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We show that the property of being locally constructivizable is inherited under Muchnik reducibil-
ity, which is weakest among the effective reducibilities considered over countable structures. It is
stated that local constructivizability of level higher than 1 is inherited under Σ-reducibility but is
not inherited under Medvedev reducibility. An example of a structure M and a relation P ⊆ M

is constructed for which (M, P ) ≡ M but (M, P ) 6≡Σ M. Also, we point out a class of structures
which are effectively defined by a family of their local theories.

This paper is a continuation of [1, 2] and uses the same notation.

1. PROPERTIES OF STRUCTURES INHERITED
UNDER EFFECTIVE REDUCIBILITIES

Below we show that the condition of a structure M having a degree specified in [1, Thm. 7] is essential. To
do this, we state necessary conditions for effective reducibilities between structures, in particular, conditions
that are necessary for being Σ-definable.

Structure M is said to be locally constructivizable [3] if Th∃(M, m̄) is computably enumerable (c.e.)
for any m̄ ∈ M<ω. As noted in [3], the local constructivizability of M is equivalent to the fact that
for every tuple m̄ ∈ M<ω, there exist a constructivizable structure N and a tuple n̄ ∈ N<ω such that
Th∃(M, m̄) = Th∃(N, n̄). For structures M and N, by writing M 6∃ N we mean that for every tuple
m̄ ∈ M<ω, there is a tuple n̄ ∈ N<ω for which Th∃(M, m̄) 6e Th∃(N, n̄). In particular, if M is locally
constructivizable then M 6∃ N for any structure N.

That a structure M is locally constructivizable if so is N with M 6Σ N was first mentioned in [3].
A direct generalization of this fact is the following: if M 6Σ N then M 6∃ N. In order to state other
necessary conditions of Σ-definability (which are used in proving negative results on 6Σ), we consider some
relevant notions.

Definition 1. Structure M is locally constructivizable of level n (1 < n 6 ω) if for every tuple m̄ ∈ M<ω

there exist a constructivizable structure N and a tuple n̄ ∈ N<ω such that (M, m̄) ≡HF
n (N, n̄). A countable

structure M is uniformly locally constructivizable of level n (1 < n 6 ω) if there exists a constructivizable
structure N for which M 4HF

n N.
For instance, the structure 〈ωCK

1 ,6〉 is uniformly locally constructivizable of level ω since 〈ωCK
1 , 6〉 4HF

〈ωCK
1 (1 + η),6〉, where the last order (Harrison order) is constructivizable.
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Let σ be an arbitrary predicate (for simplicity) signature. We say that a partial structure M of the
signature σ with domain M is given if some consistent set D(M) of atomic sentences and their negations in
the signature σM is fixed. Equivalently, for some (complete) structure N of the signature σ, D(M) ⊆ D(N),
where D(N) is an atomic diagram of M. We also call D(M) the atomic diagram of a partial structure M.
The partial structure M (of a computable signature) is said to be constructivizable if the set D(M) is
c.e. under some numbering of the domain M .

Let M and N be any, possibly partial, structures of a signature σ. We say that M is a substructure of
N (written M ⊆ N) if D(M) ⊆ D(N). We also say that M is existentially closed in N (written M 4∃ N)
if N |= ∃x̄ϕ(x̄, m̄) implies M |= ∃x̄ϕ(x̄, m̄) for every quantifier-free formula ϕ(x̄, ȳ) of the signature σ and
for any m̄ ∈ M<ω.

PROPOSITION 1. If M 6Σ N and a structure N is (uniformly) locally constructivizable of level n,
then:

(1) if 1 < n 6 ω then M is also (uniformly) locally constructivizable of level n;
(2) if n = 1 and N is uniformly locally constructivizable then there exists a partial constructivizable

structure M′ such that M 4∃ M′.
Proof. For instance, let N be locally constructivizable of level n and let it be Σ-definable in HF(N) by a

sequence Γ of Σ-formulas with parameters n̄0 ∈ N<ω. Assume that m̄ ∈ M<ω and n̄ ∈ N<ω is a tuple such
that for some κ1, . . . ,κk ∈ HF (ω), the tuple 〈κ1(n̄), . . . ,κk(n̄)〉 corresponds to m̄ in a presentation defined
by Γ. Consider a tuple n̄n̄0. Suppose that N′ is a constructivizable structure and n̄′n̄′0 ∈ N ′<ω are such
that (N, n̄n̄0) ≡HF

n (N′, n̄′n̄′0). Consider a structure M′ which is defined in HF(N′) by the same sequence
Γ of formulas with parameters n̄′0. If n > 1 then the (complete) structure M′ is well defined; if n = 1 then
M′ in general can be partial. In any case M′ is constructivizable, and for a tuple m̄′, corresponding to
〈κ1(n̄′), . . . ,κk(n̄′)〉 in this presentation, we have (M, m̄) ≡HF

n (M′, m̄′).
In fact, let us define an effective transformation of formulas induced by Γ. For simplicity, assume that

