The Uniformization Property in Hereditary Finite Superstructures

A.I. Stukachev

Abstract

In this article, we consider admissible sets of kind $\operatorname{HF}(\mathfrak{M})$, where \mathfrak{M} is a model of a regular theory. We find a criterion of uniformization in $\operatorname{HF}(\mathfrak{M})$ formulated in terms of definability of Skolem functions. We prove a corollary that reads: hereditary finite superstructures $\operatorname{HF}(\mathbf{R})$ and $\operatorname{HF}(\mathbf{Q}_{\mathbf{p}})$ over reals and over $p\bar{a}$ dic numbers have the uniformization property.

 $Keywords\colon$ hereditary finite superstructure, uniformization, admissible set.

Given an arbitrary model \mathfrak{M} (for instance, the field of reals), the hereditary finite superstructure $\mathrm{HF}(\mathfrak{M})$, which is the smallest admissible set over \mathfrak{M} , enables us to define effective computability over \mathfrak{M} by using the recursion theory for admissible sets. The uniformization problem is one of the nontrivial problems in generalized recursion theory.

In this article, we consider admissible sets of kind $HF(\mathfrak{M})$, where \mathfrak{M} is a model of a regular theory. We find a criterion of uniformization in $HF(\mathfrak{M})$ formulated in terms of definability of Skolem functions. As a corollary, we prove that hereditary finite superstructures $HF(\mathbf{R})$ and $HF(\mathbf{Q}_{\mathbf{p}})$ over reals and over $p\bar{a}$ dic numbers have the uniformization property.

The hereditary finite superstructure $\operatorname{HF}(\mathfrak{M})$ over a model $\mathfrak{M} = \langle M, \sigma^{\mathfrak{M}} \rangle$ is a model of signature $\sigma' = \sigma \cup \{U, \in, \varnothing\}$, whose universe is $\operatorname{HF}(M) = \bigcup_{n \in \omega} \operatorname{H}_n(M)$, where $\operatorname{H}_0(M) = \varnothing$, $\operatorname{H}_{n+1}(M) = \{a \mid a \subseteq M \cup \operatorname{H}_n(M), \|a\| < \omega\}$. The predicate U distinguishes the set of all elements of the model \mathfrak{M} (regarded as urelements), the relation \in and the constant \varnothing have the usual set-theoretic meaning.

In the class of all formulas of signature σ' , we define a subclass of Δ_0 -formulas as the closure of the class of atomic formulas under $\wedge, \vee, \neg, \rightarrow$, $\exists u \in v, \forall u \in v$; the class of Σ -formulas is the closure of the class of Δ_0 -formulas under $\wedge, \vee, \exists u \in v, \forall u \in v$, and the quantifier $\exists u$; the class of II-formulas consists of the negations of Σ -formulas.

A predicate over $HF(\mathfrak{M})$ is called a Σ -predicate (Π -predicate), provided it is defined by a Σ -formula (Π -formula) with parameters; it is called a Δ -predicate in case it is a Σ - and Π -predicate simultaneously. If the graph of a function is a Σ -predicate, we call this function a Σ -function.

In formulas of signature σ' , we conventionally distinguish between variables with values in the set of urelements and general variables, i.e. variables whose values may be arbitrary elements of an admissible set. In what follows, given a formula of signature σ we assume all its variables, free or bounded, to be variables for urelements.

Fix a Gödel numbering of formulas of signature σ' which distinguishes variables for urelements. The Gödel number of a formula φ is denoted by $[\varphi]$. The truth predicate Σ -Sat for Σ -formulas is defined in HF(\mathfrak{M}) as follows:

$$\Sigma\text{-Sat}(\mathbf{a}, \langle \mathbf{b}_0, \dots, \mathbf{b}_n \rangle) \iff (a = [\varphi]) \land (\varphi(x_0, \dots, x_n) \text{ is a } \Sigma\text{-formula}) \land (\mathrm{HF}(\mathfrak{M}) \models \varphi(\bar{\mathbf{b}})).$$

One of the most important properties of admissible sets is that Σ -Sat is a Σ -predicate [2].

