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ПРЕДИСЛОВИЕ

Проблема Лахлана является одной из основных проблем со-
временной абстрактной теории моделей. Сама теория моделей,
сформировавшаяся в самостоятельную область в 1950-х годах,
находится на стыке математической логики и алгебры. Пред-
метом ее изучения являются синтаксические объекты (теории,
представляющие описания реальных объектов) и семантические
объекты (алгебраические системы, отражающие взаимосвязь эле-
ментов реальных объектов), а также классификация синтакси-
ческих объектов по свойствам объектов семантическим, и на-
оборот. При описании полных теорий (т.е. теорий с недополняе-
мой непротиворечивой информацией в рамках фиксированного
языка) возможны существенно различные (неизоморфные) ре-
ализации этих теорий алгебраическими системами (моделями)
При этом число таких реализаций может быть различным в раз-
ных бесконечных мощностях (т.е. с разным бесконечным чис-
лом элементов) алгебраических систем. Так возникает функция
спектра, отражающая число неизоморфных моделей данной тео-
рии в зависимости от мощности моделей, и одна из основных
проблем теории моделей — проблема описания всех возможных
спектральных функций как для класса всех теорий, так и для
различных существенных подклассов этого класса.

Как это ни удивительно, спектральная проблема решена для
больших (несчетных) мощностей в классе всех теорий. Здесь ос-
новные достижения связаны с работами С. Шелаха [26] и в окон-
чательном виде представлены в работе Б. Харта, Е. Хрушовского
и М. Ласковского [106].

Для счетной (минимальной бесконечной) мощности ситуация
оказалась значительно сложнее. Во-первых, до сих пор неизвест-
но, существуют ли теории с несчетным, но не максимальным
числом счетных моделей (проблема Воота). Во-вторых, постро-
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енные А. Эренфойхтом (см. [199]) первоначальные примеры тео-
рий с конечным, но большим единицы, числом счетных моделей
(сейчас такие теории в его честь называются эренфойхтовыми)
долгое время оставались по существу единственными: все мо-
дификации сводились к надстройкам на бесконечные плотные
линейно упорядоченные множества. В связи с последним обсто-
ятельством и возникла проблема Лахлана о существовании суще-
ственно других (т.е. не имеющих бесконечных линейных поряд-
ков) эренфойхтовых теориях. В краткой формулировке пробле-
ма Лахлана звучит так: определить, существует ли стабильная
эренфойхтова теория.

Эта проблема была частично решена самим А. Лахланом
[141], опубликовавшим в 1973 году доказательство отсутствия
эренфойхтовых теорий в классе суперстабильных теорий, кото-
рый является важным подклассом класса стабильных теорий.
Долгое время предполагалось, что это утверждение верно и для
стабильных теорий, и в литературе наряду с проблемой Лахла-
на называлось гипотезой Лахлана (см., например, [27], c. 202).
Гипотеза Лахлана частично подтверждалась для многих под-
классов класса стабильных теорий в работах Д. Ласкара [143],
С. Шелаха [26], А. Пилая [163], [167], [169], [170], Т. Г. Мустафи-
на [37], Ю. Заффе [182], А. Цубои [198], Е. Хрушовского [122],
А. А. Викентьева [32], Б. Кима [137], П. Тановича [192], [193].
Вместе с тем происходила наработка структурных свойств, ко-
торыми должен обладать контрпример, если таковой существует.
С этим связаны работы М. Г. Перетятькина [42], [43], М. Бенды
[90], Р. Вудроу [205], [206], А. Пилая [164], [165], Б. Омарова [38],
А. Цубои [197], С. С. Гончарова, М. Пурмахдиана [34], Б. Хервига
[113] и автора. Решение проблемы, а именно доказательство су-
ществования стабильной эренфойхтовой теории, стало возможно
лишь после появления в 1988 году тонкой конструкции, создан-
ной Е. Хрушовским [121] и примененной для решения многих
теоретико-модельных проблем. Сейчас эта известная конструк-
ция называется генерической конструкцией Хрушовского и поз-
воляет “собирать” требуемые модели, исходя из конечных объек-
тов с помощью амальгам.

Другой важной составляющей стала созданная автором тео-
рия полигонометрий групп [190], [191] обобщающая классические
тригонометрии. Класс полигонометрий групп оказался удобным
и геометрически наглядным полигоном, позволившим реализо-
вать многие структурные свойства стабильных эренфойхтовых
теорий. Вместе с тем сейчас, когда стал понятен общий меха-
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низм построения эренфойхтовых теорий, явное описание неявно
присутствующего в конструкции полигонометрического аппара-
та представляется избыточным, и поэтому как сама полигоно-
метрическая теория, так и ее применения в книге не отражены.

Для построения стабильных эренфойхтовых теорий была при-
влечена тонкая модификация конструкции Хрушовского, пред-
ложенная Б. Хервигом [113] для реализации одного из основ-
ных структурных свойств — бесконечного веса. Вместе с тем эта
модификация в первоначальном виде оказалась недостаточной,
поскольку конструкция Хрушовского — Хервига является семан-
тической и не учитывает возможность появления внешних свя-
зей по отношению к данному конечному объекту, являющемуся
“кирпичиком” общей конструкции.

Для устранения этого недостатка автором была развита тео-
рия синтаксических генерических конструкций [56]. В основе син-
таксического построения лежат не конечные объекты, а типы,
т.е. описания (возможно и внешние) конечных объектов, которые
затем шаг за шагом позволяют сформировать модели требуемых
теорий.

Использование указанного выше аппарата и позволило по-
строить ряд стабильных эренфойхтовых теорий.

Первоначальная моя работа проходила во время учебы в Но-
восибирском государственном университете, где работали и про-
должают работать первоклассные специалисты по математиче-
ской логике и алгебре. Появление Сибирской школы алгебры
и логики, к которой я отношу и себя, стало возможным с об-
разованием в 1957 году Института математики в Новосибирском
Академгородке и приездом в Новосибирск основателя этой шко-
лы академика Анатолия Ивановича Мальцева. Сейчас на протя-
жении уже более тридцати лет эту Школу возглавляет дирек-
тор Института математики академик Юрий Леонидович Ершов.
Постановке задачи и успехам в ее решении я во многом обя-
зан своему научному руководителю, заведующему лабораторией
алгебраических систем, профессору Евгению Андреевичу Палю-
тину. У меня было много полезных и плодотворных дискуссий
с членом-корреспондентом РАН, заведующим отделом матема-
тической логики ИМ СО РАН, деканом механико-математичес-
кого факультета НГУ, профессором Сергеем Савостьяновичем
Гончаровым, с профессором кафедры алгебры и математиче-
ской логики НГТУ Александром Георгиевичем Пинусом, с посто-
янными участниками семинара “Теория моделей” ИМ СО РАН
к.ф.-м.н. Александром Николаевичем Ряскиным, к.ф-.м.н. Алек-
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сандром Александровичем Викентьевым, к.ф.-м.н. Дмитрием
Юрьевичем Власовым, аспирантом Михаилом Андреевичем Ру-
салевевым, с сотрудниками кафедры алгебры и математиче-
ской логики НГТУ. На семинаре “Теория моделей”, руководи-
мом академикомЮрием Леонидовичем Ершовым и профессором
Евгением Андреевичем Палютиным, в течение всей моей науч-
ной деятельности я апробировал свои новые результаты перед
тем как их выпускать в свет.

Мне помогало очное и заочное общение со многими специали-
стами по теории моделей Франции, Казахстана, США, Велико-
британии, Израиля, Японии, Германии, Польши, Чехии, Сербии.

Так получилось, что после обучения в аспирантуре НГУ
я с 1990 года уже 17 лет работаю в НГТУ, из них 15 лет — на со-
зданной в 1992 году кафедре алгебры и математической логики,
которую с 1992 г. по 2006 г. возглавлял профессор Александр Ге-
оргиевич Пинус, сплотивший дружный и плодотворный коллек-
тив. Созданию кафедры (которая с таким названием является
в техническом вузе скорее исключением, чем правилом) способ-
ствовал бывший ректор НГТУ, профессор Анатолий Сергеевич
Востриков и первый проректор (ныне ректор) НГТУ, профес-
сор Николай Васильевич Пустовой. Успешной научной работе
помогает доброжелательная научная атмосфера в НГТУ, чте-
ние курсов алгебры, дискретной математики и математической
логики, а также возможность издания учебников по читаемым
дисциплинам.

С 2005 года по настоящее время я являюсь старшим научным
сотрудником лаборатории алгебраических систем Института ма-
тематики им. С.Л.Соболева СО РАН, и окончательное доведение
основных результатов до статей происходило именно здесь.

Работа выполнена при финансовой поддержке Российского
фонда фундаментальных исследований, проекты 93-011-1520, 96-
01-01675, 99-01-00571, 02-01-00258, 05-01-00411, а также Совета по
грантам Президента РФ и государственной поддержке ведущих
научных школ, проект НШ-4787.2006.1.

Я благодарен всем вышеназванным коллегам, а также руко-
водству организаций, при участии которых оказалось возмож-
ным осуществить работу, излагаемую в книге.

Сергей Судоплатов

Новосибирск, октябрь 2007 г.



ВВЕДЕНИЕ И ИСТОРИЧЕСКИЙ ОБЗОР

Как уже отмечалось в предисловии, одной из основных за-
дач современной теории моделей является решение спектраль-
ной проблемы, т.е. проблемы описания функций I(T, λ) числа
попарно неизоморфных моделей теории T в мощности λ для
различных классов теорий T . Интерес к этой проблеме вызван
прежде всего тем, что для ее решения требуется построение со-
держательной структурной теории.

Проблема описания функций спектра, а также классов тео-
рий, зависящих от этих функций, привлекала и продолжает при-
влекать внимание широкой группы специалистов по теории мо-
делей, составляя обширную область исследований. Это отражено
в большом количестве работ, среди которых упомянем следую-
щие: книги и диссертации — О. В. Белеградек [1]; С. С. Гонча-
ров, Ю. Л. Ершов [2]; Ю. Л. Ершов, Е. А. Палютин [5]; Г. Кей-
слер, Ч. Ч. Чэн [6]; Дж. Сакс [9]; Справочная книга по матема-
тической логике [10]; Дж. Болдуин [16]; У. Ходжес [22]; А. Пи-
лай [24]; Б. Пуаза [25]; С. Шелах [26]; Ф. Вагнер [27]; статьи —
С. С. Гончаров, М. Пурмахдиан [34]; Т. Г. Мустафин [37]; Б. Ома-
ров [38]; Е. А. Палютин [40]; Е. А. Палютин, С. С. Старченко [41];
М. Г. Перетятькин [42], [43]; А. Н. Ряскин [45]; Дж. Болдуин,
А. Лахлан [68]; М. Бенда [90]; С. Биклер [93]; Б. Харт, С. Стар-
ченко, М. Валериот [105]; Б. Харт, Е. Хрушовский, М. Ласков-
ский [106]; Б. Хервиг, Дж. Ловейс, А. Пилай, П. Танович, Ф. Ваг-
нер [112]; Б. Хервиг [113]; Е. Хрушовский [122]; К. Икеда, А. Пи-
лай, А. Цубои [127]; Б. Хусаинов, А. Нис, Р. Шор [135]; Б. Ким
[137]; А. Лахлан [141]; Д. Ласкар [143]; Дж. Ловейс, П. Тано-
вич [148]; Л. Лоу, А. Пилай [149]; Л. Майер [151]; Т. Миллар
[152]–[155]; М. Морли [157], [158]; А. Пилай [163]–[167], [169], [170];
Р. Рид [179]; Ч. Рыль-Нардзевский [181]; Ю. Заффе [182], [183];
С. Шелах [184]; С. Шелах, Л. Харрингтон, М. Маккай [186];
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С. Томас [196]; А. Цубои [197], [198]; П. Танович [192]; Р. Воот
[199]; Р. Вудроу [205], [206].

Как уже отмечалось (см. С. Шелах [26]; Б. Харт, Е. Хру-
шовский, М. Ласковский [106]), спектральная проблема решена
в целом для счетных полных теорий в несчетных мощностях λ.

До настоящего времени одной из малоисследованных про-
блем остается проблема описания числа I(T, ω) попарно не-
изоморфных счетных моделей теории T для данных классов пол-
ных теорий. В этой связи следует отметить гипотезу Воота, со-
гласно которой не существует теории T с условием ω < I(T, ω) <
2ω. Эта гипотеза была подтверждена для теорий деревьев
(Дж. Стил [189]), унаров (Л.Маркус [150]; А. Миллер [156]), мно-
гообразий (Б. Харт, С. Старченко, М. Валериот [105]), для o-
минимальных теорий (Л. Майер [151]), для теорий модулей над
некоторыми кольцами (В. А. Пунинская [44], [176]; В. А. Пунин-
ская, К. Тоффалори [177]). В классе стабильных теорий гипоте-
за Воота доказана для ω-стабильных теорий (С. Шелах, Л. Хар-
рингтон, М. Маккай [186]), для различных классов суперстабиль-
ных теорий (Е. Р. Байсалов [28], [29]; С. Биклер [93], [94]; Л. Лоу,
А. Пилай [149]; Л. Невельский [159], [160], [161]), а также для
1-базируемых теорий с неизолированным типом над конечным
множеством, который ортогонален пустому множеству (П. Та-
нович [193]). Предпринимались попытки (см. Р. Найт [139]) по-
строения примеров, опровергающих гипотезу Воота. Однако до
настоящего времени проблема остается открытой.

Еще одной интересной гипотезой является гипотеза Пилая,
согласно которой для счетной теории T условие dcl(∅) |= T
влечет I(T, ω) ≥ ω. А. Пилай [166] доказал эту гипотезу для ста-
бильных теорий, а также установил (см. [163]), что из dcl(∅) |= T
следует I(T, ω) ≥ 4. П. Танович [194] показал, что гипотеза Пи-
лая верна для теорий, не имеющих свойства строгого порядка.