σM = 〈Pn0
0 , . . . , P

nk−1
k−1 〉 and M is ∆-definable in HF(N) via a sequence Γ = 〈Φ,Φ∗, Ψ,Ψ∗, Φ0,Φ∗0, . . . ,

Φk−1, Φ∗k−1〉 of Σ-formulas with parameter a ∈ HF (N). Define, then, effective transformations Γ1, Γ2 :
Form(σ′M) → Form(σ′(N,n̄0)

) in this way. Let ϕ be any formula of a signature σ′M without implication and
with negations only alongside its atomic subformulas (every formula is logically equivalent to a formula of
this kind). For such a formula, then, we define formulas Γ1(ϕ) and Γ2(ϕ) by induction on the complexity
of ϕ as follows (hereinafter, for a Σ-formula Φ, ∼Φ denotes a Π-formula that is logically equivalent to ¬Φ):

(1) if ϕ ­ Pi(t0, . . . , tni−1), then Γ1(ϕ) ­ ∼Φ∗i (t0, . . . , tni−1, a)∧∼Φ(t0, a)∧. . .∧∼Φ(tni−1, a), Γ2(ϕ) ­
Φi(t0, . . . , tni−1, a) ∧ Φ(t0, a) ∧ . . . ∧ Φ(tni−1, a);

(2) if ϕ ­ ¬Pi(t0, . . . , tni−1), then Γ1(ϕ) ­ ∼Φi(t0, . . . , tni−1, a) ∧ ∼Φ(t0, a) ∧ . . . ∧ ∼Φ(tni−1, a),
Γ2(ϕ) ­ Φ∗i (t0, . . . , tni−1, a) ∧ Φ(t0, a) ∧ . . . ∧ Φ(tni−1, a);

(3) if ϕ ­ U(t), then Γ1(ϕ) ­ ∼Φ∗(t, a), Γ2(ϕ) ­ Φ(t, a);
(4) if ϕ ­ ¬U(t), then Γ1(ϕ) ­ ∼Φ(t, a), Γ2(ϕ) ­ Φ∗(t, a);
(5) if ϕ ­ (t1 = t2), then Γ1(ϕ) ­ ((∼Φ∗(t1, a)∧∼Φ∗(t2, a)∧∼Ψ∗(t1, t2, a))∨(∼Φ(t1, a)∧∼Φ(t2, a)∧(t1 =

t2))), Γ2(ϕ) ­ ((Φ(t1, a) ∧ Φ(t2, a) ∧Ψ(t1, t2, a)) ∨ (Φ∗(t1, a) ∧ Φ∗(t2, a) ∧ (t1 = t2)));
(6) if ϕ ­ ¬(t1 = t2), then Γ1(ϕ) ­ ((∼Φ∗(t1, a) ∧∼Φ∗(t2, a) ∧∼Ψ(t1, t2, a)) ∨ (∼Φ(t1, a) ∧∼Φ(t2, a) ∧

¬(t1 = t2))), Γ2(ϕ) ­ ((Φ(t1, a) ∧ Φ(t2, a) ∧Ψ∗(t1, t2, a)) ∨ (Φ∗(t1, a) ∧ Φ∗(t2, a) ∧ ¬(t1 = t2)));
(7) if ϕ ­ (ϕ1 ∗ ϕ2), ∗ ∈ {∧,∨}, then Γi(ϕ) ­ (Γi(ϕ1) ∗ Γi(ϕ2)), i = 1, 2;
(8) if ϕ ­ (Qx ∈ t)ψ, Q ∈ {∀, ∃}, then Γi(ϕ) ­ (Qx ∈ t)Γi(ψ), i = 1, 2;
(9) if ϕ ­ Qxψ, Q ∈ {∀,∃}, then Γi(ϕ) ­ QxΓ3−i(ψ), i = 1, 2.
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Thus, for any n > 0 and any ϕ ∈ Form(σ′M), the formula Γ1(ϕ) is Σn if so is ϕ; the formula Γ2(ϕ) is
Πn if so is ϕ. 2

Definition 2. Structure M is HF-categorical of level n (n 6 ω) if every structure M′ of the signature
and cardinality of M satisfies

HF(M) ≡n HF(M′) ⇒ M ∼= M′.