Recall the definitions of regular theory [1] and theory with definable Skolem functions [3]. A theory T of signature σ is called *regular* if it is model complete and decidable. By model completeness, each its formula is T-equivalent to some \exists -formula and, moreover, by decidability, this formula can be found effectively (henceforth, by effectiveness we mean existence of an appropriate recursive procedure on the set of Gödel numbers).

A theory T is said to be a theory with definable Skolem functions, provided that, for each formula $\varphi(x_0, \ldots, x_n)$ of signature σ , there exists a formula $\psi(x_0, \ldots, x_n)$ of the same signature such that

$$T \vdash \forall x_1 \dots \forall x_n \Big[\exists x_0 \, \varphi(x_0, \dots, x_n) \to \exists \, ! \, x_0 \, \big(\varphi(x_0, \dots, x_n) \land \psi(x_0, \dots, x_n) \big) \Big].$$

Hereinafter, let T be a regular theory of signature σ with definable Skolem functions and let $\mathfrak{M} = \langle M, \sigma^{\mathfrak{M}} \rangle$ be a model of T.

Lemma 1. Assume that P is an n-ary definable predicate over \mathfrak{M} . Then, given a formula defining P, we can effectively find an \exists -formula with the same set of parameters which defines an $n\bar{a}ry$ predicate Q on \mathfrak{M} such that

- 1) if $P = \emptyset$ then $Q = \emptyset$;
- 2) if $P \neq \emptyset$ then $Q = \{\bar{x}\}, \ \bar{x} \in P$.

Proof. Induction on n.

Suppose that n = 1 and let $\Phi(x_0, \bar{y})$ be a formula of signature σ that defines the predicate P with parameters \overline{m} in M, i.e., $x \in P \iff \mathfrak{M} \models \Phi(x, \overline{m})$. There exists a formula $\Psi(x_0, \bar{y})$ such that

$$T \vdash \forall \bar{y} \Big[\exists x_0 \, \Phi(x_0, \bar{y}) \to \exists \, ! \, x_0 \, \big(\Phi(x_0, \bar{y}) \land \Psi(x_0, \bar{y}) \big) \Big].$$

Since T is regular, we can effectively find an \exists -formula $\Theta(x_0, \bar{y})$ equivalent to $\Phi \land \Psi$. The predicate $Q = \{x \mid \mathfrak{M} \models \Theta(x, \overline{m})\}$ satisfies all the requirements.

Now suppose that n > 1 and the claim is proven for all k < n. The predicate P is defined by the formula $\Phi(x_0, \ldots, x_{n-1}, \bar{y})$ and parameters \overline{m} . By the inductive hypothesis, for the predicate

$$X = \{x_0 \mid \mathfrak{M} \models \exists x_1 \dots \exists x_{n-1} \Phi(x_0, \dots, x_{n-1}, \overline{m})\},\$$

we can effectively find an \exists -formula $\Psi_1(x_0, \bar{y})$ that defines a single element in X. We can also use the inductive hypothesis to effectively find an \exists formula $\Psi_2(x_1, \ldots, x_{n-1}, \bar{y})$ that defines a single element in the predicate

$$Y = \Big\{ \langle x_1, \dots, x_{n-1} \rangle \ \Big| \ \mathfrak{M} \models \exists x_0 \big(\Phi(x_0, \dots, x_{n-1}, \overline{m}) \land \Psi_1(x_0, \overline{m}) \big) \Big\}.$$

The required predicate Q is defined by the formula $\Psi_1(x_0, \bar{y}) \land \Psi_2(x_1, \ldots, x_n, \bar{y})$ with parameters \overline{m} . The lemma is proven.

In what follows, we use definitions and constructions of [1]. For all $n \in \omega$, $\varkappa \in \mathrm{HF}(\mathbf{n})$ $(n = \{0, 1, \ldots, n-1\})$, and $\bar{x} \in M^n$, we define an element $\varkappa(\bar{x}) \in \mathrm{HF}(\mathfrak{M})$ as follows. Define a mapping $\lambda_{\bar{x}} n \to M$ as $\lambda_{\bar{x}}(i) = x_i$, where $\bar{x} = \langle x_0, \ldots, x_{n-1} \rangle$. The mapping $\lambda_{\bar{x}}$ can be uniquely extended to $\lambda_{\bar{x}}^{\omega} \mathrm{HF}(\mathbf{n}) \to \mathrm{HF}(\mathfrak{M})$ so that $\lambda_{\bar{x}}^{\omega}(a_0, \ldots, a_k) \rightleftharpoons \{\lambda_{\bar{x}}^{\omega}(a_0), \ldots, \lambda_{\bar{x}}^{\omega}(a_k)\}$ for each set $\{a_0, \ldots, a_k\} \in \mathrm{HF}(\mathbf{n})$. Then we put $\varkappa(\bar{x}) \rightleftharpoons \lambda_{\bar{x}}^{\omega}(\varkappa)$.