В 1959 г. Ч. Рыль-Нардзевский [181] опубликовал свою знаме-
нитую теорему, представляющую синтаксический критерий счет-
ной категоричности теории (т.е. условия I(T, ω) = 1), согласно
которому счетная категоричность теории эквивалентна конеч-
ности числа n-типов теории для каждого натурального числа n
и фиксированного множества свободных переменных. Это озна-
чает, что каждая счетно категоричная теория определяется од-
ной характеристикой, а именно, функцией Рыль-Нардзевского,
которая каждому натуральному числу n ставит в соответствие
число типов от n фиксированных свободных переменных.
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Большое количество результатов связано с эренфойхтовыми
теориями, т.е. теориями, имеющими конечное (> 1) число счет-
ных моделей. Р. Воотом [199] установлено, что не существует
полных теорий, имеющих ровно две счетные модели. На основе
теории плотного линейного порядка А. Эренфойхт [199] постро-
ил первоначальные примеры теорий, имеющих ровно n счетных
моделей для любого натурального n ≥ 3. Дальнейшие иссле-
дования были связаны с построениями эренфойхтовых теорий,
обладающих различными дополнительными свойствами, с на-
хождением и исследованием структурных свойств эренфойхто-
вых теорий, а также с нахождением классов полных теорий, не
содержащих эренфойхтовых теорий.

М. Г. Перетятькин [42] для каждого n ≥ 3 построил пол-
ную разрешимую теорию, имеющую ровно n счетных моделей,
из которых лишь одна конструктивизируема. В работах Б. Ома-
рова [38], М. Г. Перетятькина [43], Т. Миллара [152], [155], С. То-
маса [196], Р. Вудроу [206] построены примеры эренфойхтовых
теорий, допускающих константные обогащения до теорий с бес-
конечным числом счетных моделей, а также неэренфойхтовых
теорий, некоторые константные обогащения которых являются
эренфойхтовыми. Р. Вудроу [205] показал, что в предположении
элиминации кванторов и при ограничении сигнатуры на бинар-
ный предикатный символ и константные символы счетные пол-
ные теории, имеющие ровно три счетные модели, являются по
существу примерами Эренфойхта. А. Пилай [165] установил, что
в любой эренфойхтовой теории с малым числом связей интерпре-
тируется бесконечный плотный частичный порядок. С. С. Гон-
чаров и М. Пурмахдиан [34] доказали, что каждая эренфойхто-
ва теория имеет конечный ранг. В работе К. Икеды, А. Пилая,
А. Цубоя [127] показано, что в любой почти ω-категоричной тео-
рии с тремя счетными моделями интерпретируется плотный ли-
нейный порядок. П. Танович [195] установил, что в любой теории
с тремя счетными моделями и бесконечным множеством попарно
различных констант интерпретируется пример Эренфойхта или
пример Перетятькина. Е. Р. Байсалов [30] описал числа счет-
ных моделей o-минимальных теорий (класс o-минимальных тео-
рий включает классические примеры эренфойхтовых теорий).
С. Лемп и Т. Слемен [147] установили, что свойство эренфойхто-
вости Π1

1-полно. У. Калверт, В. Харизанов, Дж. Найт, С. Миллер
[95] описали сложность индексных множеств классической эрен-
фойхтовой теории. Конструктивные модели эренфойхтовых тео-
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рий рассмотрены в работах К. Эша и Т. Миллара [67], Г. А. Ома-
ровой [39], Б. Хусаинова, А. Ниса и Р. Шора [135], А. Н. Га-
врюшкина [33], разрешимые эренфойхтовы теории — в работах
Т. Миллара [153], [154], Р. Рида [179], В. Харизанов [20].

Проблема Лахлана, о решении которой пойдет речь в кни-
ге, известна более тридцати лет. В направлении решения этой
проблемы для различных подклассов класса стабильных теорий
установлено отсутствие теорий T с условием 1 < I(T, ω) < ω.
Это отсутствие было доказано для класса несчетно категорич-
ных теорий (Дж. Болдуин, А. Лахлан [68]), для суперстабиль-
ных теорий (А. Лахлан [141], Д. Ласкар [143], С. Шелах [184],
Ю. Заффе [182], А. Пилай [167]), для теорий с неглавными су-
перстабильными типами (Т. Г. Мустафин [37]), для стабильных
теорий, у которых dcl(∅) является моделью (А. Пилай [166]),
для нормальных теорий (А. Пилай [167]), для слабо нормальных
(1-базируемых) теорий (А. Пилай [169], [170]), для теорий, допус-
кающих конечную кодировку (Е. Хрушовский [122]), для объеди-
нений псевдо-суперстабильных теорий (А. Цубои [198]), для тео-
рий без плотных цепей ответвляемости (Б. Хервиг, Дж. Ловейс,
А. Пилай, П. Танович, Ф. Вагнер [112]). А. Цубои [197] дока-
зал, что любая эренфойхтова теория, представляющаяся в ви-
де счетного объединения ω-категоричных теорий, нестабильна.
А. А. Викентьев [32] установил наследственность неэренфойхто-
вости при расширении неэренфойхтовых формульных ограниче-
ний. П. Танович [192] показал, что любая стабильная теория, в
которой интерпретируется бесконечное множество попарно раз-
личных констант, является неэренфойхтовой. Им же [194] до-
казано, что если теория T эренфойхтова, то множество dcl(∅)
конечно или теория T имеет свойство строгого порядка.

С развитием теории простых теорий (см. Ф. Вагнер [27];
З. Шатзидакис, А. Пилай [97]; Б. Ким, А. Пилай [136]; Б. Ким
[137]; М. Пурмахдиан [175]; С. Шелах [185]) наряду с проблемой
Лахлана для стабильных теорий возникла аналогичная пробле-
ма для простых теорий: проблема Лахлана для простых теорий.
Б. Ким [137] обобщил теорему Лахлана (см. А. Лахлан [141]) о су-
перстабильных теориях и установил, что эренфойхтовы теории
не содержатся в классе суперпростых теорий.

При определении числа счетных моделей важную роль игра-
ют так называемые властные типы, которые всегда присутству-
ют в эренфойхтовых теориях (см. М. Бенда [90]). По существу,
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доказательство отсутствия эренфойхтовых теорий в вышепере-
численных классах сводится к тому, что для этих классов до-
казывается отсутствие теорий с неглавными властными типами.
Другие существенные свойства, которыми обладают эренфойх-
товы теории — несимметричность отношения полуизолирован-
ности на множестве реализаций властных типов, а также беско-
нечный вес неглавных властных типов в простых теориях (см.
А. Пилай [167]; Б. Ким [137]). Начала систематизации структур-
ных свойств эренфойхтовых теорий и их властных типов поло-
жены в кандидатской диссертации автора [11].

А. Лахлан [142] доказал, что структура бесконечной псевдо-
плоскости содержится в моделях любой ω-категоричной стабиль-
ной несуперстабильной теории, а А. Пилай [169] получил анало-
гичный результат для стабильных не 1-базируемых теорий. Та-
ким образом, положительное решение проблемы Лахлана воз-
можно лишь в классе теорий, интерпретирующих псевдоплоско-
сти.

Взаимосвязь типов в теориях во многом определяется пред-
порядками Рудина — Кейслера (см. М. Рудин [180]). Эти предпо-
рядки имеют конечное число классов эквивалентности для эрен-
фойхтовых теорий. В работах Д. Ласкара [143]–[145] проведено
исследование различных видов предпорядков Рудина–Кейслера
и показано, что любому властному типу соответствует наиболь-
ший класс эквивалентности по предпорядку Рудина–Кейслера.

В 1988 г. Е. Хрушовский [125] с помощью модификации ге-
нерической конструкции Йонсона–Фраисе́ (см. Р. Фраисе́ [102],
[19]; Б. Йонсон [132], [133]; ) опроверг гипотезу Зильбера, по-
строив примеры сильно минимальных не локально модулярных
теорий, в которых не интерпретируется группа. Его оригиналь-
ная конструкция, послужившая основой для построения соответ-
ствующего примера, а также для последующего решения других
известных теоретико-модельных проблем, стимулировала интен-
сивное изучение как самой конструкции Хрушовского и ее раз-
личных (в широком смысле) модификаций, способных создавать
“генерические” теории с заданными свойствами (см. Дж. Болду-
ин [17], [69], [70], [71], [81], [82]; А. С. Колесников [23]; А. Хассон
[21], [107], [108], [111]; Дж. Болдуин, С. Шелах [74]; Дж. Бол-
дуин, К. Холланд [76], [77], [79]; А. Баудиш [83], [84]; А. Ба-
удиш, А. Мартин-Пизарро, М. Циглер [88]–[87]; М. де Бонис,
А. Несин [91]; О. Шапюи, Е. Хрушовский , П. Куаран, Б. Пу-
аза [96]; Д. Эванс [98], [100], [101]; Д. Эванс, М. Пантано [99];
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А. Хассон, М. Хилс [109]; А. Хассон, Е. Хрушовский [110]; Б. Хер-
виг [113], [114], [115]; Б. Хервиг, Д. Ласкар [116]; К. Холланд
[117], [118]; Е. Хрушовский [121], [123], [124]; Е. Хрушовский,
Б. И. Зильбер [126]; К. Икеда [128], [129]; А. А. Иванов [131];
А. Кехрис, К. Розендаль [134]; Б. Ким, А. С. Колесников, А. Цу-
бои [138]; Н. Питфилд, Б. И. Зильбер [162]; А. Пилай, А. Цу-
бои [171]; Б. Пуаза [172], [173]; С. Шелах [187]; С. Солецкий
[188]; В. В. Вербовский [200]; В. В. Вербовский, И. Йонеда [201];
А. М. Вершик [202]; А. Виллавесес, П. Замбрано [203]; И. Йоне-
да [207]; М. Циглер [208]; Б. И. Зильбер [209], [210], [211]), так и
аксиоматических основ, позволяющих определить границы при-
менимости этой конструкции (см. А. Бонато [18]; Р. Арефьев,
Дж. Болдуин, М. Мазукко [66]; Дж. Болдуин [73]–[80]; Дж. Бол-
дуин, Н. Ши [72]; А. Баудиш [85]; З. Шатзидакис, А. Пилай [97];
Д. Эванс [98]; Дж. Гуд [103]; К. Холланд [119]; К. Икеда, А. Пи-
лай, Х. Кикио А. Цубои, [130]; Д. Куэкер, М. Ласковский [140];
М. Ласковский [146]; Б. Пуаза [174]; М. Пурмахдиан [175]; Р. Ра-
яни [178]; Ф. Вагнер [204]).

Применительно к проблеме Лахлана Б. Хервиг [113] пока-
зал плодотворность конструкции Хрушовского, построив на ее
основе малую стабильную теорию с типом, имеющим бесконеч-
ный вес.

Перейдем к изложению результатов пяти основных разделов
книги.

Первая глава начинается (параграф 1.1) с синтаксической ха-
рактеризации класса полных теорий с конечным числом счетных
моделей на основе предпорядков Рудина — Кейслера и функций
распределения числа предельных моделей. Основная часть этой
характеризации распространяется на класс эренфойхтовых тео-
рий. В параграфе 1.2 определяются основные виды несуществен-
ных совмещений и раскрасок моделей, использующиеся в даль-
нейшем как для описания промежуточных конструкций, так
и для решения проблемы Лахлана. В параграфе 1.3 определяется
понятие ти́повой редуцированности, согласно которой не меня-
ется структура типа предикатной теории при переходе от насы-
щенной структуры к ограничению на множество реализаций ти-
па; показывается, что свойство ти́повой редуцированности не вы-
полняется в стабильных эренфойхтовых теориях; строится при-
мер, реализующий отсутствие ти́повой редуцированности в клас-
се стабильных теорий. В параграфе 1.4 определяется понятие
властного орграфа, который наряду с властным типом всегда
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локально присутствует в эренфойхтовых структурах; устанав-
ливается связь властных орграфов с властными типами, всегда
присутствующими в эренфойхтовых структурах и исследуются
свойства структур с властными графами. Результаты, представ-
ленные в первой главе, опубликованы в работах [46]–[50], [52].

Во второй главе описываются ставшие уже классическими
семантические генерические конструкции (параграф 2.1); при-
меняемые для решения проблемы Лахлана синтаксические гене-
рические конструкции, обобщающие конструкции семантические
(параграф 2.2); свойства различных классов синтаксических ге-
нерических конструкций (параграфы 2.3 — 2.5), а также исследу-
ются различные виды слияний генерических конструкций, также
применяемые для построения искомых эренфойхтовых теорий
(параграф 2.6). Основные результаты, представленные во вто-
рой главе, изложены в работах [56], [60].

В третьей главе на основе синтаксической генерической кон-
струкции и несущественной упорядоченной раскраски бескон-
турного орграфа строится пример нестабильного генерическо-
го властного орграфа, имеющего неограниченные длины крат-
чайших маршрутов и допускающего обогащение до структуры
неглавного властного типа (параграф 3.1). Затем на основе гене-
рического властного орграфа строятся теории с властными типа-
ми (параграф 3.2), генерические эренфойхтовы теории с тремя
счетными моделями (параграф 3.3), а также приводится моди-
фикация генерической конструкции, позволяющая реализовать
всевозможные характеристики эренфойхтовых теорий по пред-
порядкам Рудина — Кейслера и функциям распределения чис-
ла предельных моделей (параграф 3.4). В параграфе 3.5 эти ха-
рактеристики распространяются на произвольные малые теории
с конечными предпорядками Рудина — Кейслера по модулю ги-
потезы Воота. В параграфе 3.6 приводится описание предпоряд-
ков Рудина — Кейслера в малых теориях, а в параграфе 3.7 —
модификации генерической конструкции эренфойхтовых теорий,
основанные на неплотных структурах властных орграфов, а так-
же на структурах властных типов, не имеющих властных оргра-
фов. Основные результаты третьей главы представлены в рабо-
тах [51], [55], [63], [64]. Первые три главы, за исключением па-
раграфа 2.6, составляют первую главу докторской диссертации
автора [12].

В четвертой главе на основе генерической конструкции Хру-
шовского — Хервига c предранговыми функциями в три этапа
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строятся примеры стабильных генерических властных орграфов.
Сначала генерическая конструкция переносится на двудольные
орграфы с цветными дугами (параграф 4.1), затем с двудоль-
ных цветных орграфов — на безразвилочные орграфы (параграф
4.2), и, наконец, с безразвилочных — на властные орграфы (пара-
граф 4.3). В параграфе 4.4 объясняется недостаток упрощенной
конструкции эренфойхтовых теорий из главы 3, которая в си-
лу особенности конструкции помимо нестабильности структуры
властного орграфа порождает формульную нестабильность че-
рез ти́повую нестабильность. В параграфе 4.5 описываются осо-
бенности генерической конструкции, позволяющей строить ста-
бильные эренфойхтовы теории. В параграфах 4.6 — 4.9 на основе
стабильных генерических властных орграфов с помощью слия-
ний Хрушовского генерических конструкций властных орграфов
с генерическими конструкциями счетного семейства неорграфов
строятся искомые стабильные эренфойхтовы теории со всевоз-
можными предпорядками Рудина — Кейслера и функциями рас-
пределения числа предельных моделей. Тем самым, в частности,
устанавливается существование стабильных эренфойхтовых тео-
рий, что решает проблему Лахлана. Результаты четвертой главы
изложены в работах [53], [54], [57]–[61].