If n = ω then we say that M is HF-categorical.
Obviously, level 1 HF-categoricity is equivalent to level 1 categoricity in first-order logic. (Such struc-

tures are exemplified, for instance, by models of model-complete theories that are categorical in a suitable
cardinality.) Examples of level 2 HF-categorical structures are countable equivalence relations without infi-
nite classes, and groups of finite orders (see Prop. 2 below). A linear order 〈ωCK

1 ,6〉 may serve to exemplify
a structure that is not categorical in HF-logic.

Let E be a countable equivalence relation, that is, a countable structure with a signature consisting of
one binary predicate whose interpretation in the structure is an equivalence relation. The characteristic of
E is a set χ(E) ⊆ ω2 defined as follows:

χ(E) = {〈m,n〉 | E contains at least m equivalence classes of size n}.

We also define a weak characteristic of E, setting

χ∗(E) = {〈m,n〉 | E contains at least m classes of size at least n}.

It is not hard to verify that χ∗(E) ≡e Th∃(E). It is also clear that if finite classes of E are of bounded
size then E is constructivizable. If not, we have χ∗(E) = ω2. In any case every equivalence relation is locally
constructivizable. Note also that the characteristic χ(E) defines the relation E up to number of infinite
equivalence classes. Furthermore, we have

PROPOSITION 2. Let E and E′ be countable equivalence relations. Then:
(1) E ≡1 E′ ⇐⇒ χ∗(E) = χ∗(E);
(2) E ≡HF

2 E′ ⇐⇒ χ(E) = χ(E′).
Proof. Item (1) being obvious, we only consider (2). In fact, 〈m,n〉 ∈ χ(E) iff there exist pairwise

distinct elements a1
1, . . . , a

1
n, . . . , am

1 , . . . , am
n in E satisfying the following: ai

k∼ai
l for all i, k, l; ai

k 6∼ aj
l for

all i, j, k with i 6= j; for any a ∈ E, a∼ai
k implies a = ai

l for some l. This condition may be written in the
form of an ∃∀-formula in the signature of equivalence relations. 2

COROLLARY 1. If M is a structure, which is constructivizable of level 2, then every countable
equivalence relation, which is Σ-definable in HF(M), is constructivizable.

Proof. By Proposition 1, if E is a countable equivalence relation for which E 6Σ M, then E is also
locally constructivizable of level 2. This, in view of Proposition 2, implies that E is constructivizable. 2

The next proposition holds that a class of locally constructivizable (of level 1) countable structures
is closed downward w.r.t. 6w, which is weakest among the reducibilities under consideration; this result
follows immediately from Proposition 1 and from [1].

PROPOSITION 3. Let M and N be countable structures. Then N 6∃ M if N ∈ Kw(M). In partic-
ular, if M is locally constructivizable, then every structure N ∈ Kw(M) is also locally constructivizable.

A pair (M,N) is locally constructivizable iff so are M and N; therefore, a set of degrees generated by
locally constructivizable structures is an ideal in semilattices S∗, ∗ ∈ {Σ, e, , w, ew}. Classes of locally
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constructivizable structures of level n, n > 1, however, are downward closed w.r.t. 6Σ only (so they form
initial segments in SΣ). For weaker reducibilities, this is not the case. For example, we have

THEOREM 1. There exists a countable structure M0 which is locally constructivizable of level 1
(strictly) and is such that M0 6 M for every nonconstructivizable countable structure M. Specifically, if
M is locally constructivizable of level n > 1 but is not constructivizable, then KΣ(M)  K(M).

The proof makes use of the result (obtained in [4], and independently, in [5]) which holds that there
exists a structure whose problem of presentability belongs to a least nonzero degree of the Medvedev lattice
(which, in particular, means that a semilattice S of degrees of presentability has a least nonzero element).
Every such structure is locally constructivizable. Namely, we have

PROPOSITION 4. Let M be a structure such that M 6w A for every noncomputable mass problem
A. Then M is locally constructivizable.