For every $\varkappa \in \mathrm{HF}(\mathbf{n})$, we can effectively define a term $t_{\varkappa}(x_0, \ldots, x_{n-1})$ of signature $\langle \{\}, \cup, \varnothing \rangle$ so that, for all elements $x_0^0, \ldots, x_{n-1}^0 \in M$, the equality $t_{\varkappa}(x_0^0, \ldots, x_{n-1}^0) = \varkappa(\bar{x}^0)$ is valid.

Define a function $h \omega \to \operatorname{HF}(\omega)$. For each $n \in \omega$, we put

$$h(n) = \begin{cases} n_1, & \text{if } n = c(0, n_1) \\ \{h(n_1)\}, & \text{if } n = c(1, n_1) \\ h(n_1) \cup h(n_2), & \text{if } n = c(2, c(n_1, n_2)) \text{ and } n_1 < n_2 \\ \varnothing, & \text{otherwise,} \end{cases}$$

where $c(n,m) = \frac{(n+m)^2+3n+m}{2}$ is Cantor's bijection. It is easy to see by definition that h is a numbering of $HF(\omega)$, and since ω is a Δ -subset in $HF(\mathfrak{M})$, we conclude that, in terms of [1], h is an $HF(\mathfrak{M})$ -constructivization of $HF(\omega)$. Thus, $HF(\omega)$ can be effectively defined in each superstructure. We consider $HF(\omega)$ as a part of $HF(\mathfrak{M})$.

Lemma 2. Suppose that $\varphi(x)$ is a Δ_0 -formula of signature σ' and let $\varkappa \in HF(n)$. Then we can effectively find a formula $\varphi^*(x_0, \ldots, x_{n-1})$ of signature σ so that, for each valuation $\gamma \{x_0, \ldots, x_{n-1}\} \to M$,

$$\mathrm{HF}(\mathfrak{M})\models\varphi(\mathbf{x})^{\mathbf{x}}_{\mathbf{t}_{\varkappa}(\bar{\mathbf{x}})}[\gamma]\iff \mathfrak{M}\models\varphi^{\ast}(\mathbf{x}_{0},\ldots,\mathbf{x}_{n-1})[\gamma].$$

Proof. Given a formula $\varphi(x)$ and element $\varkappa \in HF(n)$, we construct a formula $\varphi_{\varkappa}^{x}(x_{0}, \ldots, x_{n-1})$ of signature $\sigma' \cup \{\emptyset, \{\}, \cup\}$ as follows:

1) if
$$\varphi = \varphi_1 q \varphi_2$$
, $q \in \{ \lor, \land, \rightarrow \}$, then $\varphi_{\varkappa}^x \rightleftharpoons (\varphi_1)_{\varkappa}^x q (\varphi_2)_{\varkappa}^x$
2) if $\varphi = \neg \varphi_1$ then $\varphi_{\varkappa}^x \rightleftharpoons \neg (\varphi_1)_{\varkappa}^x$
3) if $\varphi = (t_1 p t_2)$, $p \in \{ \in, = \}$, then $\varphi_{\varkappa}^x \rightleftharpoons (t_1 p t_2)_{t_{\varkappa}(\bar{x})}^x$
4) if $\varphi = \exists y \in x(\varphi_1)$ then $\varphi_{\varkappa}^x \rightleftharpoons \bigvee_{\varkappa' \in \varkappa} ((\varphi_1)_{\varkappa'}^y)_{\varkappa}^x$
5) if $\varphi = \forall y \in x(\varphi_1)$ then $\varphi_{\varkappa}^x \rightleftharpoons \bigwedge_{\varkappa' \in \varkappa} ((\varphi_1)_{\varkappa'}^y)_{\varkappa}^x$
6) if $\varphi = U(x)$ then $\varphi_{\varkappa}^x \rightleftharpoons \begin{cases} \tau, & \text{if } \varkappa \in n \\ \neg \tau, & \text{otherwise} \end{cases}$
7) if $\varphi = P(t_0, \dots, t_k)$, $P \in \sigma$, then $\varphi_{\varkappa}^x \rightleftharpoons \begin{cases} P(t_0, \dots t_k)_{t_{\varkappa}(\bar{x})}^x, & \text{if } \varkappa \in n \\ \neg \tau, & \text{otherwise} \end{cases}$