В пятой, заключительной главе рассматривается семейство
гиперграфов простых моделей произвольной малой теории
и представляется механизм структурного описания моделей тео-
рии по этим семействам. Тем самым обосновывается, в частно-
сти, ключевая роль теоретико-графовых конструкций в построе-
нии приводимых в книге примеров эренфойхтовых теорий. Кро-
ме того, обобщаются результаты предыдущих глав на класс всех
малых теорий. Результаты пятой главы содержатся в работах
[62], [65].

В дальнейшем изложении мы будем использовать обозначе-
ния и терминологию:

— по теории моделей из Справочной книги по математиче-
ской логике [10] и книги С. В. Судоплатова, Е. В. Овчинниковой
[14] (см. также книги С. С. Гончаров, Ю. Л. Ершов [2]; Ю. Л. Ер-
шов [4]; Ю. Л. Ершов, Е. А. Палютин [5]; Г. Кейслер, Ч. Ч. Чэн
[6]; Дж. Сакс [9]; Дж. Болдуин [16]; У. Ходжес [22]; А. Пилай
[24]; Б. Пуаза [25]; С. Шелах [26]; Ф. Вагнер [27]);

— терминологию по теории графов из книги С. В. Судопла-
това, Е. В. Овчинниковой [13] (см. также книги [7]; О. Оре [8];
Ф. Харари [15]).



Г л а в а 1

ХАРАКТЕРИЗАЦИЯ
ЭРЕНФОЙХТОВОСТИ.
СВОЙСТВА ЭРЕНФОЙХТОВЫХ
ТЕОРИЙ

§ 1.1. Синтаксическая характеризация класса пол-
ных теорий с конечным числом счетных мо-
делей

В этом параграфе будет приведена синтаксическая характе-
ризация класса элементарных полных теорий с конечным числом
счетных моделей, которая является аналогом известной теоремы
Рыль-Нардзевского [181] о том, что счетная категоричность тео-
рии эквивалентна конечному числу n-типов теории для каждого
натурального числа n и фиксированного множества свободных
переменных. Приводимая характеризация основана на класси-
фикации теорий с конечным числом счетных моделей по двум
основным характеристикам: предпорядкам Рудина — Кейслера
и функциям распределения числа предельных над типами моде-
лей.

Через M,N , . . . (возможно с индексами) будут обозначаться
бесконечные модели элементарных теорий, через M, N, . . . — их
соответствующие носители. Тип кортежа a в модели M будет
обозначаться через tpM(a), а также через tp(a), если из контек-
ста ясно, о какой модели идет речь. Множество всех типов тео-
рии T над пустым множеством будет обозначаться через S(T )
или S(∅). При рассмотрении множества n-типов теории T это
множество будет обозначаться через Sn(T ) или Sn(∅)
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Число попарно неизоморфных моделей теории T , имеющих
мощность λ, обозначается через I(T, λ). Теория T называется
эренфойхтовой, если 1 < I(T, ω) < ω.

Если не оговорено противное, всюду в дальнейшем будут рас-
сматриваться лишь полные теории. Дополнительно к этому
в настоящем параграфе все рассматриваемые теории будут счет-
ными.

ОПРЕДЕЛЕНИЕ [90]. Тип p(x) ∈ S(T ) называется мощным
или властным типом теории T , если в любой модели M
теории T , реализующей тип p, реализуется любой тип q ∈ S(T ):
M |= S(T ).

Ясно, что наличие властного типа влечет малость теории T ,
т. е. счетность множества S(T ), что в свою очередь влечет суще-
ствование простой модели Ma над кортежем a для любого типа
p ∈ S(T ) и любой его реализации a . Поскольку все простые
модели над реализациями типа p изоморфны, эти модели будем
часто обозначать через Mp.

Очевидно, условие властности типа p(x) равносильно тому,
что любой тип из S(T ) реализуется в модели Mp: Mp |= S(T ).
Также очевидно, что в любой ω-категоричной теории T любой
тип из S(T ) является властным.

Лемма 1.1.1. [90]. Любая эренфойхтова теория T имеет
неглавный властный тип.

Д о к а з а т е л ь с т в о. Предположим противное. Тогда по
индукции существует последовательность типов pn ∈ S(∅) та-
ких, что pn ⊂ pn+1 и вMpn опускается тип pn+1. ИзMpm 6' Mpn

при m 6= n вытекает, что I(T, ω) ≥ ω. ¤
В качестве иллюстрации рассмотрим следующие примеры

Эренфойхта [199] теорий Tn, n ∈ ω, с условиями I(Tn, ω) = n≥ 3.
П р и м е р 1.1.1. Пусть Tn — теория модели Mn, получен-

ной из модели 〈Q; <〉 добавлением констант ck, k ∈ ω, таких,
что lim

k→∞
ck = ∞, а также добавлением одноместных предика-

тов P0, . . . , Pn−3, образующих разбиение множества рациональ-
ных чисел Q с условиями

|= ∀x, y ((x < y) → ∃z ((x < z) ∧ (z < y) ∧ Pi(z))),

i = 0, . . . , n−3. Теория Tn имеет ровно n попарно неизоморфных
счетных моделей:
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простую модель Mn ( lim
k→∞

ck = ∞);

простые модели Mn
i над реализациями типов pi(x) ∈ S1(∅),

определяемых множествами формул {ck < x | k ∈ ω} ∪ {Pi(x)},
i = 0, . . . , n− 3 ( lim

k→∞
ck ∈ Pi);

насыщенную модель Mn (предел lim
k→∞

ck иррационален). ¤

ОПРЕДЕЛЕНИЕ [167]. Говорят, что кортеж a полуизолирует
кортеж b (над ∅), если существует формула ϕ(x, a) ∈ tp(b/a)
такая, что ϕ(x, a) ` tp(b). При этом говорят, что формула ϕ(x, a)
свидетельствует о полуизолированности b над a.

Если p ∈ S(T ), то через SIp обозначим отношение полуизоли-
рованности на реализациях типа p:

SIp = {(a, b) | |= p(a) ∧ p(b) и a полуизолирует b}.
Заметим, что для любого типа p ∈ S(T ) отношение SIp обра-

зует предпорядок. Действительно, если для реализаций a, b и c
типа p формула ϕ(x, y) свидетельствует о полуизолированности
b над a, формула ψ(y, z) свидетельствует о полуизолированности
c над b, то формула ∃y (ϕ(x, y)∧ψ(y, z)) свидетельствует о полу-
изолированности c над a.

Предпорядок SIp называется предпорядком полуизолирован-
ности на множестве реализаций типа p.

Лемма 1.1.2. [167]. Если p ∈ S(T ) — неглавный властный
тип, то непустое отношение SIp несимметрично.

Д о к а з а т е л ь с т в о. Предположим противное, т. е. SIp —
отношение эквивалентности. Тогда все реализации типа p в мо-
делиMa, где |= p(a), SIp-эквивалентны, так как a полуизолирует
любой кортеж элементов из Ma. С другой стороны, по теореме
компактности в силу неизолированности типа p существует та-
кой тип q(x, y) ∈ S(T ), что p(x)∪p(y) ⊂ q(x, y) и (a′, b′) 6∈ SIp для
любых реализаций a′ˆb′ типа q. Следовательно, тип q опускается
в модели Mp, а это противоречит властности типа p. ¤

Таким образом, наличие неглавного властного типа p(x) пред-
полагает существование формулы ϕ(x, y) теории T , l(x) = l(y),
такой, что для любой (некоторой) реализации a типа p выполня-
ются следующие условия:
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1) ϕ(a, y) ` p(y);
2) ϕ(x, a) 6` p(x) и более того, найдется такой кортеж b, реа-

лизующий тип p, что |= ϕ(b, a) и a не полуизолирует b.
Любую формулу ϕ(x, y), удовлетворяющую условиям 1 и 2,

будем называть формулой, свидетельствующей о несимметрич-
ности отношения SIp.

В примерах Эренфойхта о несимметричности отношений SIpi

свидетельствует формула (x < y).
В дальнейшем в этом параграфе, если не оговорено против-

ное, мы будем ограничиваться классом малых теорий.
Пусть p и q — типы из S(T ). Будем говорить, что тип p подчи-

няется типу q, или p не превосходит q по предпорядку Рудина —
Кейслера и писать p ≤RK q, если Mq |= p, т. е. модель Mp яв-
ляется элементарной подмоделью модели Mq: Mp ¹ Mq. При
этом будем также говорить, что модель Mp подчиняется мо-
дели Mq, или Mp не превосходит модели Mq по предпорядку
Рудина — Кейслера и писать Mp ≤RK Mq.

Синтаксически условие p ≤RK q (а, значит, и условие
Mp ≤RK Mq) записывается так: существует формула ϕ(x, y)
такая, что совместно множество q(y) ∪ {ϕ(x, y)} и выполняется
q(y) ∪ {ϕ(x, y)} ` p(x). Более того, в силу малости теории фор-
мула ϕ(x, y) может быть выбрана так, что для любой формулы
ψ(x, y) из совместности множества q(y) ∪ {ϕ(x, y), ψ(x, y)} сле-
дует q(y) ∪ {ϕ(x, y)} ` ψ(x, y). При этом формулу ϕ(x, y) будем
называть (q, p)-главной.

Типы p и q называются взаимоподчиняемыми, взаимореа-
лизуемыми или эквивалентными по Рудину — Кейслеру
(p ∼RK q), если p ≤RK q и q ≤RK p. При этом модели Mp и Mq

также называются взаимоподчиняемыми или эквивалентными
по Рудину — Кейслеру (Mp ∼RK Mq).

Очевидно, что отношения подчинения суть предпорядки, а от-
ношения взаимоподчиняемости являются отношениями эквива-
лентности.

Ясно, что невзаимоподчиняемые модели Mp и Mq неизо-
морфны. Кроме того неизоморфные модели могут найтись и сре-
ди взаимоподчиняемых.

В примерах Эренфойхта модели Mn
p0

, . . . ,Mn
pn−3

взаимопод-
чиняемы, но попарно неизоморфны

Синтаксическая характеризация изоморфизма моделей Mp

и Mq дается следующим предложением.
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Предложение 1.1.3. Для любых типов p(x) и q(y) малой
теории T следующие условия эквивалентны:

(1) модели Mp и Mq изоморфны;
(2) существуют соответственно (p, q)-главная форму-

ла ϕp,q(y, x) и (q, p)-главная формула ϕq,p(x, y) такие, что сов-
местно множество

p(x) ∪ q(y) ∪ {ϕp,q(y, x), ϕq,p(x, y)};
(3) существует одновременно (p, q)-главная и (q, p)-главная

формула ϕ(x, y) такая, что совместно множество

p(x) ∪ q(y) ∪ {ϕ(x, y)}.
Д о к а з а т е л ь с т в о. (1) ⇒ (2). Пусть Ma — простая

модель над реализацией a типа p(x), Mb — простая модель над
реализацией b типа q(y).

При наличии изоморфизма моделей Ma и Mb существова-
ние (p, q)-главной формулы ϕp,q(y, x) и (q, p)-главной формулы
ϕq,p(x, y) с условием совместности множества

p(x) ∪ q(y) ∪ {ϕp,q(y, x), ϕq,p(x, y)}
следует из того, чтоMa реализует лишь главные типы над a,Mb

реализует лишь главные типы над b иMa = M
b
′ для некоторого

кортежа b
′, реализующего тип q(y).

(2) ⇒ (1). Предположим, что существует (p, q)-главная фор-
мула ϕp,q(y, x) и (q, p)-главная формула ϕq,p(x, y) такие, что сов-
местно множество p(x) ∪ q(y) ∪ {ϕp,q(y, x), ϕq,p(x, y)}. Установим
наличие изоморфизма моделей Ma и Mb. Из существования
(p, q)-главной формулы ϕp,q(y, x) следует, что модельMb можно
выбрать как элементарную подмодель моделиMa. С другой сто-
роны, наличие (q, p)-главной формулы ϕq,p(x, y) и совместность
множества p(x)∪q(y)∪{ϕp,q(y, x), ϕq,p(x, y)} влекут возможность
выбора модели Mb так, что существует элементарное вложение
моделиMb в модельMa с константным выделением кортежа â b.
Поскольку модель Ma элементарно вкладывается в любую мо-
дель, константно содержащую a, модель Mb также элементарно
вкладывается в любую модель, константно содержащую a. В си-
лу изоморфизма любых двух простых моделей моделиMa иMb
изоморфны.
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(2) ⇒ (3). При наличии (p, q)-главной формулы ϕp,q(y, x)
и (q, p)-главной формулы ϕq,p(x, y), для которых совместно мно-
жество

p(x) ∪ q(y) ∪ {ϕp,q(y, x), ϕq,p(x, y)},
искомой одновременно (p, q)-главной и (q, p)-главной формулой
ϕ(x, y) является формула ϕp,q(y, x) ∧ ϕq,p(x, y).

Импликация (3) ⇒ (2) очевидна. ¤
Обозначим через RK(T ) множество PM типов изоморфиз-

ма моделей Mp, p ∈ S(T ), с отношением подчинения, индуци-
рованным отношением подчинения ≤RK между моделями Mp:
RK(T ) = 〈PM;≤RK〉. Будем говорить, что типы изоморфизма
M1,M2 ∈ PM взаимоподчиняемы (M1 ∼RK M2), если взаимо-
подчиняемы их представители.

Очевидно, что предупорядоченное множество RK(T ) имеет
наименьший элемент, представляющий собой тип изоморфизма
простой модели.

Предложение 1.1.4. Если I(T, ω) < ω, то RK(T ) — ко-
нечное предупорядоченное множество, фактор-множество
RK(T )/∼RK которого по отношению взаимоподчинения ∼RK

образует ч.у.м. с наибольшим элементом.

Д о к а з а т е л ь с т в о. Конечность множестваPM очевид-
на, а наличие наибольшего элемента в RK(T )/∼RK следует из
существования властного типа, которому подчиняется любой тип
из S(T ). ¤

Очевидными являются следующие два замечания.

Замечание 1.1.5. Теория T ω-категорична тогда и только
тогда, когда |RK(T )| = 1.

Замечание 1.1.6. Если |RK(T )| = 2, то любой неглавный
тип является властным.

В примерах Эренфойхта предупорядоченные множества
RK(Tn) состоят из наименьшего элемента и (n− 2)-х взаимопод-
чиняемых элементов, соответствующих моделям Mn

p0
, . . . ,Mn

pn−3
.