Proof. Obviously, Th∃(M, m̄) 6e C for every presentation C of an arbitrary system M and for any
m̄ ∈ M<ω. Therefore, if M satisfies the hypotheses of the proposition then, in particular, for every
m̄ ∈ M<ω, we have Th∃(M, m̄) 6e X with any X ⊆ ω which is not c.e. This immediately implies that M

is locally constructivizable. 2

Based on the construction in [4] of a structure MS with the above property, we furnish an example of
a structure M and a relation P ⊆ M such that (M, P ) ≡ M but (M, P ) is not Σ-definable in HF(M). Let
M′

S be a constructivizable structure for which MS ⊆ M′
S . The structure M′

S is obtained by adding to MS

infinitely many labels for every (not necessarily maximal) path in MS .
For any structure A that is not constructivizable but possesses a constructivizable extension which is

2-elementary in HF-logic, we consider a structure (A,M′
S), a model-theoretic pair of the structures A and

M′
S . Define a unary relation P ⊆ M ′

S as consisting of labels for the paths in MS ⊆ M′
S : that is, for every

such path, P should contain infinitely many such labels, and we must be left with infinitely many labels of
such paths not in P .

We have MS 6 (A, M′
S), and hence ((A, M′

S), P ) 6 (A,M′
S) (new labels for the relation P are con-

structed using MS as a model). Reducibility in the opposite direction is obvious. Moreover, the structure
((A,M′

S), P ) is not Σ-definable inHF(A,M′
S), since in this instance MS would be Σ-definable inHF(A, M′

S),
which it is not by Prop. 1. In fact, we have

LEMMA 1. Let M, M′, and N be countable structures such that N is locally constructivizable and
M 4HF

2 M′. Then (M,N) 4HF
2 (M′, N).

Proof. Let
(M,N) |=

∧

i∈ω

∀āi∀b̄i

∨

j∈ω

(ϕij(āi) ∧ ψij(b̄i)).

For every i ∈ ω and every b̄ ∈ N<ω, set Ji(b̄) = {j ∈ ω | N |= ψj(b̄)}. By the hypothesis, for all i ∈ ω and
all b̄ ∈ N<ω,

M |= ∀āi

∨

j∈Ji(b̄)

ϕij(ā).

Since M 4HF
n M′, the same formulas are valid also in M′, that is,

(M′, N) |= ∀āi

∨

j∈ω

(ϕij(ā) ∧ ψij(b̄))

for every i ∈ ω and every b̄ ∈ N<ω, as desired. 2

Thus we have in fact proved the following:
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THEOREM 2. There exist a countable structure M and a unary relation P ⊆ M for which (M, P ) ≡
M but (M, P ) 66Σ M.

Theorem 2 is of interest in connection with the following result in [6]: for any countable structure M, a
relation P ⊆ Mn, n ∈ ω, is Σ-definable in HF(M) iff PC is C ¹ σM-c.e. for every C ∈ (M, P ) (see [6]).

For structures M and N with card(M) 6 card(N), consider the class

K(M, N) = {M′ | Pr(M′,HF(N)) 6 Pr((M, m̄),HF(N)), m̄ ∈ M<ω}.

Classes Ke(M,N), Kw(M, N), and Kew(M, N) are defined similarly.

PROPOSITION 5. Let M and N be countable structures and let N be a structure of the empty
signature, or dense linear order. Then KΣ(M) = Ke(M,N) = K(M,N).

Proof. For N = S, where S is an infinite structure of the empty signature, the argument is trivial.
Consider a presentation of M with a subset S as domain. For A = L, where L is a dense linear order,
consider a presentation of M with a domain consisting of subsets of L that are “mutually dense,” that is,
between any representatives of any distinct elements, and also on the left and right, there are infinitely
many representatives of any other element. 2

As a consequence, there exist natural isomorphisms between a semilattice SΣ of degrees of Σ-definability
and semilattices S(HF(N)) of degrees of presentability, where N is a countable structure of the empty
signature, or dense linear order.

Definition 3. Let M and N be countable structures. Structure M has a degree (an e-degree) over
structure N if there exists a least degree among all TΣ-degrees (eΣ-degrees) of all possible presentations of
M in HF(N).

An immediate consequence of [1, Thm. 6] and a generalization of [1, Thm. 1] is the following:

THEOREM 3. Let M and N be countable structures. Then the conditions below are equivalent:
(1) M has a degree (an e-degree) over N;
(2) some presentation C ⊆ HF (N) of M is ∆-definable (Σ-definable) in HF(M, N).
Obviously, for M 6∃ N, the structure M has a degree (an e-degree) over N iff M 6Σ N. It is also clear

that if M has a degree (an e-degree) over N, and N 6Σ N′, then M has a degree (an e-degree) over N′.
Furthermore, we have

PROPOSITION 6. For any countable structure A, there exists a structure M which has a degree but
is not Σ-definable in HF(A).