where τ denotes the statement $\exists x(x = x)$ (without loss of generality we may assume that σ does not contain functional symbols).

Next, for any pair of terms t_0, t_1 of signature $\langle \emptyset, \{\}, \cup \rangle$ over variables for urelements x_0, \ldots, x_{n-1} , we can effectively define formulas Φ_{t_0,t_1} and Ψ_{t_0,t_1} of empty signature so that $FV(\Phi_{t_0,t_1}) = FV(\Psi_{t_0,t_1}) = FV(t_0) \cup FV(t_1)$ and, for each valuation $\gamma FV(t_0 = t_1) \rightarrow M$, the following statements be true:

$$t_{0}^{\langle HF(\mathfrak{M}), \{\}, \cup \rangle}[\gamma] \in t_{1}^{\langle HF(\mathfrak{M}), \{\}, \cup \rangle}[\gamma] \iff \mathfrak{M} \models \Phi_{t_{0}, t_{1}}[\gamma]$$
$$t_{0}^{\langle HF(\mathfrak{M}), \{\}, \cup \rangle}[\gamma] \subseteq t_{1}^{\langle HF(\mathfrak{M}), \{\}, \cup \rangle}[\gamma] \iff \mathfrak{M} \models \Psi_{t_{0}, t_{1}}[\gamma]$$

(see [1] for a proof. The formula $\varphi^*(\bar{x})$ is obtained from $\varphi^x_{\varkappa}(\bar{x})$ by replacing the subformulas of kind $t_0 \in t_1$ by Φ_{t_0,t_1} and the subformulas of kind $t_0 = t_1$ by $\Psi_{t_0,t_1} \wedge \Psi_{t_1,t_0}$. The lemma is proven.

Lemma 2 can be easily extended to formulas with several variables. This lemma also implies that we can restrict our consideration to formulas with parameters in M only.

Assume that $\Phi(x, \overline{m})$ is a Δ_0 -formula of signature σ' with parameters \overline{m} in M. For each $n \in \omega$, we define the set

$$\mathbf{H}_{n} \rightleftharpoons \{ \varkappa \in \mathrm{HF}(n) \mid \mathrm{HF}(\mathfrak{M}) \models \exists x_{0} \dots \exists x_{n-1} (\Phi(x, \bar{m}))_{t_{\varkappa}(\bar{x})}^{x} \}$$

and put $H \rightleftharpoons \bigcup_{n \in \omega} H_n$. The following lemma is valid:

Lemma 3. The set H is a Δ -subset of $HF(\mathfrak{M})$.

Proof. Let $\overline{\mathrm{H}}_n \rightleftharpoons \mathrm{HF}(\mathrm{n}) \setminus \mathrm{H}_{\mathrm{n}}, \overline{\mathrm{H}} \rightleftharpoons \mathrm{HF}(\omega) \setminus \mathrm{H}$; then $\overline{\mathrm{H}} = \bigcup_{n \in \omega} \overline{\mathrm{H}}_n$. So, it suffices to prove that H_n is a Δ -subset of $\mathrm{HF}(\mathfrak{M})$.

