure A has
a (e-)degree a, then the structure A′ has (e-)degree a′. In fact, it is true that
the mappings i : D → SΣ and j : De → SΣ are embeddings preserving 0, ∨ and
the jump operation (see [16, 19] for details). Hence, the operation of Σ-jump is a
natural extension of Turing and enumeration jumps. One of the important facts
about the minimal HF-computability is that the jump inversion theorem from
classical computability theory is still true in this general setting.

Theorem 2 ([18, 19]) Let A be a structure such that 0′ 6Σ A. Then there
exists a structure B such that

B′ ≡Σ A.

5 Jumps of Maximal Components of HF-Computabilities:
PΣ-Jump of 0 and the Reals

Definition 13 Let A be a structure. By PΣ-jump, or maximal Σ-jump, of A,
we mean the structure

A� = (X;F, T ),

with the domain X = HF (A) ∪ P (HF (A)), and the atomic diagram consisting
of relations F = HF (A) distinguishing finite objects, and T as the termination
of all Σ-processes on HF(A).

Lemma 1 Relations ∈ and ⊆ between elements of the sets F and X are obtained
as terminations of Σ-processes which act on X and depend on a in an effective
and uniform way.

Proof. Indeed, for arbitrary a ∈ A, consider the following unary Σ-operators F∈a
and F⊆a with a as parameter: for every S ∈ X, let

F∈a (S) = {1 | (A, S) |= (∃b ⊆ S)(b = {a})};

F⊆a (S) = {1 | (A, S) |= (∃b ⊆ S)(b = a)}

It is easy to note that PΣ-jump is indeed a jump with respect to 6Σ , because
immediately from cardinality reasons we get that, for any structure A,

A <Σ A�.

A natural question is an analogue of Jump Inversion Theorem for PΣ-jump.
We start from investigating the Σ-degree of 0�.
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Definition 14 Let R denote the set of real numbers. We consider the following
structures:

1) algebraical field of reals R = (R,+,×, 0, 1,=);
2) topological field of reals

Ro = (R, ΓA+ , ΓB+ , ΓA× , ΓB× , 0, 1, <),

where ΓA+ = {〈x, y, z〉 ∈ R3|x+ y < z}, ΓB+ = {〈x, y, z〉 ∈ R3|z < x+ y} (similar
definitions for ΓA× , ΓB× ).

Theorem 3 R 6Σ (0�)′.

Proof. We define a Σ-presentation of R in (0�)′ = (HF(0�), Σ-SatHF(0�)) as
follows. Take as the domain the set

R = {〈k,m, α〉|k ∈ {−1, 0, 1},m ∈ ω, α ∈ Fun(ω, 2)},

where Fun(ω, 2) is the set of total functions from ω to 2 = {0, 1}, and each triple
x = 〈k,m, α〉 represents the real number

rx = k(m+
∑
n∈ω

α(n)

2n+1
).

Lemma 2 R is Σ-definable in (HF(0�), Σ-SatHF(0�)).

Proof. For arbitrary S ∈ HF (0�), S ∈ Fun(ω, 2) if and only if ∃X(S = F (X))∧
Φ(S), where Σ-operator F on HF(∅) is defined as follows: for any X ⊆ HF (∅),

F (X) = {y|∃a ⊆ X∃n∃k[(a = {y}) ∧ (y = 〈n, k〉) ∧Nat(n) ∧ (k ∈ 2)]},

and

Φ(S) = ∀n(Nat(n)→ (((〈n, 0〉 ∈ S)∧(〈n, 1〉 /∈ S))∨((〈n, 1〉 ∈ S)∧(〈n, 0〉 /∈ S))).

Since Fn(S) is a Π-formula in HF(0�), R is Σ-definable in (HF(0�), Σ-SatHF(0�)).

Theorem 4 Ro 6+
Σ 0�.

Proof. We take the set

Ro = {〈k,m, S〉|k ∈ {−1, 0, 1},m ∈ ω, S ⊆ HF(∅)},

as the domain of the presentation. It is easy to note that the cardinality of the
presentation of R0 is the same as the cardinality of R0, which is not necessary
for structures with no equality. The proof follows from the following lemmas.

Lemma 3 For any set S ⊆ HF(∅), the following sets could be obtained as the
results of some Σ-operators acting on S:

1) S ∩ ω;
2) S ∩ n (= S ∩ {0, . . . , n− 1}).

In particular, in case 2 the corresponding Σ-operator depends on n in uniform
and effective way.
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Proof. 1) It is enough to note that S ∩ ω = F0(S), where

F0(S) = {y ∈ HF(∅) |(HF(∅),S) |= (∃a ⊆ S)(∃x)(a = {x}) ∧Nat(x)}.

2) In the same way, for any n > 0, S ∩ n = Fn(S), where

Fn(S) = {y ∈ HF(∅) |(HF(∅),S) |= (∃a ⊆ S)(∃x)(a = {x}) ∧ (x ∈ n)}.

Lemma 4 The strict order relation {〈x1, x2〉 ∈ R2
o | rx1

< rx2
} is Σ-definable in

HF(0�).

Proof. 1) Consider, for example, the case x1 = 〈0, 1, S1〉, x2 = 〈0, 1, S2〉. By
Lemma 3, functions αi : ω → {0, 1} such that Si = {n ∈ ω|αi = 1}, are Σ-
definable in HF(0�). Since rx1 < rx2 mean∑

n∈ω

α1(n)

2n+1
<

∑
n∈ω

α2(n)

2n+1
,

it is equivalent to say there exists n0 ∈ ω such that∑
n<n0

α1(n)

2n+1
−

∑
n<n0

α2(n)

2n+1
>

1

2n0−1
.

Again by Lemma 3, this condition can be defined in HF(0�) by a Σ-formula.
2) General case x1 = 〈k1,m1, S1〉, x2 = 〈k,m1, S2〉 is considered in the same

way: rx1
< rx2

means that

(k2m2 − k1m1) + (k2
∑
n∈ω

α2(n)

2n+1
− k1

∑
n∈ω

α1(n)

2n+1
) > 0.

Depending on ki and mi, this condition is either trivially checked or reduced to
a strict inequality between series as in the first case.

In the same way it can be proved that relations ΓA+ , Γ
B
+ , Γ

A
× , Γ

B
× are all Σ-

definable in HF(0�).

6 Open Questions

1. What is an analogue of Jump Inversion for a given computability component
of HF-computability over 0 or any given structure?

2. What is an analogue of Jump Inversion for a given computability compo-
nent of A-computability? This question is especially interesting for the least
computability component of HYP(M)-computability.

3. Is 0� 6+
Σ R0? This would mean that in the maximal component of HF-

computability over 0 holds an analogue of the Matijasevich Theorem. Also,
is it natural to ask, whether or not (0�)′ 6Σ R.
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