Proof. Let A ⊆ ω be a subset of natural numbers which is not ∆-definable in HF(A) (such exists by
reason of the fact that every countable admissible set has countably many Σ-subsets). An Abelian group
GA⊕Ā is not Σ-definable in HF(A), since otherwise A would be a ∆-subset in HF(A). At the same time,
GA has a degree in HF(∅) and hence in HF(A). 2

As in a nonrelativized case, we have

THEOREM 4. Let M and N be countable structures. If M has a degree over N, then KΣ(M, N) =
Ke(M, N) = K(M, N). If M has an e-degree over N, then KΣ(M, N) = Ke(M, N).

The proof is a direct generalization of the argument in [1, Thm. 7] combined with Theorem 3. 2

5



2. UNIFORM REDUCIBILITIES OF LOCAL HF-THEORIES

Another necessary condition for the relation M 6Σ N to hold between structures M and N is the
existence of uniform effective reducibility between families of local HF-theories for these structures. An
exact definition of such reducibility will be given below.

Hereinafter, by a family we mean an arbitrary family of subsets of ω. We define the action of effective
operators on families by extending the scope of action of classical enumeration operators by a set P (P (ω))
of families, setting, for a family X ⊆ P (ω) and an enumeration operator Φ : P (ω) → P (ω),

Φ(X) = {Φ(D) | D ∈ X<ω is a finite collection of sets},

where Φ(D) = Φ(X1 ⊕ . . .⊕Xn) for D = 〈X1, . . . , Xn〉.
Let A, B ⊆ P (P (ω)) be arbitrary classes of families. We say that A is Dyment reducible to B (written

A 6e B) if Φ(B) ⊆ A for some enumeration operator Φ. Then we define maps i : P (P (ω)) → P (P (P (ω)))
and j : P (P (ω)) → P (P (P (ω))) on families by setting i(X) = {X} and j(X) = {{X} | X ∈ X} for the
family X. Obviously, for any X,Y ⊆ P (ω), the reducibility j(X) 6e j(Y) holds iff X 6e Y (in the latter case
by 6e we mean Dyment reducibility on families). We write X 6o

e Y to signify the fact that i(X) 6e i(Y),
and write X 6o Y for the fact that i(T (X)) 6e i(T (Y)), where T (X) = {X ⊕X | X ∈ X}.

Let X ⊆ P (P (ω)) and X̄0 = 〈X0
1 , . . . , X0

k〉, X0
1 , . . . , X0

k ⊆ ω. A shift of the family X by the set X̄0 is a
family X̄0 ∗ X = {X0

1 ⊕ . . . ⊕X0
k ⊕X | X ∈ X}. Dyment reducibility on the set P (P (P (ω))) is obviously

reflexive and transitive. An equivalence relation ≡e is defined in a regular way: A ≡e B iff A 6e B and
B 6e A. By analogy with the Dyment lattice Me, the degree structure 〈P (P (P (ω)))/ ≡e, 6e〉 is denoted
by M′

e.

PROPOSITION 7. M′
e is a lattice with 0 and 1, and j : Me → M′

e is an embedding preserving
∧,∨, 0, 1.

Proof. The greatest element of M′
e is obviously [∅]e, and the least one is [{{∅}}]e; moreover, j(0Me) =

i(0Me) = {{∅}}, j(1Me) = ∅, i(1Me) = {∅}, and ∅ ≡e {∅}. The operations ∨ and ∧ on M′
e are defined

as follows: for classes A, B ⊆ P (P (ω)), set
(1) A ∨B = {X ∨ Y | X ∈ A,Y ∈ B}, where X ∨ Y = {X ⊕ Y | X ∈ X, Y ∈ Y};
(2) A ∧B = {0} ∗A ∪ {1} ∗B, where {0} ∗A = {{0} ∗ X | X ∈ A} and {1} ∗B = {{1} ∗ Y | Y ∈ B}. 2

By analogy with how the nonuniform analog Mew of a Dyment lattice is defined, we can define a
nonuniform analog M′

ew of the lattice M′
e. Furthermore, lattices M′ and M′

w generated by classes of
families of total sets (or functions) may be defined similarly to Medvedev and Muchnik lattices.