Making use of Lemma 2, given a formula Φ and an element \varkappa , we effectively find a formula $\Psi_{\varkappa}(\bar{x}, \overline{m})$ of signature σ such that

$$\varkappa \in \mathbf{H}_n \iff \mathfrak{M} \models \exists x_0 \dots \exists x_{n-1} \Psi_{\varkappa}(\bar{x}, \overline{m}).$$

By regularity, given the formula $\exists \bar{x} \Psi_{\varkappa}(\bar{x}, \bar{y})$, we can effectively find an \exists -formula $\Theta_{\varkappa}(\bar{y})$ equivalent to it. Thus,

$$\varkappa \in \mathbf{H}_n \iff \mathrm{HF}(\mathfrak{M}) \models \Sigma \operatorname{-Sat}([\Theta_{\varkappa}], \overline{\mathbf{m}}).$$

The case $\varkappa \in \overline{\mathbf{H}}_n$ is handled similarly. The lemma is proven.

Now, let \mathfrak{M} be a model of a regular theory with definable Skolem functions. We formulate and prove the uniformization theorem for $HF(\mathfrak{M})$, the main statement.

Theorem 1. Assume that $E \subseteq HF(\mathfrak{M}) \times HF(\mathfrak{M})$ is a Σ -predicate. Then there exists a Σ -function F such that the following assertions are valid:

 $1) \operatorname{dom}(F) = \operatorname{pr}_1(E),$

2) graph $(F) \subseteq E$,

where dom(F) = { $x \mid F(x) \downarrow$ }, graph(F) = { $\langle x, y \rangle \mid F(x) = y$ }, and pr₁(E) = { $x \mid \exists y (\langle x, y \rangle \in E)$ }.

Proof. Without loss of generality, we may assume that the predicate E(x, y) is defined by a formula $\exists z \Phi(x, y, z, \overline{m})$, where $\Phi(x, y, z, \overline{m})$ is a Δ_0 -formula with parameters \overline{m} in M.

It is evident that $\operatorname{pr}_1(E)$ is a Σ -predicate. Indeed, consider the Δ_0 -formula

$$\Psi(x,t,\overline{m}) \rightleftharpoons \exists u \in t \; \exists v \in t \; \exists y \in u \; \exists z \in v \; (t = \langle y, z \rangle \land \Phi(x,y,z,\overline{m})),$$

where $\langle a, b \rangle \rightleftharpoons \{\{a\}, \{a, b\}\}$ by definition. It is clear that $x \in \mathrm{pr}_1(E) \iff$ $\mathrm{HF}(\mathfrak{M}) \models \exists t \Psi(\mathbf{x}, t, \overline{\mathbf{m}}).$

For each $a \in \mathrm{HF}(\mathfrak{M})$, there exist $n \in \omega, \varkappa \in \mathrm{HF}(n)$, and $a_0, \ldots, a_{n-1} \in M$ such that $a = \varkappa(\bar{a})$. Let $x^* \in \mathrm{HF}(\mathfrak{M}), x^* = \varkappa_0(\bar{x})$, where $\varkappa_0 \in \mathrm{HF}(l), \bar{x} = \langle x_0, \ldots, x_{l-1} \rangle \in M^l$. In the same way as in Lemma 3, we define the sets

$$H_n \rightleftharpoons \{ \varkappa \in \mathrm{HF}(n) \mid \mathrm{HF}(\mathfrak{M}) \models \exists t_0 \dots \exists t_{n-1} (\Psi(x^*, t, \bar{m}))_{t_{\varkappa}(\bar{t})}^t \}$$

for all $n \in \omega$ and put $\mathbf{H} \rightleftharpoons \bigcup_{n \in \omega} \mathbf{H}_n$.

If $x^* \in \operatorname{pr}_1(E)$ then the set $\{t \mid \operatorname{HF}(\mathfrak{M}) \models \Psi(\mathbf{x}^*, \mathbf{t}, \overline{\mathbf{m}})\}$ is nonempty; hence, the set H is nonempty too. In this case, the element $\varkappa_1 \in \operatorname{H}$ minimal in the sense of the enumeration *h* above is uniquely defined. In other words, \varkappa_1 is taken so as to satisfy the following conditions:

$$\exists k \Big((k \in \omega) \land \big(\varkappa_1 = h(k) \big) \land \big(\varkappa_1 \in \mathbf{H} \big) \land \forall k' < k \big(h(k') \notin \mathbf{H} \big) \Big).$$

By virtue of Lemma 3, this condition is expressed in $HF(\mathfrak{M})$ by some Σ -formula $\Psi_1(\varkappa_1, x^*, \overline{m})$.