Таким образом, упорядоченные множества RK(Tn)/∼RK двух-
элементны и линейно упорядочены.
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Напомним, что последовательность моделей (Mn)n∈ω назы-
вается элементарной цепью, если Mn — элементарная под-
модель модели Mn+1, n ∈ ω.

Элементарная цепь (Mn)n∈ω называется элементарной над
типом p ∈ S(T ), если Mn 'Mp для любого n ∈ ω.

Предложение 1.1.7. Если I(T, ω) < ω, то для любой счет-
ной модели M теории T существует тип p ∈ S(T ) и элемен-
тарная цепь (Mn)n∈ω над типом p такая, что M =

⋃
n∈ω

Mn.

Д о к а з а т е л ь с т в о. Пусть M — произвольная счетная
модель малой теории T . Построим сначала элементарную цепь C
простых моделей Mai над кортежами ai, i ∈ ω, такую, что M =⋃
i∈ω

Mai . С этой целью перенумеруем все элементы модели M:

M = {bk | k ∈ ω}, а также все формулы вида ϕ(x, c), c ∈ M : Φ ­
{ϕm(x, cm) | m ∈ ω}. Построение цепи C будем осуществлять
по индукции. При этом на каждом шаге k будет определена неко-
торая конечная последовательность кортежей a0, . . . , an и с каж-
дым из этих кортежей связаны соответствующие конечные мно-
жества Xk

i , 0 ≤ i ≤ n, которые после объединения по всем k при
фиксированных i будут образовывать носители моделейMai . Ес-
ли кортеж ai до шага k не определен, то множества X l

i считаются
пустыми для всех l < k.

На начальном шаге зафиксируем кортеж a0 ­ 〈b0〉 и для
формулы ϕm(x, b0) из множества Φ, имеющей минимальный но-
мер и удовлетворяющей условию M |= ∃x ϕm(x, b0), найдем ре-
ализацию dm главного полного типа p(x, b0), содержащего фор-
мулу ϕm(x, b0). Положим X0

0 ­ {b0, dm}.
Предположим, что на шаге индукции k уже найдены корте-

жи a0, . . . , an и сформированы конечные множества Xk
0 , . . . , Xk

n,
удовлетворяющие следующим условиям:

1) все элементы кортежа ai содержатся среди элементов кор-
тежа ai+1, i < n, и принадлежат множеству Xk

i ;
2) {b0, . . . , bk} ⊆ Xk

n;
3) Xk

i ⊂ Xk
i+1, i < n− 1;

4) для выбранной на шаге k минимальной по номеру m не рас-
смотренной ранее формулы ϕm(x, cm), содержащей лишь элемен-
ты максимального непустого множества Xk−1

j и удовлетворя-
ющей условию M |= ∃xϕm(x, cm), найдена реализация dm ∈ M
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главного полного типа p(x,Xk−1
j ∪ {bk}), содержащего форму-

лу ϕm(x, cm) и такого, что для любого кортежа ai с условием
cm ∈ Xk−1

i и любого кортежа d ∈ Xk−1
i ∪{dm} тип tp(d/ai) явля-

ется главным; эта реализация помещена в минимальное по ин-
дексу i множество Xk

i с условием cm ∈ Xk−1
i .

На шаге индукции k + 1 рассмотрим элемент bk+1. Если этот
элемент уже попал в множество Xk

n, то последовательность a0,

. . . , an не расширяется, а множества Xk+1
i получаются из мно-

жеств Xk
i добавлением элемента dm в соответствии с условиями 3

и 4 для значения k + 1 вместо k.
Если bk+1 6∈ Xk

n и, начиная с некоторого i0 ≤ n, все типы
tp(b/ai), b ∈ Xk

i ∪ {bk+1}, являются главными, то снова последо-
вательность a0, . . . , an не расширяется, а элемент bk+1 добавля-
ется к множеству Xk

i0
и ко всем последующим множествам Xk

i ,
i0 ≤ i ≤ n. Затем множества Xk+1

i образуются из полученных
множеств добавлением элемента dm в соответствии с условиями
3 и 4 для значения k + 1 вместо k.

Если некоторый тип tp(b/an), b ∈ Xk
n ∪ {bk+1}, не являет-

ся главным, то добавляем к последовательности a0, . . . , an кор-
теж an+1, состоящий из всех элементов множества Xk

n ∪ {bk+1}.
Образуем множества Xk+1

i , 0 ≤ i ≤ n + 1 добавлением реали-
зации dm главного полного типа p(x,Xk

n ∪ {bk+1}), содержаще-
го минимальную по номеру m не рассмотренную ранее формулу
ϕm(x, cm), включающую лишь элементы множества Xk

n и удовле-
творяющую условиюM |= ∃xϕm(x, cm), и такого, что для любого
кортежа ai с условием cm ∈ Xk

i и любого кортежа d ∈ Xk
i ∪{dm}

тип tp(d/ai) является главным. Эту реализацию добавляем к ми-
нимальному по индексу i множеству Xk

i с условием cm ∈ Xk
i

и ко всем последующим множествам Xk
j , i ≤ j ≤ n. Положим

Xk+1
n+1 ­ Xk

n ∪ {bk+1, dm}.
В силу конструкции множества Xi ­

⋃
k∈ω

Xk
i являются носи-

телями простых моделей Mai над кортежами ai. При этом вы-
полняется Mai 4 Mai+1 и M =

⋃
i
Mai . Если число индексов i

конечно, модель M является простой над наибольшим корте-
жом ai и элементарную цепь моделейMai дополняем до счетной
цепи, добавляя счетное число раз модель M.
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Поскольку I(T, ω) < ω, из полученной последовательности
моделей (Mi)i∈ω можно выбрать бесконечную подпоследователь-
ность моделей (Mij )j∈ω, все элементы которой изоморфны неко-
торой модели Mp. Эта последовательность является искомой. ¤

Модель M называется предельной над типом p, если M =⋃
n∈ω

Mn для некоторой элементарной цепи (Mn)n∈ω над типом p

и M 6'Mp.

Предложение 1.1.8. Существует предельная модель над
типом p тогда и только тогда, когда для любой (некоторой)
реализации a типа p существует реализация b типа p в моде-
ли Ma и кортеж c ∈ Ma такие, что tp(c/b) — неглавный тип.

Д о к а з а т е л ь с т в о. Предположим, что существует пре-
дельная над типом p модель M =

⋃
n∈ω

Mn, где Mn ' Mp,

M0 = Ma, |= p(a), и не существует b ∈ p(M0) и c ∈ M0 таких,
что tp(c/b) — неглавный тип. Тогда в моделях Mn (а, значит,
и в модели M) реализуются лишь главные типы над любыми
реализациями типа p, лежащими в Mn (в M). Следовательно,
модель M является простой над реализацией типа p, что проти-
воречит ее предельности.

Обратно, допустим, что для некоторого a |= p1 найдутся кор-
тежи b ∈ p(M0) и c ∈ M0 такие, что q(x, b) = tp(c/b) — неглав-
ный тип. Построим элементарную цепь (Man)n∈ω над типом p,
удовлетворяющую следующим условиям: a0 = b, a1 = a
и tp(an+1/an) = tp(a/b). Покажем, что модель M =

⋃
n∈ω

Man

не изоморфна моделиMp. Предположив противное, найдем кор-
теж d ∈ p(Man) такой, чтоM = Md. Однако по построению мо-
дели M тип q(x, an) опускается в модели Md, но в то же время
реализуется в модели M, — противоречие. ¤

Следствие 1.1.9. Если отношение полуизолирован-
ности SIp на реализациях типа p в моделиMp несимметрично,
то существует предельная над типом p модель.

Д о к а з а т е л ь с т в о. По предложению 1.1.8 достаточно
заметить, что если a — реализация типа p, то найдется кортеж

1Здесь и далее запись a |= p используется в качестве переобозначения
записи |= p(a).

25



b ∈ p(Ma) такой, что b не полуизолирует a, и, следовательно,
tp(a/b) — неглавный тип. ¤

Следствие 1.1.10. Если Mp и Mq — взаимоподчиняющи-
еся неизоморфные модели, то существует предельная модель
над типом p и предельная модель над типом q.

Д о к а з а т е л ь с т в о. Пусть a, b — реализации типа p,
c — реализация типа q такие, что Mb ≺Mc ≺Ma (которые су-
ществуют в силу Mp ∼RK Mq). Так как Mp 6' Mq, то по пред-
ложению 1.1.3 тип tp(a/c) не является главным. Следовательно,
по предложению 1.1.8 существует предельная модель над
типом p.

Существование предельной модели над типом q доказывается
аналогично. ¤

Предложение 1.1.11. Если типы p1 и p2 взаимоподчиняе-
мы и существует предельная модель над типом p1, то суще-
ствует модель, предельная как над типом p1, так и над
типом p2.

Д о к а з а т е л ь с т в о. Построим по индукции элементар-
ную цепь моделей (Man)n∈ω такую, что

а) для четных n модели Man являются простыми над ти-
пом p1, а для нечетных n — простыми над типом p2;

б) модель
⋃

n∈ω
Man не является простой ни над типом p1, ни

над типом p2.
Рассмотрим существующий по предложению 1.1.8 тип q(x, a0),

a0 |= p1, не реализуемый в модели Ma0 , но реализуемый в неко-
торой моделиMb ÂMa0 , b |= p1. Обозначим черезMa1 простую
модель над реализацией a1 типа p2, которая является элемен-
тарным расширением модели Mb (такое расширение существу-
ет в силу взаимоподчиняемости типов p1 и p2). В общем слу-
чае на четных шагах 2n + 2 расширяем модель Ma2n+1 , a2n+1 |=
p2, до модели Ma2n+2 , a2n+2 |= p1, в которой реализуется тип
q(x, a2n). На нечетных шагах расширяем модельMa2n+2 до моде-
ли Ma2n+3 , a2n+3 |= p2. Очевидно, что модель

⋃
n∈ω

Man является

предельной как над типом p1, так и над типом p2. ¤
Предельные модели M и N над типом p называются экви-

валентными (пишем M ∼ N ), если существуют элементарные
цепи (Mn)n∈ω и (Nn)n∈ω над типом p, удовлетворяющие следу-
ющим условиям:
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1) M =
⋃

n∈ω
Mn, N =

⋃
n∈ω

Nn;

2) существуют константные обогащения M′
n+1 =

〈Mn+1, c〉c∈M ′
n

и N ′
n+1 = 〈Nn+1, c〉c∈N ′

n
, n ∈ ω, M′

0 = M0,
N ′

0 = N0, такие, что M′
n+1 ' N ′

n+1, n ∈ ω.
Очевидным является следующее предложение.

Предложение 1.1.12. Если M и N — предельные модели
над типом p, то M' N тогда и только тогда, когда M∼ N .

Для любого класса M̃ ∈ RK(T )/∼RK , состоящего из типов
изоморфизма взаимоподчиняемых моделей Mp1 , . . . ,Mpn , обо-
значим через IL(M̃) число классов эквивалентности моделей,
каждая из которых предельна над некоторым типом pi.

Из предложений 1.1.4, 1.1.7, 1.1.12 и следствия 1.1.10
вытекает

Теорема 1.1.13. Для любой счетной полной теории T сле-
дующие условия эквивалентны:

(1) I(T, ω) < ω;
(2) теория T мала, |RK(T )| < ω и IL(M̃) < ω для любого

M̃ ∈ RK(T )/∼RK .
При выполнении условия (1) (или (2)) теория T обладает

следующими свойствами:
(a) RK(T ) имеет наименьший элемент M0 (тип изоморфиз-

ма простой модели) и IL(M̃0) = 0;
(б) RK(T ) имеет наибольший ∼RK-класс M̃1 (класс типов

изоморфизма всех простых моделей над реализациями власт-
ных типов), и из |RK(T )| > 1 следует IL(M̃1) ≥ 1;

(в) если |M̃| > 1, то IL(M̃) ≥ 1.
Более того, справедлива следующая декомпозиционная фор-

мула:

I(T, ω) = |RK(T )|+
|RK(T )/∼RK |−1∑

i=0

IL(M̃i),

где M̃0, . . . , ˜M|RK(T )/∼RK |−1 — все элементы ч.у.м. RK(T )/∼RK .

Отметим, что по предложениям 1.1.3 и 1.1.12 условия из пунк-
та 2 теоремы 1.1.13 допускают синтаксическую запись и, тем са-
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мым, эта теорема является аналогом теоремы Рыль-Нардзевско-
го, дающей синтаксическую характеризацию ω-категоричности.

На рис. 1.1, a и б представлены возможные варианты диа-
грамм Хассе предпорядков Рудина — Кейслера ≤RK и значений
функций IL распределения числа предельных моделей на клас-
сах ∼RK-эквивалентности для теорий T с условиями I(T, ω) = 3
и I(T, ω) = 4, а на рис. 1.2 — соответствующие конфигурации
для I(T, ω) = 5.
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Пусть p1, . . . , pn ∈ S(T ) — типы, простые модели над которы-
ми являются представителями всех типов изоморфизма из ко-
нечного предупорядоченного множества RK(T ) теории T . Будем
говорить, что теория T обладает свойством согласованного рас-
ширения цепей простых над кортежами моделей (CEP), если
для любого типа pi любые две предельные модели над типом pi

эквивалентны.
Из предложения 1.1.11 следует, что если теория T удовле-

творяет (CEP), то IL(M̃) ≤ 1 для любого M̃ ∈ RK(T )/∼RK .
Поскольку предельной над главным типом модели не су-
ществует, то при |RK(T )/∼RK | = 2 наличие (CEP) влечет
существование единственной с точностью до изоморфизма счет-
ной модели M, тип изоморфизма которой не лежит в RK(T )
(при этом модель M является насыщенной).

Таким образом, на основании теоремы 1.1.13 справедлива

Теорема 1.1.14. Пусть теория T удовлетворяет (CEP).
Следующие условия эквивалентны:

(1) I(T, ω) < ω;
(2) теория T мала и |RK(T )| < ω.

При этом справедливо следующее неравенство, которое превра-
щается в равенство при |RK(T )/∼RK | ≤ 2:

I(T, ω) ≤ |RK(T )|+ |RK(T )/∼RK | − 1.