PROPOSITION 8. Let M and N be structures of arbitrary cardinality and M 6Σ N. For some
n̄0 ∈ N<ω and some 1 < n 6 ω, we then have the following reducibilities:

{ThHF
Σn

(M, m̄) | m̄ ∈ M<ω} 6o
e {ThHF

Σn
(N, n̄0, n̄) | n̄ ∈ N<ω},

{ThHF
Πn

(M, m̄) | m̄ ∈ M<ω} 6o
e {ThHF

Πn
(N, n̄0, n̄) | n̄ ∈ N<ω},

{ThHF
n (M, m̄) | m̄ ∈ M<ω} 6o

e {ThHF
n (N, n̄0, n̄) | n̄ ∈ N<ω}.

Proof. Let ϕ ∈ Form(σ′M). Then ϕ ∈ ThHF
Σn

(M, m̄) for some tuple m̄ ∈ M<ω iff there are a tuple
n̄ ∈ N<ω and elements κ1, . . . ,κs ∈ HF (ω) for which 〈κ1(n̄), . . . ,κs(n̄)〉 corresponds to m̄ in a presentation
defined by Γ, and HF(N) |= Γ1(ϕ)(κ1(n̄), . . . ,κs(n̄)), where Γ1 is as in the proof of Prop. 1. Thus, for
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any m̄ ∈ M<ω and any ϕ ∈ Form(σ′M), the inclusion ϕ ∈ ThHF
Σn

(M, m̄) holds iff there exist elements
κ1, . . . ,κs ∈ HF (ω) such that HF(N) |= Φ(κi(n̄), a) for all 1 6 i 6 s, and

HF(N) |= Γ1(ϕ)(κ1(n̄), . . . ,κs(n̄)).

Note that the tuple 〈κ1, . . . ,κs〉 can be coded, for instance, by a tuple 〈n, . . . , n, n′〉 ∈ N<ω of length
γ−1(κ̄) + 1, where n 6= n′ and γ is some Gödel numbering of the set HF (ω)<ω. 2

With M we associate a family E(M) = {Th∃(M, m̄) | m̄ ∈ M<ω} of ∃-types of finite tuples of elements
in M. A consequence of Theorem 4 is the following:

COROLLARY 2. For any structures M and N, M 6Σ N implies E(M) 6o
e E(N, n̄0) for some

n̄0 ∈ N<ω.
There are examples of structures for which the above-mentioned necessary condition M 6Σ N is also

sufficient. With each family X ⊆ P (ω) we associate a structure AX defined as follows. As a domain of the
structure we take the set ω ∪ S, where S is a set of cardinality 2ω. The signature of AX consists of a unary
function symbol s, which is interpreted on ω in a regular manner (s(n) = n + 1) and is identical on S, and
a binary predicate symbol R, which is interpreted by the rule R ⊆ S × ω, X = {{n ∈ ω | R(s, n)} | s ∈ S}.
In this case, in correspondence with every element of X are 2ω distinct elements (labels) of S. Moreover,
there are 2ω elements of S that are not related via R to any element of ω, and there are 2ω elements of S

that are related via R to all elements of ω.
We also define a structure BX as follows. As a domain of the structure we take the set C ∪ S, where

C and S are disjoint sets of cardinality 2ω. The signature of BX consists of a unary predicate symbol
P , distinguishing the set S, and a binary predicate symbol R, forming finite cycles (cycles of length 1 are
admitted on just members of S). These cycles each contains exactly one element of S, and for different
cycles, the sets of elements of C occurring in the cycles are disjoint, with X = {{n ∈ ω | ∃c0 . . . ∃cn(R(s, c0)∧
R(c0, c1) . . . ∧R(cn, s))} | s ∈ S}. In this case, in correspondence with every element of X are 2ω elements
(labels) of S, and there are 2ω elements of S each of which occurs in a cycle of any finite length. Moreover,
there are 2ω elements of S which are not related via R to any elements of the domain, and there are 2ω

elements of C which do not occur in any one of the cycles.

PROPOSITION 9. For any families X,Y ⊆ P (ω), the following hold:

AX 6Σ AY ⇐⇒ X ∪ {∅, ω} 6o Ȳ0 ∗ (Y ∪ {∅, ω}) for some Ȳ0 ⊆ Y,

BX 6Σ BY ⇐⇒ X ∪ {∅, ω} 6o
e Ȳ0 ∗ (Y ∪ {∅, ω}) for some Ȳ0 ⊆ Y.

As a consequence, if both structures M and N are of the form AX or BX, then

M 6Σ N ⇐⇒ E(M) 6o
e E(N, n̄0) for some n̄0 ∈ N<ω.