Suppose that $\varkappa_1 \in HF(n)$. Consider the set

$$T = \left\{ \langle t_0, \dots, t_{n-1} \rangle \in M^n \mid \mathrm{HF}(\mathfrak{M}) \models \Psi(\mathbf{x}^*, \mathbf{t}, \overline{\mathbf{m}})^{\mathrm{t}}_{\varkappa_1(\overline{\mathbf{t}})} \right\}.$$

By Lemma 2 we can effectively construct a formula $\Theta(\bar{x}, \bar{t}, \bar{y})$ of signature σ so that, for each valuation $\gamma(\bar{x}, \bar{t}) \to M$, the following be true:

$$\mathrm{HF}(\mathfrak{M}) \models \Psi(\mathbf{x}, \mathbf{t}, \overline{\mathbf{m}})_{\varkappa_0(\bar{\mathbf{x}}), \varkappa_1(\bar{\mathbf{t}})}^{\mathbf{x}} [\gamma] \iff \mathfrak{M} \models \Theta(\bar{\mathbf{x}}, \bar{\mathbf{t}}, \overline{\mathbf{m}})[\gamma].$$

By Lemma 1, given the formula Θ , we can effectively find an \exists -formula $\Theta^*(\bar{x}, \bar{t}, \overline{m})$ that defines a unique element \bar{t}^* in the set T.

The element $t^* \rightleftharpoons \varkappa_1(\overline{t^*})$ satisfies the formula $\Psi(x^*, t^*, \overline{m})$; hence, it has the form $t^* = \langle y^*, z^* \rangle$ and, moreover, $\langle x^*, y^* \rangle \in E$. We put $F(x^*) \rightleftharpoons y^*$ by definition.

The required Σ -function F is defined as follows: $F(x^*) = y^* \iff \exists t^* \exists z^* \exists \varkappa_0 \exists \varkappa_1 ((t^* = \langle y^*, z^* \rangle) \land \Psi_1(\varkappa_1, x^*, \bar{m}) \land \land \Sigma - Sat([\exists x_0 \dots \exists x_{l-1} \exists t_0 \dots \exists t_{n-1}(x^* = \varkappa_0(\bar{x}) \land t^* = \varkappa_1(\bar{t}) \land \Theta^*(\bar{x}, \bar{t}, \bar{y}))], \bar{m})).$ The theorem is proven.

In [3] it was proven that the theory of real-closed fields and the theory of p-adic normed fields are theories with definable Skolem functions. Therefore, we have:

Corollary 1. The structures $HF(\mathbf{R})$ and $HF(\mathbf{Q_p})$ have the uniformization property.

Actually, the requirement of definability of Skolem functions is too stringent. Below, we prove this theorem to be true under a weaker condition that is necessary and sufficient.

We call a model \mathfrak{M} of signature σ a model with Σ -definable Skolem functions, provided that, given any formula $\varphi(x_0, \ldots, x_n)$ of signature σ , we can effectively find a Σ -formula $\psi(x_0, \ldots, x_n)$ of signature σ' such that

$$\mathrm{HF}(\mathfrak{M}) \models \forall \mathbf{x}_1 \dots \forall \mathbf{x}_n \Big[\exists \mathbf{x}_0 \varphi(\mathbf{x}_0, \dots, \mathbf{x}_n) \to \exists ! \, \mathbf{x}_0 \big(\varphi(\mathbf{x}_0, \dots, \mathbf{x}_n) \land \psi(\mathbf{x}_0, \dots, \mathbf{x}_n) \big) \Big]$$

(recall that x_0, \ldots, x_n together with all bounded variables in φ are variables for urelements).

Let \mathfrak{M} be a model of a regular theory with Σ -definable Skolem functions. In this case, an analog of Lemma 1 holds, namely:

Lemma 4. Suppose that P is a definable n-ary predicate over \mathfrak{M} . Then each formula defining P can be effectively transformed into a Σ -formula that defines a predicate Q on $\operatorname{HF}(\mathfrak{M})$ with the same parameters, such that

1) if $P = \emptyset$ then $Q = \emptyset$,

2) if $P \neq \emptyset$ then $Q = \{\bar{x}\}, \ \bar{x} \in P$.