Из теоремы 1.1.14 непосредственно выводится

Следствие 1.1.15. Для любой полной теории T следующие
условия эквивалентны:

(1) I(T, ω) = 3;
(2) теория T мала, обладает (CEP) и |RK(T )| = 2. ¤

§ 1.2. Несущественные совмещения и раскраски
моделей

В первом пункте этого параграфа определяются операции
несущественного и почти несущественного совмещения моделей,
а также теорий. Устанавливается базируемость (почти) несуще-
ственного совмещения теорий, а также сохранение свойств ма-
лости и λ-стабильности при переходе к (почти) несущественным
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совмещениям теорий. Приводится достаточное условие несуще-
ственности совмещения теорий при несущественности совмеще-
ния их моделей.

Во втором пункте определяются понятия раскраски моде-
ли, цветной модели и цветной теории и переносятся результаты
первого пункта для (почти) несущественных раскрасок. Приво-
дится пример, показывающий, что несущественность раскраски
модели не влечет несущественности раскраски соответствующей
теории, а также пример, демонстрирующий отделимость класса
теорий с почти несущественными раскрасками от класса теорий
с несущественными раскрасками.

В третьем пункте вводится понятие упорядоченной раскрас-
ки, исследуется роль таких раскрасок в построении эренфойх-
товых теорий, а также приводится пример ω-стабильной тео-
рии с упорядоченной раскраской, индуцирующей континуум пре-
дельных над данным типом попарно неизоморфных моделей.

1. Совмещения моделей и теорий. Напомним (см.Ю. Заф-
фе, Е. А. Палютин и С. С. Старченко [35]), что теория T назы-
вается ∆-базируемой, где ∆ — некоторое множество формул без
параметров, если любая формула теории T эквивалентна в T
некоторой булевой комбинации формул из ∆.

Теория T называется почти ∆-базируемой, где ∆ — некото-
рое множество формул без параметров, если существует функ-
ция f : ω → ω такая, что любая формула ϕ(x1, . . . , xn) теории T
эквивалентна в T формуле вида

∃y1 . . .∃yf(n) ψ(x1, . . . , xn, y1, . . . , yf(n)),

где ψ(x1, . . . , xn, y1, . . . , yf(n)) — булева комбинация формул
из ∆.

Напомним, что через ⊆S(A) обозначается множество всех
(полных и неполных) типов над множеством A.

Будем говорить, что тип q(x) ∈ ⊆S(A) изолируется или опре-
деляется множеством Φ(x, A) формул из q, если Φ(x,A) ` q(x).

Доказательство следующих двух утверждений очевидно.

Лемма 1.2.1. Если тип q(x) ∈ ⊆S(A) изолируется множе-
ством Φ(x,A), а тип Φ(x, A) изолируется множеством Ψ(x,A),
то q(x) изолируется множеством Ψ(x, A).
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Лемма 1.2.2. Если |= Φ(a, b), то тип tp(a b̂) изолируется
множеством Φ(x, y) тогда и только тогда, когда тип tp(b/a)
изолируется типом Φ(a, y) и тип tp(a) изолируется множе-

ством
{
∃y

(∧
i

ϕi(x, y)
)
| ϕi(x, y) ∈ Φ(x, y)

}
.

Напомним, что счетная модельM теории T называется слабо
ω-универсальной, если в M реализуется любой тип над пустым
множеством: M |= S(T ).

Пусть ∆ — некоторое множество формул теории T , p(x) — тип
теории T , лежащий в S(T ). Тип p(x) называется ∆-базируемым,
если p(x) изолируется некоторым множеством формул ϕδ ∈ p,
где ϕ ∈ ∆, δ ∈ {0, 1}.

Следующая лемма, вытекающая из теоремы компактности,
замечена в статье Ю. Заффе, Е. А. Палютина и С. С. Старченко
[35].

Лемма 1.2.3. Теория T ∆-базируема тогда и только тогда,
когда для любого кортежа a слабо ω-универсальной модели тео-
рии T тип tp(a) ∆-базируем.

Лемма 1.2.4. Теория T почти ∆-базируема тогда и толь-
ко тогда, когда для любого кортежа a слабо ω-универсальной
модели M теории T найдется кортеж b ∈ M , содержащий все
координаты кортежа a и такой, что тип tp(b) ∆-базируем.

Д о к а з а т е л ь с т в о. Предположим, что теория T почти
∆-базируема и a — кортеж из слабо ω-универсальной моделиM
теории T . По условию тип tp(a) изолируется некоторым множе-
ством {

∃y
(∧

i

ϕi(x, y)

)
| ϕδi

i (x, y) ∈ ∆

}
.

Тогда по теореме компактности и слабой ω-универсальности мо-
дели M найдется кортеж b ∈ M , расширяющий кортеж a и удо-
влетворяющий всем формулам ϕδi

i (x, y). По условию совокуп-
ность формул ϕδi

i (a, y) изолирует тип tp(b/a). В силу леммы 1.2.2
получаем ∆-базируемость типа tp(b).

Предположим теперь, что для любого кортежа a слабо ω-
универсальной моделиM теории T найдется кортеж b ∈ M , рас-
ширяющий кортеж a и такой, что тип tp(b) ∆-базируем. Тогда по
теореме компактности найдется функция f : ω → ω, ограничива-
ющая минимальные длины кортежей b через длины кортежей a.
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С другой стороны, по условию каждая совместная формула ϕ(x)
выводится из некоторой совместной формулы вида ∃y ψ(x, y),
где ψ(x, y) — конъюнкция формул и отрицаний формул из ∆,
l(y) ≤ f(l(x)). По теореме компактности получаем, что формула
ϕ(x) эквивалентна дизъюнкции формул вида ∃y ψ(x, y), а, зна-
чит, и формуле вида ∃y ψ(x, y), где ψ(x, y) — булева комбинация
формул из ∆. Таким образом, теория T почти ∆-базируема. ¤

Пусть M1,M2 — модели некоторых непересекающихся сиг-
натур Σ1 и Σ2 соответственно такие, что M1 = M2. Модель M
сигнатуры Σ1 ∪Σ2 называется совмещением моделей M1 и M2,
если M = M1 и интерпретации сигнатурных символов моде-
ли M совпадают с соответствующими интерпретациями в моде-
ляхM1 иM2. В дальнейшем модельM будем обозначать через
Comb(M1,M2).

Теория T называется совмещением теорий T1 и T2 над моде-
лями Mi |= Ti, i = 1, 2, если T = Th (Comb(M1,M2)).

Пусть a — кортеж из модели Comb(M1,M2). Тип tpM(a)
называется несущественным совмещением типов tpM1

(a) и
tpM2

(a), если tpM(a) изолируется множеством tpM1
(a)∪tpM2

(a).
Множество кортежей a ∈ M , для которых тип tpM(a) является
несущественным совмещением типов tpM1

(a) и tpM2
(a), обозна-

чим через IECTM.
Совмещение моделей M = Comb(M1,M2) называется не-

существенным (обозначается M = IEC(M1,M2)), если IECTM
состоит из всех кортежей модели M. Совмещение моделей M =
Comb(M1,M2) называется почти несущественным (обо-
значается M = AIEC(M1,M2)), если для любого кортежа
a ∈ M существует кортеж b ∈ IECTM, расширяющий кор-
теж a.

Совмещение T теорий T1 и T2 называется (почти) несуще-
ственным, если для любой модели M |= T имеет место равен-
ство M = IEC(M1,M2) (M = AIEC(M1,M2)), где Mi — обед-
нение модели M до сигнатуры Σ(Ti), i = 1, 2.

Очевидно, что любое несущественное совмещение теорий по-
чти несущественно.

Лемма 1.2.5. Пусть T — совмещение теорий T1 и T2,M —
слабо ω-универсальная модель теории T . Следующие условия эк-
вивалентны:

(1) совмещение T (почти) несущественно;
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(2) M = IEC(M1,M2) (M = AIEC(M1,M2)), где Mi —
обеднение модели M до сигнатуры Σ(Ti), i = 1, 2.

Д о к а з а т е л ь с т в о очевидно.

Теорема 1.2.6. Пусть T — совмещение ∆i-базируемых тео-
рий Ti, i = 1, 2. Следующие условия эквивалентны:

(1) совмещение T несущественно;
(2) теория T (∆1 ∪∆2)-базируема.

Д о к а з а т е л ь с т в о. (1) ⇒ (2). Предположим, что T —
несущественное совмещение теорий T1 и T2,M— слабо ω-универ-
сальная модель теории T . В силу леммы 1.2.3 достаточно пока-
зать, что для любого кортежа a ∈ M тип tpM(a) (∆1 ∪ ∆2)-
базируем. Обозначим через Mi обеднение модели M до сигна-
туры Σ(Ti), i = 1, 2. Так как по лемме 1.2.5 выполняется равен-
ствоM = IEC(M1,M2), то тип tpM(a) изолируется множеством
tpM1

(a) ∪ tpM2
(a). В силу ∆i-базируемости теории Ti по лемме

1.2.3 тип tpMi
(a) изолируется некоторым множеством Φi(x) фор-

мул и отрицаний формул из ∆i, i = 1, 2. Тогда по лемме 1.2.1 тип
tpM(a) изолируется множеством Φ1(x) ∪ Φ2(x). Таким образом,
тип tpM(a) (∆1 ∪∆2)-базируем.

(2) ⇒ (1). Пусть T — (∆1 ∪ ∆2)-базируемая теория, т. е.
каждый тип tpM(a) кортежа a из слабо ω-универсальной мо-
дели M изолируется некоторым множеством Φ(x) формул и от-
рицаний формул из ∆1 ∪ ∆2. Так как Σ(T1) ∩ Σ(T2) = ∅, то
Φ(x) = Φ1(x) ∪ Φ2(x), где Φi(x) — множество формул из Φ(x)
сигнатуры Σ(Ti). При этом по лемме 1.2.3 множество Φi(x) изо-
лирует тип tpMi

(a), гдеMi — обеднение моделиM до сигнатуры
Σ(Ti). Так как Φi(x) ⊂ tpMi

(a), то множество tpM1
(a)∪ tpM2

(a)
изолирует тип tpM(a). Поскольку M — слабо ω-универсальная
модель, по лемме 1.2.5 получаем, что T — несущественное сов-
мещение теорий T1 и T2. ¤

Теорема 1.2.7. Пусть T — совмещение ∆i-базируемых тео-
рий Ti, i = 1, 2. Следующие условия эквивалентны:

(1) совмещение T почти несущественно;
(2) теория T почти (∆1 ∪∆2)-базируема.

Д о к а з а т е л ь с т в о аналогично доказательству теоремы
1.2.6 с использованием леммы 1.2.4 вместо леммы 1.2.3. ¤
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Напомним, что теория T называется λ-стабильной, где λ —
некоторый бесконечный кардинал, если для любого множества A
мощности λ число типов над множеством A не превосходит λ:
|S(A)| ≤ λ.

Теорема 1.2.8. Если T — почти несущественное совме-
щение теорий T1 и T2, то теория T λ-стабильна (мала) тогда
и только тогда, когда λ-стабильны (малы) теории T1 и T2.

Д о к а з а т е л ь с т в о. Поскольку T1 и T2 — обеднения
теории T , то λ-стабильность (малость) теории T влечет λ-ста-
бильность (малость) теорий T1 и T2.

Предположим, что теории T1 и T2 λ-стабильны. Рассмотрим
модель M теории T , имеющую мощность λ, и ее элементар-
ное расширение M′ мощности λ, включающее с каждым кор-
тежем a расширяющий его кортеж b ∈ IECTM′ . Через M′

i обо-
значим обеднение модели M′ до сигнатуры Σ(Ti), i = 1, 2. Из λ-
стабильности теорий Ti следуют неравенства |S(Mi)| ≤ λ. С дру-
гой стороны, из почти несущественности совмещения теорий T1

и T2 следует

|S(M)| ≤ |S(M ′)| ≤ |S(M ′
1)| · |S(M ′

2)| ≤ λ · λ = λ.

В силу произвольности выбора моделиM теория T λ-стабильна.
Допустим теперь, что теории T1 и T2 малы, т. е. |S(T1)| =

|S(T2)| = ω. Тогда из почти несущественности совмещения тео-
рий T1 и T2 получаем, что |S(T )| ≤ |S(T1)| · |S(T2)| = ω · ω = ω,
т. е. теория T также является малой. ¤

Пусть p(x) — тип из S(T ), Φ(x) — изолирующее тип p(x) мно-
жество формул ϕn(x), n ∈ ω, таких, что ` ϕn+1(x) → ϕn(x).
Рассмотрим некоторую модельM теории T . Последовательность
(an)n∈ω кортежей изM называется определяющей последователь-
ностью типа p(x) (над Φ(x)), если |= ϕn(an) для любого n ∈ ω.
Определяющая последовательность типа p(x) называется сходя-
щейся в модели M, если тип p(x) реализуется в модели M. В
противном случае определяющая последовательность называет-
ся расходящейся в модели M.

Ясно, что последовательность кортежей может быть опреде-
ляющей лишь для одного типа. Поэтому можно не указывать
тип, к которому сходится определяющая последовательность.
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Если (an)n∈ω — сходящаяся в M определяющая последова-
тельность типа p(x) и M |= p(a), то будем говорить, что a есть
предел последовательности (an)n∈ω в модели M и этот факт
будем обозначать через a ∈

(
lim

n→∞ an

)
M
. При этом множество

(
lim

n→∞ an

)
M

есть множество p(M) реализаций типа p(x) в моде-
ли M.

Предложение 1.2.9. Пусть M — несущественное совме-
щение слабо ω-универсальных моделей M1 и M2 такое, что
любая сходящаяся последовательность (an)n∈ω в моделиMi яв-
ляется сходящейся в модели M2−i, i = 0, 1, и при этом

(
lim

n→∞ an

)
M1

∩
(

lim
n→∞ an

)
M2

6= ∅.

Тогда M — слабо ω-универсальная модель и Th(M) — несуще-
ственное совмещение теорий Th(M1) и Th(M2).

Д о к а з а т е л ь с т в о. Рассмотрим произвольный тип
p(x) ∈ S(∅) теории Th(M) и докажем, что p(x) реализуется в мо-
дели M. Действительно, пусть (an)n∈ω — определяющая после-
довательность типа p(x) в моделиM. Тогда последовательность
(an)n∈ω будет определяющей в моделях M1 и M2. Из слабой
ω-универсальности моделей M1 и M2 следует сходимость этой
последовательности как в M1, так и в M2. Более того, из усло-
вия следует, что найдется кортеж a такой, что a ∈

(
lim

n→∞ an

)
M1

∩
(

lim
n→∞ an

)
M2

. Из несущественности совмещения моделей следует,

что множество tpM1
(a)∪ tpM2

(a) изолирует тип tpM(a). Вместе
с тем справедливо включение tpM1

(a) ∪ tpM2
(a) ⊂ p(x). Следо-

вательно, p(x) = tpM(a) и кортеж a является реализацией типа
p(x) в модели M. Таким образом, M — слабо ω-универсальная
модель.