Structure M is said to be locally n-low (n ∈ ω) if ThHF
Σn

(M, m̄) ∈ Σ0
n for all m̄ ∈ M<ω. Clearly, if M

is locally constructivizable of level n, then M is a locally n-low structure (for n = 1, the converse is also
true). Proposition 8 implies that for any n, the property of a structure being n-low, as well as of being
constructivizable of level n, is inherited under Σ-definability. In other words, if M 6Σ N and N is a locally
n-low structure then M likewise is locally n-low.

As noted in [1], card(SΣ) = 2α for every infinite cardinal α. Now we consider the question whether
maximal antichains exist in SΣ(2ω).

THEOREM 5. A semilattice SΣ(2ω) contains an antichain of cardinality 22ω

.
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Proof. We modify the construction in [7] showing that card(M) = 22ω

. Let X = {Xi ⊆ ω | i ∈ I} be a
family for which card(I) = 2ω, and {[Xi]T | i ∈ I} be an antichain in D such that [Xi]T | [Xj1 ⊕ . . .⊕Xjk

]T
for i 6∈ {j1, . . . , jk}. For every P ⊆ I, set XP = {Xi | i ∈ P}. Obviously, there exists a set A ⊆ P (I) such
that card(A) = 22ω

and any distinct P,Q ∈ A are incomparable w.r.t. ⊆. Hence, for all distinct P, Q ∈ A,
the structures AXP

and AXQ
, where XP = {Xi | i ∈ P}, are incomparable w.r.t. 6Σ. 2

3. ∗-HOMOGENEOUS STRUCTURES

For an arbitrary structure M, we consider the following classes:

K∗
Σ(M) = {N | N is Σ-definable without parameters in HF(M)},

K∗
∆(M) = {N | N is ∆-definable without parameters in HF(M)}.

If M is countable then we also define the classes

K∗
e(M) = {N | N 6e M}, K∗(M) = {N | N 6 M}.

Clearly, for any countable structure M, K∗
∆(M) ⊆ K∗

Σ(M) ⊆ KΣ(M), K∗
e(M) ⊆ Ke(M), and K∗(M) ⊆

K(M).

Definition 4. Structure M is ∗-homogeneous if K∗
∆(M) = K∆(M), and is weakly ∗-homogeneous if

K∗
Σ(M) = KΣ(M).

It follows immediately from the definition that the property of M being (weakly) ∗-homogeneous is
equivalent to (M, m̄) being (Σ-)∆-definable without parameters in HF(M), for all m̄ ∈ M<ω. It is also
obvious that if a countable structure M is (weakly) ∗-homogeneous then K∗(M) = K(M) (K∗

e(M) = Ke(M),
resp.). In other words, for all m̄ ∈ M<ω, (M, m̄) ≡ M ((M, m̄) ≡e M, resp.).

PROPOSITION 10. If a structure M has a degree, then there exists m̄ ∈ M<ω such that the
structure (M, m̄) is ∗-homogeneous. If M has an e-degree, then there exists m̄ ∈ M<ω such that (M, m̄) is
weakly ∗-homogeneous.

Proof. For instance, let M have a degree. Then there are a tuple m̄ ∈ M<ω and a presentation C0 ∈ M

for which C0 ⊕ C0 6e The(M, m̄). Thus an s-expansion of the structure M defined by the presentation C0,
and hence the structure (M, m̄), will be ∆-definable without parameters in HF(M). 2

An immediate consequence of [1, Thm. 7] is the following:

COROLLARY 3. If a structure N is ∗-homogeneous and has a degree, then for every structure M we
have

M 6 N ⇐⇒ M 6w N.

The next definition is well known in model theory (see [8]).

Definition 5. Structure M is ultrahomogeneous if every isomorphism between finitely generated sub-
structures of M extends to an automorphism of the entire structure M.

It is easy to verify that if a structure of a predicate signature is ultrahomogeneous then it is ∗-
homogeneous. It is also clear that a constructivizable structure (i.e., one having a computable presentation)
likewise is ∗-homogeneous.

We give an example of a nonultrahomogeneous and nonconstructivizable structure which is ∗-homoge-
neous.
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LEMMA 2. If α1, . . . , αn are constructive ordinals then an expansion 〈ωCK
1 ; 6, α1, . . . , αn〉 is ∆-

definable without parameters in HF(〈ωCK
1 ,6〉).

Proof. We make use of the fact that α + ωCK
1 = ωCK

1 for every constructive ordinal α. Indeed, if
α is a constructive ordinal then so is α · ω; hence α · ω < ωCK

1 . In view of α + α · ω = α · ω, we have
α + ωCK

1 = ωCK
1 .