Proof. The case n = 1 is evident; so, assume that n > 1 and that the statement is true for all k < n. Suppose that the predicate P is defined by a formula $\varphi(x_0, \ldots, x_{n-1}, \bar{y})$ of signature σ with parameters \overline{m} . Given the predicate

 $X = \{x_0 \mid \mathfrak{M} \models \exists x_1 \dots \exists x_{n-1} \varphi(x_0, \dots, x_{n-1}, \overline{m})\},\$

we can effectively find by induction a Σ -formula $\Phi(x, \bar{y})$ that defines a single element in X. Consider the predicate

$$Y = \Big\{ \langle x_1, \dots, x_{n-1} \rangle \in M^{n-1} \ \Big| \ \mathrm{HF}(\mathfrak{M}) \models \exists \mathbf{x}_0 \big(\varphi(\bar{\mathbf{x}}, \overline{\mathbf{m}}) \land \Phi(\mathbf{x}_0, \overline{\mathbf{m}}) \big) \Big\}.$$

By Lemma 2, $\operatorname{HF}(\mathfrak{M}) \models \Phi(\mathbf{x}_0, \overline{\mathbf{m}}) \iff \mathfrak{M} \models \bigvee_{i \in \omega} \varphi_i(\mathbf{x}_0, \overline{\mathbf{m}})$, where φ_i are formulas of signature σ and the set $\{[\varphi_i] \mid i \in \omega\}$ is recursively enumerable. Whence

$$Y = \left\{ \langle x_1, \dots, x_{n-1} \rangle \in M^{n-1} \ \middle| \ \mathfrak{M} \models \bigvee_{i \in \omega} \exists x_0 \big(\varphi(\overline{x}, \overline{m}) \land \varphi_i(x_0, \overline{m}) \big) \right\}.$$

Assume that $i_0 = \mu i \left(\mathfrak{M} \models \exists \bar{x} \left(\varphi(\bar{x}, \overline{m}) \land \varphi_i(x_0, \overline{m}) \right) \right)$; by regularity, i_0 is defined by a Σ -formula in HF(\mathfrak{M}). Since the formula $\Phi(x_0, \overline{m})$ is true for at most one element, we have

$$Y = \Big\{ \langle x_1, \dots, x_{n-1} \rangle \in M^{n-1} \ \Big| \ \mathfrak{M} \models \exists x_0 \big(\varphi(\bar{x}, \overline{m}) \land \varphi_{i_0}(x_0, \overline{m}) \big) \Big\}.$$

We find by induction a Σ -formula $\Psi(x_1, \ldots, x_{n-1}, \bar{y})$ that defines a single element in Y. The required predicate Q is defined by the Σ -formula $\Phi(x_0, \bar{y}) \wedge \Psi(x_1, \ldots, x_{n-1}, \bar{y})$ with the same parameters. The lemma is proven.

Thus, if \mathfrak{M} is a model of a regular theory then the following is true:

Theorem 2. The uniformization is true in $HF(\mathfrak{M})$ if and only if \mathfrak{M} is a model with Σ -definable Skolem functions.

Proof. Sufficiency follows immediately from Lemma 4 and the proof of Theorem 1. Prove necessity. Define a binary Σ -predicate G as follows:

$$\langle a, x \rangle \in G \iff \left(a = \left\langle [\varphi], x_1, \dots, x_{n-1} \right\rangle \right) \land \Sigma \operatorname{-Sat}([\varphi], \langle x, x_1, \dots, x_{n-1} \rangle).$$

By hypothesis, there exists a Σ -function F that uniformizes G. Take an arbitrary formula $\varphi(x_0, \ldots, x_{n-1})$ of signature σ . By regularity, we can effectively find an equivalent \exists -formula $\psi(x_0, \ldots, x_{n-1})$. The function

$$f(x_1,\ldots,x_{n-1}) = \lambda x_1 \ldots \lambda x_{n-1} \cdot F\left(\left\langle [\psi], x_1,\ldots,x_{n-1}\right\rangle\right)$$

is a Skolem function for the formula φ . The theorem is proven.