Несущественность совмещения теорий Th(M1) и Th(M2) сле-
дует из слабой ω-универсальности модели M и леммы 1.2.5. ¤

2. Цветные модели. Пусть M — некоторая модель. Рас-
краской модели M называется любая функция Col : M → λ ∪
{∞}, где λ — некоторый кардинал, ∞ — символ бесконечности.
При этом для любого a ∈ M значение Col(a) называется цветом
элемента a. Пара 〈M,Col〉 называется цветной моделью.
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В дальнейшем цветная модель 〈M,Col〉 будет отождествлять-
ся с обогащением модели M одноместными предикатами Colµ =
{a ∈ M | Col(a) = µ}, µ < λ. Очевидно, что цветная мо-
дель 〈M,Col〉 представляет собой совмещение модели M с рас-
краской ее носителя, т. е. с моделью 〈M,Col〉 = 〈M ;Colµ〉µ<λ:
〈M,Col〉 = Comb(M, 〈M,Col〉).

Раскраска Col модели M называется внутренне несущест-
венной, если для любого кортежа a ∈ M тип tp〈M,Col〉(a) опреде-
ляется типом кортежа a в моделиM, а также цветами элементов
кортежа a.

Очевидно, что внутренняя несущественность раскраски
Col модели M равносильна соотношению 〈M,Col〉 =
IEC(M, 〈M,Col〉).

Раскраска Col моделиM называется внутренне почти несу-
щественной, если для любого кортежа a ∈ M существует кор-
теж b ∈ M , расширяющий кортеж a и такой, что тип tp〈M,Col〉(b)
определяется типом кортежа b в моделиM, а также цветами эле-
ментов кортежа b.

Внутренняя почти несущественность раскраски Col моделиM
характеризуется соотношением 〈M,Col〉 = AIEC(M, 〈M,Col〉).

Для любой моделиM′ |= Th(〈M,Col〉) естественным образом
определяется раскраска Col′ : M ′ → λ ∪ {∞} по следующим
правилам:

1) Col′(a) = µ, если M′ |= Colµ(a);
2) Col′(a) = ∞, если M′ 6|= Colµ(a) для любого µ < λ.
В дальнейшем модельM′ будет обозначаться через 〈M′,Col′〉,

а черезM′ будем обозначать обеднение модели 〈M′,Col′〉 до сиг-
натуры Σ(M).

Любое обогащение T ′ теории T попарно несовместными одно-
местными предикатами Colµ, µ < λ, называется цветной теори-
ей. Очевидно, что любая цветная теория является теорией неко-
торой цветной модели 〈M,Col〉, где M |= T .

Раскраска Col модели M называется (почти) несуществен-
ной, если для любой модели 〈M′,Col′〉 цветной теории
Th(〈M,Col〉) соответствующая раскраска Col′ внутренне (почти)
несущественна.

Следующий пример показывает, что внутренняя несуществен-
ность раскраски модели не влечет несущественность раскраски.
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П р и м е р 1.2.1. ПустьM — модель, состоящая из констант
{ci

n | n ∈ ω}, i ∈ {0, 1, 2}, и обогащенная подстановкой f , дей-
ствующей по правилам f(c0

n) = c2
2n, f(c2

2n) = c0
n, f(c1

n) = c2
2n+1,

f(c2
2n+1) = c1

n, n ∈ ω. Рассмотрим раскраску Col : M → {0, 1, 2},
определенную соотношениями Col(ci

n) = i, n ∈ ω, i ∈ {0, 1, 2}.
Очевидно, любая раскраска модели M внутренне несуществен-
на, поскольку тип p(x) любого кортежа a ∈ M изолируется неко-
торым множеством формул {(xj ≈ c

ij
nj ) | 1 ≤ j ≤ l(x)}. Вместе

с тем раскраска Col′ слабо ω-универсальной модели 〈M′,Col′〉 |=
Th(〈M,Col〉) несущественной не является.

Действительно, рассмотрим элементы ak ∈ M ′ такие, что

|= Col2(ak) ∧ ¬(ak ≈ c2
n) ∧ ∃xk (Colk(xk) ∧ (f(xk) ≈ ak)),

n ∈ ω, k = 0, 1. Очевидно, что tpM′(a0) = tpM′(a1) и
tp〈M ′,Col′〉(a0) = tp〈M ′,Col′〉(a1), но tp〈M′,Col′〉(a0) 6= tp〈M′,Col′〉(a1),
т. е.

〈M′,Col′〉 6= IEC(M′, 〈M ′,Col′〉).¤
Напомним, что для любого множества A теории T алгебра-

ическим (определимым) замыканием множества A называется
объединение множеств решений формул ϕ(x, a), a ∈ A, для ко-
торых имеет место |= ∃=nx ϕ(x, a) для некоторого n ∈ ω
(|= ∃=1x ϕ(x, a)). Алгебраическое замыкание множества A обо-
значается через acl(A), а определимое замыкание — через dcl(A).

С помощью следующего утверждения легко строятся приме-
ры внутренне почти несущественных раскрасок, не являющихся
внутренне несущественными.

Предложение 1.2.10. Если в цветной модели 〈M,Col〉 су-
ществуют кортежи a, b и элементы c, d такие, что tpM(a ĉ) =
tpM(b ˆ d), tp〈M,Col〉(a) = tp〈M,Col〉(b), c ∈ dcl(a), d ∈ dcl(b), но
Col(c) 6= Col(d), то раскраска Col не является внутренне несу-
щественной.

Д о к а з а т е л ь с т в о. Заметим, что tp〈M,Col〉(a) 6=
tp〈M,Col〉(b), поскольку из существования автоморфизма f одно-
родного расширения модели 〈M,Col〉, переводящего a в b, долж-
но следовать f(c) = d, что невозможно при Col(c) 6= Col(d).
Так как tpM(a) = tpM(b) и tp〈M,Col〉(a) = tp〈M,Col〉(b), то a, b 6∈
IECTM. Таким образом, раскраска Col не является внутренне
несущественной. ¤
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П р и м е р 1.2.2. Рассмотрим систему Γ = 〈{a, b, c, d}; {(a, b),
(b, a), (c, d), (d, c)}〉 и его внутренне почти несущественную рас-
краску Col, задаваемую равенствами Col(a) = Col(b) = Col(c) =
0, Col(d) = 1. Раскраска Col не является внутренне несуществен-
ной, поскольку tpΓ(a) = tpΓ(c), но tp〈Γ,Col〉(a) 6= tp〈Γ,Col〉(c). ¤

Заметим, что для любой цветной модели 〈M′,Col′〉 тео-
рия Th(〈M ′,Col′〉) тотально трансцендентна и ∆Col-базируема,
где ∆Col — замыкание относительно подстановок переменных
множества {(x ≈ y)} ∪ {Colµ(x) | µ < λ}.

На основании теорем 1.2.6–1.2.8 справедливы следующие тео-
ремы.

Теорема 1.2.11. Пусть Col — раскраска модели M ∆-бази-
руемой теории T . Следующие условия эквивалентны:

(1) раскраска Col (почти) несущественна;
(2) теория Th(〈M,Col〉) (почти) (∆ ∪∆Col)-базируема.
Теорема 1.2.12. Если Col — почти несущественная рас-

краска моделиM мощности |Σ(M)|+ω, то теория Th(〈M,Col〉)
λ-стабильна (мала) тогда и только тогда, когда λ-стабильна
(мала) теория Th(M).

3. Упорядоченные раскраски. Пусть M — некоторая мо-
дель теории T , ϕ(x, y) — формула теории T . Раскраска Col :
M → λ ∪ {∞} (где λ — бесконечный кардинал) называется ϕ-
упорядоченной, если выполняются следующие условия:

а) для любых µ ≤ ν < λ существуют элементы a, b ∈ M такие,
что |= Colµ(a) ∧ Colν(b) ∧ ϕ(a, b);

б) если µ < ν < λ, то не существует элементов c, d ∈ M такие,
что |= Colµ(c) ∧ Colν(d) ∧ ϕ(d, c).

Напомним, что теория T называется транзитивной, если
T имеет единственный 1-тип над пустым множеством.

Раскраска Col моделиM называется n-несущественной, n ∈
ω\{0}, если (M ′)n ⊆ IECT〈M′,Col′〉 для любой модели 〈M′,Col′〉 |=
Th(〈M,Col〉).

Ясно, что любая несущественная раскраска является n-не-
существенной для любого n ≥ 1.

Заметим, что если Col : M → λ ∪ {∞} — сюръективная 1-
несущественная раскраска модели M транзитивной теории T ,
то множество 1-типов теории Th(〈M,Col〉) над ∅ состоит из ти-
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пов pµ(x), µ ∈ λ∪{∞}, где pµ(x) — тип, изолируемый формулой
Colµ(x), µ ∈ λ, а p∞(x) — неглавный тип, изолируемый множе-
ством формул {¬Colµ(x) | µ < λ}.

Отметим, что в примере Эренфойхта теории T3 с тре-
мя счетными моделями обогащение модели транзитивной теории
Th(〈Q; <〉) константами ck, k ∈ ω, можно проинтерпретировать
как несущественную раскраску Col, заданную следующими усло-
виями:

Col(a) =





0, если a < c0,
2k + 1, если a = ck,
2k + 2, если ck < a < ck+1.

Легко заметить, что раскраска Col ϕ-упорядочена, где ϕ(x, y) ­
x < y. Кроме того отношение SIp∞ на множестве реализаций
властного типа p∞ несимметрично, о чем свидетельствует фор-
мула ϕ. В примерах Эренфойхта Tn, n ≥ 4, констант-
ные обогащения моделей 〈Q; <, P0, . . . , Pn−3〉 также можно
рассматривать как цветные модели с несущественными упорядо-
ченными раскрасками.

Укажем достаточные условия того, что ϕ-упорядоченность 1-
несущественной раскраски влечет несимметричность отношения
SIp∞ и это свойство выполняется посредством формулы ϕ.

Предложение 1.2.13. Пусть ϕ(x, y) — главная (т. е. изо-
лирующая полный тип) формула транзитивной теории T , Col —
1-несущественная ϕ-упорядоченная раскраска модели M тео-
рии T такая, что если 〈M′,Col′〉 |= Th(〈M,Col〉) и 〈M′,Col′〉 |=
ϕ(a, b), то (a, b) ∈ IECT〈M′,Col′〉. Тогда для любой (некоторой)
реализации a типа p∞(x) выполняются следующие условия:

1) если |= ϕ(a, b), то |= p∞(b) и a полуизолирует b;
2) если |= ϕ(a, b), то b не полуизолирует a.
Д о к а з а т е л ь с т в о. 1. Предположим напротив, что

|= p∞(a), |= ϕ(a, b) и 6|= p∞(b). Тогда для некоторого µ будет сов-
местно множество {¬Colν(x) | ν < λ}∪{ϕ(x, y),Colµ(y)} и, в част-
ности, совместным будет множество {¬Colν(x) | ν ≤ µ}∪{ϕ(x, y),
Colµ(y)}. Тогда найдется α > µ такое, что

|= ∃x, y (Colµ(y) ∧ Colα(x) ∧ ϕ(x, y)) ,

а это противоречит пункту б) определения ϕ-упорядоченности
раскраски Col. Таким образом, из |= ϕ(a, b) следует |= p∞(b),
и, значит, a полуизолирует b.
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2. Предположим противное, т. е. |= p∞(a), |= ϕ(a, b) и b по-
луизолирует a. Из условия предложения следует, что формула
ϕ(x, b) не может свидетельствовать о полуизолированности эле-
мента a над элементом b. С другой стороны найдется формула
ψ(x, y) такая, что |= ψ(a, b) и ψ(x, b) ` p∞(x). При этом множе-
ство p∞(x)∪p∞(y)∪{ϕ(x, y)∧ψ(x, y)} совместно. В силу теоремы
компактности из неглавности типа p∞(x) следует совместность
множества p∞(x) ∪ p∞(y) ∪ {ϕ(x, y) ∧ ¬ψ(x, y)}. Это означает,
что множество {¬Colµ(x) ∧ ¬Colµ(y) | µ < λ} ∪ {ϕ(x, y)} не изо-
лирует полный тип. Последнее противоречит тому, что форму-
ла ϕ(x, y) является главной в теории T , а также соотношению
(a, b) ∈ IECT〈M′,Col′〉 для любых (a, b) с условием |= ϕ(a, b). Та-
ким образом, из |= ϕ(a, b) и |= p∞(a) следует, что b не полуизо-
лирует a. ¤

Заметим, что предложение 1.2.13 остается справедливым,
если ϕ(x, y) — дизъюнкция главных формул.

Напомним несколько понятий из теории графов. Графом (со-
ответственно ориентированным графом или сокращенно оргра-
фом, неориентированным графом или сокращенно неорграфом)
называется алгебраическая система Γ = 〈X; Q〉 с одним (несим-
метричным, симметричным) двухместным отношением Q. При
этом множество X называется множеством вершин, а отношение
Q — множеством дуг графа Γ. Маршрутом в графе Γ назы-
вается любая непустая последовательность S = (a0, . . . , an)
вершин, для которых выполняется Γ |= Q(ai, ai+1), i = 0, . . . ,
n − 1. При этом, маршрут S будет также называться (a0, an)-
маршрутом, а число n — длиной маршрута S. Контуром в ор-
графе Γ называется любой (a, a)-маршрут ненулевой длины. Ор-
граф, не имеющий контуров, называется бесконтурным. Граф
〈X; Q〉 называется связным, если любые две различные верши-
ны a, b ∈ X связаны некоторым (a, b)-маршрутом в графе 〈X;Q∪
Q−1〉. Циклом в неорграфе Γ называется любой (a, a)-маршрут
(a0, . . . , an) (в Γ) ненулевой длины такой, что никакая ду-
га (ai, ai+1) не повторяется и не совпадает ни с какой дугой
(aj+1, aj) при ai 6= ai+1. Граф 〈X; Q〉 называется ациклическим,
если неорграф 〈X; Q ∪Q−1〉 не имеет циклов.