For simplicity, we now assume that α1 < . . . < αn. Since these ordinals are all constructive, the
structure 〈αn;6, α1, . . . , αn−1〉 is ∆-definable (without parameters of course) in HF(∅). Therefore, the
sum 〈αn + ωCK

1 ; 6, α1, . . . , αn〉 is also ∆-definable without parameters in HF(〈ωCK
1 ; 6〉) . 2

COROLLARY 4. Let α1, . . . , αn ∈ ωCK
1 be constructive ordinals. Then 〈ωCK

1 ;6, ᾱ〉 6 〈ωCK
1 ,6〉.

The proof follows immediately from Lemma 2. 2

COROLLARY 5. Structure 〈ωCK
1 ; 6〉 is ∗-homogeneous.

The proof follows immediately from Lemma 2, since the fact that α1, . . . , αn ∈ ωCK
1 implies that

α1, . . . , αn are constructive ordinals. 2

From cardinality considerations, we conclude that no uncountable ordinal is ∗-homogeneous.

4. PRESENTABILITY DIMENSIONS

For a problem of presentability consisting of all possible presentations of some structure, it seems natural
to try to find a smallest subset of the structure that would have the same properties under Medvedev
(Muchnik) reducibility.

Definition 6. A countable structure M has (strong) presentability dimension α (written Pr-dim(M) =
α), where α is a cardinal, if M ≡ B for some B ⊆ M, card(B) = α, and α is the least cardinal satisfying
these conditions.

Similarly, we can define the concept of weak presentability dimension Pr-dimw(M), replacing ≡ by ≡w

in the previous definition. Obviously, for every structure M, Pr-dimw(M) = 1 iff M has a degree. It is also
clear that for every (countable) structure M,

1 6 Pr-dimw(M) 6 Pr-dim(M) 6 2ω.

PROPOSITION 11. Let M be a countable structure. Then the following conditions are equivalent:
(1) Pr-dimw(M) = 1;
(2) Pr-dim(M, m̄) = 1 for some m̄ ∈ M<ω.
The proof follows immediately from [1, Thm. 7]. 2

COROLLARY 6. If M is ∗-homogeneous, then

Pr-dim(M) = 1 ⇐⇒ Pr-dimw(M) = 1.

Verification of the next result is a simple matter.

PROPOSITION 12. Suppose that M is a countable structure, and for some presentation C of M,
C 6e Th∃(M) (or, which is equivalent, some presentation of M is ∆-definable without parameters in
HF(M)). Then Pr-dim(M) = 1.

We are unaware as to whether this sufficient condition is also necessary.
It seems natural to ask the following: Does there exist a structure M such that 1 < Pr-dim(M) 6 ω? In

this case Pr-dimw(M) = 1. Indeed, the equality derives from Pr-dimw(M) 6 Pr-dim(M) and the following
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important assertion (obtained in [9], and independently, in [10]): for any structure M, Pr-dimw(M) either
equals 1 or is uncountable. This immediately implies that for every structure M, Pr-dim(M) either equals
1 or is infinite.

By analogy with Definition 6, for a countable structure M we can introduce dimensions Pr-dime(M)
and Pr-dimew(M). In this case it is also true that 1 6 Pr-dimw(M) 6 Pr-dim(M) 6 2ω, and M has
an e-degree iff Pr-dimew(M) = 1. Again, from Pr-dimw(M) = 1 it follows that Pr-dimew(M) = 1, and
Pr-dimew(M) = 1 implies Pr-dime(M, m̄) = 1 for some tuple m̄ ∈ M<ω.

For any A ⊆ ω, [S′A]w denotes a degree of the Muchnik lattice which is least among all the degrees
greater than [SA]w. It turns out that every such degree is a degree of presentability.

PROPOSITION 13. For any A ⊆ ω, there exists a structure MA such that [MA]w = [S′A]w.
Proof. For every A ⊆ ω, MA denotes a structure obtained by relativizing the construction in [4]

with respect to A. Let DA be an arbitrary structure having degree [A]T (e.g., an Abelian group GA⊕A).
Then A <T C for every C ∈ (MA, DA), and for any X ⊆ ω with A <T X, there exists an X-computable
presentation of the structure (MA,DA). Therefore, the spectrum of this structure is an “open cone”
{x | x > a}, where a = [A]T . The problem of presentability for (MA,DA) belongs to a least degree of
difficulty of the Muchnik lattice which is greater than [SA]w. Finally, we note that nonuniformness of the
above-described construction is brought about by the necessity to use the set A as an oracle, having a
priory arbitrary X with A <T X. 2
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