A dense linear order L without endpoints serves as an example of a model of a regular theory such that HF(L) has no uniformization property (this easily follows from the fact that any two tuples in L that are ordered in the same way cannot be distinguished by a formula). On the other hand, definable subsets of the fields **R** and **Q**_p have rather many common properties. In particular, the following statement holds (see [4,5]):

Proposition 1. Let K be equal to \mathbf{R} or $\mathbf{Q}_{\mathbf{p}}$. Each nonempty definable subset in K either is finite or has nonempty interior.

With the use of this property, we can suggest a common way of defining the Skolem functions for **R** and **Q**_p; the way is intuitively effective and, consequently, can be expressed in terms of Σ -definability of Skolem functions in appropriate superstructures. We restrict our consideration to the field **Q**_p (for **R** the arguments are similar). **Lemma 5.** The field $\mathbf{Q}_{\mathbf{p}}$ is a model with Σ -definable Skolem functions.

Proof. Assume that $\Phi(x, \bar{y})$ is an arbitrary formula of signature $\sigma = = \langle +, \cdot, -^1, 0, 1, p \rangle$ and let P be a predicate defined by this formula with parameters \bar{a} , i.e., $x \in P \iff \mathbf{Q}_p \models \Phi(x, \bar{a})$.

Consider a system of neighborhoods about rational points, $\{C_{q,k} | q \in \mathbf{Q}, \mathbf{k} \in \mathbf{N}\}$, which covers \mathbf{Q}_p , where $C_{q,k} = \{q + p^k z | z \in \mathbf{Z}_p\}$. By Proposition 1, if $P \neq \emptyset$ then there exist $q \in \mathbf{Q}$ and $k \in \mathbf{N}$ such that $C_{q,k}$ satisfies one of the following conditions:

- 1) $\exists ! x \in C_{q,k} \Phi(x, \bar{a}),$
- 2) $\forall x \in C_{q,k} \Phi(x, \bar{a}).$

The set $C_{q,k}$ is defined by numbers $q = (-1)^s m/n$ and k, where $s, m, n, k \in \mathbf{N}$. Hence, the neighborhood C_{q_0,k_0} , that satisfies one of the conditions and is such that the corresponding numbers s_0, m_0, n_0, k_0 are minimal, is uniquely defined. Define the Skolem function f for the formula Φ as follows: put $f(\bar{a}) \rightleftharpoons x_0$, where, in the first case, x_0 is taken as the unique point in $C_{q_0,k_0} \cap P$ and, in the second case, $x_0 \rightleftharpoons q_0$.

The function f so defined is a Σ -function on $HF(\mathbf{Q}_p)$. Indeed, since \mathbf{Z}_p is definable, we have

$$x \in C_{q,k} \iff \mathbf{Q}_p \models \exists z ((z \in \mathbf{Z}_{\mathbf{p}}) \land (\mathbf{x} = \mathbf{q} + \mathbf{p}^k \mathbf{z})),$$

where p^k denotes the term $\underbrace{p \cdots p}_k$ and q denotes the term $\underbrace{(1 + \cdots + 1)}_m/(\underbrace{(1 + \cdots + 1)}_n)$; hence, the assertion " $C_{q,k}$ satisfies one of the two conditions" is expressed by the formula $\Psi_{s,m,n,k}(\bar{a})$ of signature σ , which effectively depends on s, m, n, k. From here, by regularity, the numbers s_0, m_0, n_0, k_0 (regarded as ordinals), along with x_0 , are defined by a $\Sigma \bar{f}$ ormula in HF(\mathbf{Q}_p). The lemma is proven.

In closing, the author thanks his supervisor Yu.L. Ershov for apt observations and advices that considerably determined the content of this article.

References

- [1] Ershov Yu.L., Definability and Computability, New York, Plenum, 1996
- [2] Barwise J., Admissible sets and structures, Berlin, 1975

- [3] Van den Dries L., Algebraic theories with definable Skolem functions, J. Symbolic Logic, vol. 49, N4 (1984), pp. 625-630
- [4] Macintyre A., On definable subsets of p-adic fields, J. Symbolic Logic, vol. 41, N3 (1976), pp. 605-610
- [5] Van den Dries L., Algebraic theories with definable Skolem functions, J. Symbolic Logic, vol. 49, N 3 (1984), pp. 625-630