Следующий пример , построенный на основе найденной неза-
висимо А. Пилаем [170] и автором [46] свободной ориентирован-
ной псевдоплоскости, показывает, что различные элементарные
цепи над одним и тем же типом могут порождать неизоморфные
предельные модели и при этом образуется континуум попарно
неизоморфных предельных моделей.
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П р и м е р 1.2.3. Рассмотрим счетную модель M0 связного
бесконтурного ациклического графа 〈M0;Q〉, в котором каждый
элемент имеет бесконечное число образов и бесконечное число
прообразов. Система M0 была независимо построена А. Пилаем
[170] и автором [46] для реализации несимметричного отношения
полуизолированности в классе стабильных теорий. Cистема M0

называется свободной ориентированной псевдоплоскостью.
Обогатим сигнатуру новыми двухместными предикатами Q0

и Q1, образующими разбиение предиката Q со следующим усло-
вием: для любого элемента a ∈ M0 существует бесконечное число
образов и бесконечное число прообразов как по Q0, так и по Q1.
Теперь определим 1-несущественную Q-упорядоченную раскрас-
ку Col : M0 → ω ∪ {∞} полученной модели так, чтобы каждый
элемент цвета n имел

1) для любого µ ≥ n (включая∞) бесконечное число образов
цвета µ как по Q0, так и по Q1;

2) для любого m ≤ n бесконечное число прообразов цвета m
как по Q0, так и по Q1.

ω-Стабильность теории Th(〈〈M0;Q, Q0, Q1〉,Col〉) следует из
ее ∆-базируемости (вытекающей в свою очередь из ациклично-
сти структуры), где ∆ — наименьшее замкнутое относительно
подстановок переменных множество формул, имеющих не бо-
лее двух свободных переменных, содержащее формулу (x ≈ y)
и удовлетворяющее следующему условию: если ϕ(x, y) ∈ ∆, то
∃z (ϕ(x, z) ∧ Qδ1

i (z, y) ∧ Colδ2n (z)) ∈ ∆, где δ1,∈ {−1, 1}, i, δ2 ∈
{0, 1}, Q1

i (x, y) = Q(x, y), Q−1
i (x, y) = Q(y, x), Col1n(z) = Coln(z),

Col0n(z) = ¬Coln(z). При этом счетность числа 1-типов над лю-
бым счетным множеством A обеспечивается счетным числом ва-
риантов распределения расстояний от элементов из A до реали-
заций типов.

В силу ω-стабильности теории Th(〈〈M0; Q, Q0, Q1〉,Col〉) су-
ществует простая модель Mp∞ над реализацией типа p∞(x). По
предложению 1.2.13 отношение SIp∞ несимметрично, о чем сви-
детельствуют формулы Q0(x, y) и Q1(x, y).

Покажем, что существует 2ω попарно неизоморфных предель-
ных моделей над типом p∞. С этой целью построим по индукции
элементарные цепи (Mα¹n)n∈ω, α ∈ 2ω, над типом p∞. В качестве
моделиMα¹0 возьмем любую простую модель над некоторой реа-
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лизацией aα¹0 типа p∞. Если моделиMα¹0, . . . ,Mα¹n уже постро-
ены и Mα¹n — простая модель над реализацией aα¹n типа p∞,
то в качестве Mα¹n+1 возьмем простую модель над реализаци-
ей aα¹n+1 типа p∞, где Mα¹n ≺ Mα¹n+1 и |= Qα(n)(aα¹n+1, aα¹n).
Обозначим через Mα модель

⋃
n∈ω

Mα¹n. Последовательности α

и β из 2ω назовем эквивалентными, если существуют k, m ∈ ω
такие, что α(k + n) = β(m + n) для всех n ∈ ω. Очевидно, что
модели Mα и Mβ изоморфны тогда и только тогда, когда α и β
эквивалентны. Поскольку каждый класс эквивалентности сче-
тен, имеется 2ω классов эквивалентности. Выбирая из каждого
класса по одной модели, получаем 2ω попарно неизоморфных
предельных моделей над типом p∞. ¤

§ 1.3. Ти́повая редуцированность и властные типы

В этом параграфе мы определим понятия p-главного p-типа
и редуцированности теории над типом и докажем с одной сто-
роны, что из отсутствия свойства строгого порядка в теории T
с неглавным властным типом p следует существование не p-глав-
ного p-типа и нередуцированность теории над типом p, а с другой
стороны приведем пример ω-стабильной теории, имеющей не p-
главный p-тип, реализующийся в модели Mp.

Пусть p(x) — тип из S(T ). Тип q(x1, . . . , xn) ∈ S(T ) назы-

вается (n, p)-типом, если q(x1, . . . , xn) ⊇
n⋃

i=1
p(xi). Множество

всех (n, p)-типов теории T обозначается через Sn,p(T ), а элемен-
ты множества Sp(T ) ­

⋃
n∈ω\{0}

Sn,p(T ) называются p-типами.

Для простоты изложения в дальнейшем в этом параграфе
будем считать, что p ∈ S1(∅).

Тип q(y) из S(T ) называется p-главным, если найдется фор-
мула ϕ(y) ∈ q(y) такая, что ∪{p(yi) | yi ∈ y} ∪ {ϕ(y)} ` q(y).

Очевидной является следующая

Лемма 1.3.1. Для любого типа p и любого натурального
числа n ≥ 1 следующие условия эквивалентны:

(1) множество (n, p)-типов от набора переменных
(x1, . . . , xn) бесконечно;

(2) найдется не p-главный (n, p)-тип.
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Пусть M — счетная насыщенная модель теории T , имею-
щей предикатную сигнатуру. Рассмотрим индуцированную си-
стемойM подсистему p(M) = 〈p(M); Σ(T )〉 сигнатуры Σ(T ) тео-
рии T c носителем p(M) = {a ∈ M | |= p(a)} и отношениями
R(p(M)) = R(M) ∩ (p(M))µ(R), R ∈ Σ(T ). Обозначим через Tp

теорию Th(p(M)).
Теория называется редуцированной над типом p, если тео-

рии T и Tp допускают элиминацию кванторов.

Предложение 1.3.2. Если малая теория T редуцирована
над типом p, то в модели Mp опускается любой не p-главный
p-тип.

Д о к а з а т е л ь с т в о. Заметим, что по элиминации кван-
торов теорий T и Tp существует биекция ·p : Sp(T ) → S(Tp)
такая, что qp(p(M)) = q(M), q ∈ Sp(T ), и ограничение этой би-
екции на множество p-главных типов осуществляет взаимно од-
нозначное соответствие с множеством главных типов теории Tp.
Обозначим через M0 простую модель теории Tp, существова-
ние которой вытекает из малости теории T . Предположим, что
в моделиMp реализуется не p-главный тип q(y) из Sn

p (T ). Тогда
найдется бескванторная формула ψ(x, y) теории T такая, что

T ` ∃x (ϕ(x) ∧ ∃y ψ(x, y) ∧ ∀y (ψ(x, y) → χ(y)))

для любых формул ϕ(x) ∈ p(x) и бескванторных формул χ(y) ∈
q(y). Отсюда следует, что

Tp ` ∃x (∃y ψ(x, y) ∧ ∀y (ψ(x, y) → χ(y))),

где χ(y) — бескванторная формула типа qp(y). Так как Tp —
транзитивная теория, допускающая элиминацию кванторов, то
найдется элемент a ∈ M0 такой, что

M0 |= ∃y ψ(a, y) ∧ ∀y (ψ(a, y) → qp(y)).

Это означает, что тип qp(y) ∈ Sn(Tp) реализуется в M0. Но qp —
неглавный тип, так как является не p-главным соответствующий
ему p-тип q. Следовательно, в простой модели M0 реализуется
неглавный тип, — противоречие. ¤

Зафиксируем теорию T и рассмотрим ее морлизацию, т. е.
обогащение до полной теории T ′ сигнатуры Σ(T ) ∪ {Rϕ | ϕ —
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формула теории T} такой, что для любой формулы ϕ(y) тео-
рии T символ Rϕ является l(y)-местным предикатным символом
и выполняется соотношение T ′ ` Rϕ(y) ↔ ϕ(y). Обеднение тео-
рии T ′ до полной теории сигнатуры {Rϕ | ϕ — формула тео-
рии T} обозначим через T ∗. Таким образом, мы осуществляем
операцию ·∗ : T → T ∗. Нетрудно заметить существование вза-
имно однозначного соответствия ·∗ : S(T ) → S(T ∗), при кото-
ром каждому типу q(y) ∈ S(T ) ставится в соответствие полный
тип q∗(y) ­ {ψ(y) | T ∗ ` Rϕ(y) → ψ(y) для некоторой фор-
мулы ϕ(y) ∈ q}. При этом соответствии сохраняются свойства
λ-стабильности, а также простоты (см. [27]) и малости теории,
а для типов — свойства изолированности и властности. Поэтому
при изучении вопросов о существовании неглавного властных ти-
пов в перечисленных классах теорий достаточно рассматривать
теории вида T ∗.

В силу последнего замечания из леммы 1.3.1 и предложения
1.3.2 вытекает

Следствие 1.3.3. Если |Sn,p(T )| = ω и малая теория T ∗ ре-
дуцирована над типом p∗, то в модели Mp опускается некото-
рый (n, p)-тип.

Напомним, что теория T имеет свойство строгого порядка,
если существует формула ϕ(x, y) теории T и кортежи ai, i ∈ ω,
для которых справедливо следующее соотношение:

` ϕ(ai, y) → ϕ(aj , y) ⇔ i ≤ j.

Заметим, что свойством строгого порядка обладают теории
с формульно определимыми бесконечными линейными поряд-
ками. В частности, свойство строгого порядка имеют примеры
Эренфойхта (см. пример 1.1.1). При этом, для любого властного
типа p и любого натурального числа n число (n, p)-типов от набо-
ра переменных (x1, . . . , xn) конечно и, следовательно, все p-типы
являются p-главными.

Следующее предложение, неявно установленное Р. Вуд-
роу [205], показывает что эта ситуация невозможна для теорий,
не имеющих свойства строгого порядка.

Предложение 1.3.4. Если p(x) — неглавный властный тип
теории T , не имеющей свойство строгого порядка, то
|S2,p(T )| = ω.
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Д о к а з а т е л ь с т в о. Рассмотрим формулу ϕ(x, y) тео-
рии T , свидетельствующую о несимметричности отношения SIp
(такая формула существует по лемме 1.1.2). Положим ϕ0(x, y) ­
(x ≈ y), ϕ1(x, y) ­ ϕ(x, y), ϕn+1(x, y) ­ ∃z(ϕn(x, z) ∧ ϕ(z, y)),
n ∈ ω \ {0}. Для доказательства предложения достаточно уста-
новить, что в системе p(M∗) (гдеM∗ — счетная насыщенная мо-
дель теории T ∗) для любого a ∈ p(M) выполняется соотношение
Rϕn+1(a, p(M)) \ Rϕn(a, p(M)) 6= ∅ для любого n ∈ ω. Предпо-
ложим напротив, что для некоторого n имеет место включение
Rϕn+1(a, p(M)) ⊆ Rϕn(a, p(M)). Рассмотрим формулу ψ(x, y) ­
n∨

i=0
ϕi(x, y). Тогда по предположению для любых a, b ∈ p(M),

удовлетворяющих условиям |= ϕ(a, b) и (b, a) 6∈ SIp, получаем
` ψ(b, y) → ψ(a, y). Поскольку формула ψ(b, y) свидетельствует
о полуизолированности над b любой своей реализации, |= ψ(a, a)
и (b, a) 6∈ SIp, имеем |= ∃y (ψ(a, y) ∧ ¬ψ(b, y)). Так как кортежи a

и b реализуют один и тот же тип p, существует последователь-
ность (cn)n∈ω реализаций типа p, для которой ` ψ(ci, y) →
ψ(cj , y) и |= ∃y (ψ(cj , y) ∧ ¬ψ(ci, y)), i < j < ω. Последние со-
отношения противоречат отсутствию свойства строгого порядка
в теории T . ¤

Из следствия 1.3.3 и предложения 1.3.4 вытекает
Теорема 1.3.5. Если T — теория, не имеющая свойства

строгого порядка, p(x) — неглавный властный тип теории T ,
то теория T ∗ не редуцирована над типом p∗.

Покажем, что реализуемость в модели Mp не p-главных p-
типов влечет несимметричность отношения SIp.

Предложение 1.3.6. Если не p-главный p-тип q реализу-
ется в модели Ma, где a — реализация типа p, то для любого
элемента bi реализации b в модели Ma типа q выполняется
(a, bi) ∈ SIp и (bi, a) 6∈ SIp.

Д о к а з а т е л ь с т в о. Пусть a — реализация типа p,
ϕ(a, y) — формула, изолирующая не p-главный p-тип q(y). Пред-
положим, что некоторый элемент bi реализации b типа q(y) в мо-
делиMa полуизолирует элемент a. Рассмотрим формулу ψ(yi, x),
свидетельствующую о полуизолированности a над bi. Тогда тип
q(y) изолируется множеством ∪{p(yi) | yi ∈ y} ∪ {∃x (ϕ(x, y) ∧
ψ(yi, x))}. Последнее невозможно в силу того, что p-тип q(y) не
является p-главным. ¤
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Напомним, что связной компонентой графа Γ = 〈X; Q〉 назы-
вается максимальный по включению связный подграф графа Γ.
Любая связная компонента C графа Γ однозначно определяется
любым своим элементом a ∈ C и обозначается через C(a,Γ), или
через C(a,Q), когда ясно, о каком носителе X идет речь.

Для графа Γ = 〈X; Q〉 определим по индукции отношения
Qn, n ∈ Z: Q0 ­ idX , Q1 ­ Q, Qn+1 ­ Qn ◦ Q, Q−n ­ (Qn)−1,
n ∈ ω.

П р и м е р 1.3.1. Построим ω-стабильную теорию, имеющую
тип p, у которого в элементарной подмодели Mp модели M ре-
ализуется некоторый не p-главный p-тип.

Сигнатура Σ будет состоять из одноместных предикатных
символов Coln, n ∈ ω, двухместных предикатных символов Q,R1,
R2 и трехместного предикатного символа S.

Предикат Q определяет на носителе M свободную ориен-
тированную псевдоплоскость из примера 1.2.3 с транзитивной
(т. е. связывающей любые два элемента) группой автоморфиз-
мов, c бесконечным числом компонент связности C(a,Q) и 1-
несущественной Q-упорядоченной раскраской Col, соответству-
ющей символам Coln, n ∈ ω, так, чтобы выполнялись следующие
условия:

1) для любых µ ≥ n (включая ∞) любой элемент цвета n
имеет бесконечное число образов цвета µ по отношению Q;

2) для любых m ≤ n любой элемент цвета n имеет бесконеч-
ное число прообразов цвета m по отношению Q.

Предикат R1 связывает лишь одноцветные элементы a и b,
для которых выполняется |= ∃x(Q(x, a)∧Q(x, b)), и на множестве
решений каждой формулы Q(a, y) определяет функцию следова-
ния (с единственным образом c1, единственным прообразом c2

по каждому элементу b с условием |= Q(a, b) и без контуров).
Предикат R2, также как и Q, определяет на носителе M сво-

бодную ориентированную псевдоплоскость с транзитивной груп-
пой автоморфизмов, c бесконечным числом компонент связности
C(a,R2) и 1-несущественной R2-упорядоченной раскраской Col,
соответствующей символам Coln, n ∈ ω, так, чтобы выполнялись
следующие условия:

1) для любых µ ≥ n (включая ∞) любой элемент цвета n
имеет бесконечное число образов цвета µ по отношению R2;

2) для любых m ≤ n любой элемент цвета n бесконечное
число прообразов цвета m по отношению R2.
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При этом любые два различных прообраза любого элемента
по отношению

⋃
n∈ω

(R2)n лежат в разных компонентах связности

по отношению Q, а с любым образом любого элемента a по отно-
шению R2 R2-связано ровно два элемента b и c, лежащих в одной
компоненте связности по отношению Q. Эти элементы удовле-
творяют соотношению |= ∃x(Q(x, b)∧Q(x, c)), имеют одинаковый
цвет и из условия Col(a) = n следует, что в графе с отношением
R1 ∪ (R1)−1 длина кратчайшего (b, c)-маршрута не может быть
меньше n. Кроме того, потребуем, чтобы для каждой пары од-
ноцветных элементов b и c с условиями |= ∃x (Q(x, b) ∧ Q(x, c))
и (b, c) ∈ Rn

1 ∪ (R1)−n и любого цвета m ≤ n существовал общий
прообраз этих элементов по отношению R2, имеющий цвет m.

Предикат S связывает всевозможные тройки элементов a, b,
c таких, что |= R2(a, b) ∧R2(a, c).

Аналогично примеру 1.3.1 устанавливается, что все указан-
ные требования можно реализовать так, чтобы теория T0 полу-
чившейся модели была ∆-базируемой, где ∆ — наименьшее за-
мкнутое относительно подстановок переменных множество фор-
мул, имеющих не более двух свободных переменных, содержа-
щее формулу (x ≈ y) и удовлетворяющее следующему условию:
если ϕ(x, y) ∈ ∆, то ∃z (ϕ(x, z) ∧ <δ1(z, y) ∧ Colδ2n (z)) ∈ ∆, где
δ1 ∈ {−1, 1}, δ2 ∈ {0, 1}, <1(x, y) = <(x, y), <−1(x, y) = <(y, x),
< ∈ {Q,R1, R2}, Col1n(z) = Coln(z), Col0n(z) = ¬Coln(z). С помо-
щью ∆-базируемости рутинным разбором случаев взаимосвязи
элементов кортежей устанавливается ω-стабильность теории T0.

Множество формул {¬Coln(x) | n ∈ ω} изолирует единствен-
ный имеющийся в теории T0 неглавный 1-тип. Этот тип, который
мы обозначим через p∞(x), реализуется элементами, имеющими
бесконечный цвет.

Для любого элемента a, имеющего бесконечный цвет,
формула S(a, x, y) изолирует не p∞-главный (2, p∞)-тип q(x, y) ∈
S(T0), который определяется множеством формул

{∃z (Q(z, x) ∧Q(z, y) ∧ ¬Coln(z)) ∧ ¬Rn
1 (x, y) | n ∈ ω}.

При этом для элементов an цвета n ∈ ω формулы S(an, x, y)
изолируют типы, аппроксимирующие описание типа q(x, y). ¤
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§ 1.4. Властные орграфы

В этом параграфе мы определим понятие властного оргра-
фа и установим его “локальное” присутствие в структуре любого
неглавного властного типа p. Также мы покажем, что при усло-
вии (2, p)-инвариантности теории структура властного орграфа
содержится в ограничении насыщенной структуры на структу-
ру реализаций любого неглавного властного типа, обладающего
глобальным свойством попарного пересечения. Затем мы опи-
шем структуры транзитивных замыканий насыщенных власт-
ных орграфов, образующихся в моделях теорий с неглавными
властными 1-типами при условии конечного числа неглавных 1-
типов. Кроме того докажем, что структура властного орграфа,
рассматриваемая в модели простой теории [27], индуцирует бес-
конечный вес. Это означает, что властные орграфы не встреча-
ются в структурах известных классов простых теорий (таких как
суперпростые или конечно базируемые теории), не содержащих
эренфойхтовых теорий.

Счетный бесконтурный орграф Γ = 〈X;Q〉 называется власт-
ным, если выполняются следующие условия:

(а) группа автоморфизмов орграфа Γ транзитивна, т. е. лю-
бые две вершины связаны некоторым автоморфизмом;

(б) формула Q(x, y) эквивалентна в теории Th(Γ) дизъюнк-
ции главных формул;

(в) acl({a}) ∩ ⋃
n∈ω

Qn(Γ, a) = {a} для любой вершины a ∈ X;

(г) Γ |= ∀x, y ∃z (Q(z, x) ∧ Q(z, y)) (свойство попарного пере-
сечения).

Очевидно, что в примерах Эренфойхта властным является
счетный граф с отношением x < y, задающим плотный линейный
порядок.

Следующий пример, представленный в работах А. И. Маль-
цева [36] и Е. Бускарен, Б. Пуаза [92], определяет стабильную
теорию ациклической парной функции со структурой властного
орграфа.

П р и м е р 1.4.1. Пусть M — множество с двумя функци-
ями f1, f2 : M → M такими, что (f1, f2) : M → M × M — би-
екция, для которой не существует непустой последовательности
i1, . . . , in и элемента a ∈ M с условием fin(. . . fi1(a) . . .) = a. Тео-
рия T ­ Th(〈M ; f1, f2〉), будучи теорией локально свободной ал-
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гебры2, стабильна. Рассмотрим свободный 1-тип p ∈ S1(T ), т. е.
тип элементов a, для которых

fin(. . . fi1(a) . . .) = fjm(. . . fj1(a) . . .) ⇔ i1 . . . in = j1 . . . jm.

Непосредственно проверяется, что некоторое счетное множество
реализаций типа p с отношением, определяемым формулой (y ≈
f1(x)) ∨ (y ≈ f2(x)), образует властный орграф. ¤

В следующем примере теории с тремя счетными моделями,
близком к примеру из работы М. Г. Перетятькина [42], властный
орграф также включает отношение <.

П р и м е р 1.4.2. ПустьM = 〈M ;≤〉 — нижняя полурешетка
без наименьшего и максимальных элементов такая, что

а) никакие два несравнимых элемента не имеют верхней гра-
ни;

б) между любыми двумя различными сравнимыми элемента-
ми имеется промежуточный;

в) для любого элемента a существует бесконечное число по-
парно несравнимых бо́льших элементов, инфимум которых ра-
вен a.

Обогатим систему M константами cn, n ∈ ω, такими, что
cn < cn+1, n ∈ ω. Теория T полученной системы имеет ровно три
счетные модели: простую, насыщенную, а также простую над
реализацией властного типа p∞(x), изолируемого множеством
формул {cn < x | n ∈ ω}. ¤

Кроме приведенных примеров достаточно богатый класс
властных орграфов образуют бесконтурные орграфы вида
〈P ;Q〉 = 〈P ; {(p, p′) | p′ = pg0 на некото-рой линии}〉, соответ-
ствующие полигонометриям pm(G, 〈P, L,∈〉, g0) на проективной
плоскости [190].

Пусть M — модель теории T , p(x) — полный тип теории T
над пустым множеством, ψ(x, y) —формула теории T , l(x) = l(y).
Обозначим через p(M) множество реализаций типа p(x) в модели
M, а через Rp

ψ(M) — бинарное отношение {(a, b) ∈ (p(M))2 |
M |= ψ(a, b)}.

Следующее утверждение показывает, что властные орграфы
“локально” присутствуют в структуре любого неглавного власт-
ного типа.

2Стабильность теорий локально свободных алгебр доказана О. В. Беле-
градеком [31].

49



Предложение 1.4.1. Если p(x) — неглавный властный тип
теории T иM — счетная насыщенная модель теории T , то для
любой формулы ϕ(x) ∈ p(x) существует формула ψ(x, y) тео-
рии T (где l(x) = l(y)), удовлетворяющая следующим условиям:

1) для любого a ∈ p(M) формула ψ(a, x) эквивалентна дизъ-
юнкции главных формул ψi(a, x), i ≤ n, таких, что ψi(a, x) `
p(x) и из |= ψi(a, b) следует, что b не полуизолирует a;

2) для любых a, b ∈ p(M) существует такой набор c, что
|= ϕ(c) ∧ ψ(c, a) ∧ ψ(c, b).

Д о к а з а т е л ь с т в о. По условию, в силу леммы 1.1.2,
существуют реализации a и b типа p(x) в модели Ma такие, что
b не полуизолирует a. Поскольку Mb ≺ Ma, то для любой ре-
ализации c ∈ Mb найдется главная формула χc(a, y) такая, что
|= χc(a, c). Перенумеруем все реализации типа p(x) в моделиMb:
p(Mb) = {cn | n ∈ ω}. Положим χn(a, y) ­ χcn(a, y), n ∈ ω.

Зафиксируем формулу ϕ(x) ∈ p(x) и покажем, что некоторую
формулу

∨m
i=0 χi(x, y) можно взять в качестве формулы ψ(x, y).

Очевидно, что любая из этих формул удовлетворяет условию 1.
Предполагая, что ни одна из указанных формул не удовлетворя-
ет условию 2, по теореме компактности получаем совместность
множества

r(x, y) ­ p(x) ∪ p(x)∪
{
¬∃z

((
m∨

i=0

χi(z, x)

)
∧

(
m∨

i=0

χi(z, y)

)
∧ ϕ(z)

)
| m ∈ ω

}
.

В силу властности типа p(x) тип r(x, y) реализуется в модели
Mb посредством некоторых кортежей d1 и d2: Mb |= r(d1, d2).
Значит, найдутся формулы χd1

(x, y) и χd2
(x, y) такие, что |=

χd1
(a, d1) ∧ χd2

(a, d2), а это противоречит совместности множе-
ства r(x, y). Таким образом, множество r(x, y) несовместно, от-
куда следует для некоторого m0 несовместность множества

p(x) ∪ p(y) ∪
{
¬∃z

((
m0∨

i=0

χi(z, x)

)
∧

(
m0∨

i=0

χi(z, y)

)
∧ ψn(z)

)
| n ∈ ω

}
.

Полагая ψ(x, y) ­
∨m0

i=0 χi(x, y), получаем требуемое. ¤
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Свойство 2, приведенное в предложении 1.4.1, будем назы-
вать локальным свойством попарного пересечения и обозначать
через (LPIP). Если же для формулы ψ(x, y) выполняется более
сильное свойство:

2′) для любых a, b ∈ p(M) существует такой набор c ∈ p(M),
что |= ψ(c, a) ∧ ψ(c, b),

то это свойство будем называть глобальным свойством попар-
ного пересечения для типа p(x) относительно формулы ψ(x, y)
и обозначать через (GPIP).

При наличии формулы ψ(x, y), удовлетворяющей свойствам 1
и 2′, будем называть орграф

〈
p(M);Rp

ψ(M)
〉
предвластным.

Напомним, что теории T0 и T1 сигнатур Σ0 и Σ1 соответствен-
но называются подобными, если для любой модели Mi |= Ti,
i = 0, 1, существуют формулы теории Ti, определяющие в Mi та-
ким образом предикаты, функции и константы сигнатуры Σ1−i,
что соответствующая алгебраическая система сигнатуры Σ1−i

является моделью теории T1−i.
Теория T называется (n, p)-инвариантной, если для любой

формулы ψ(x) (где l(x) = n) теории Tp обеднение морлизации
теории Tp на сигнатуру {Rψ} подобно обеднению морлизации
теории структуры некоторого формульного множества ϕ(M) (где
ϕ ∈ p) на ту же самую сигнатуру.

Покажем, что из существования предвластной структуры на
множестве реализаций неглавного властного типа p (2, p)-инва-
риантной теории следует существование формулы, определяю-
щей структуру властного орграфа на этом множестве.

Предложение 1.4.2. Если p(x) — неглавный властный
тип (2, p)-инвариантной теории T и

〈
p(M);Rp

ψ(M)
〉
— пред-

властный орграф, то для некоторой формулы θ(x, y) с условием
T ` θ(x, y) → ψ(x, y) орграф

〈
p(M);Rp

θ(M)
〉
является власт-

ным.

Д о к а з а т е л ь с т в о. Из (2, p)-инвариантности теории T
следует, что можно выбрать главными формулы Rp

χ′i
(x, y), соот-

ветствующие в T формулам χi(x, y) таким, что ψ(a, x) =∨m
i=0 χi(a, x) и формулы χi(a, x) являются главными для любого

a ∈ p(M) и любого i = 1, . . . ,m. Действительно, элемент a при-

51



надлежит простой модели M0 обеднения морлизации теории Tp

на сигнатуру {Rψ}. Этой же модели принадлежат некоторые реа-
лизации di главных формул, соответствующих формулам χi(a, y)
i = 0, . . . , m. Рассмотрим формулы χ′i(x, y) сигнатуры {Rψ}, со-
ответствующие полным формулам типов tp(aˆdi), i = 0, . . . , m0.
Возьмем в качестве θ(x, y) формулу теории T , для которой вы-
полняются следующие условия:

1) обеднение морлизации теории структуры некоторого фор-
мульного множества ϕ(M) (где ϕ ∈ p) на сигнатуру {Rθ} подоб-
но обеднению морлизации теории Tp на ту же самую сигнатуру;

2) ` ((ϕ(x) ∧ ϕ(y)) → (θ(x, y) ↔ ∨m
i=0 χ′i(x, y));

3) ` θ(x, y) → ψ(x, y).

В силу насыщенности модели M группа автоморфизмов ор-
графа Γ =

〈
p(M);Rp

θ(M)
〉
транзитивна.

Заметим, что для любого a ∈ p(M) из |= θ(a, b) следует
b ∈ p(M) и b не полуизолирует a. Тогда в силу транзитивности
отношения полуизолированности орграф Γ является бесконтур-
ным.

Несимметричность отношения полуизолированности SIp, обу-
словленная формулой θ, влечет равенство

acl({b}) ∩
⋃
n∈ω

(Rp
θ(M))n(Γ, b) = {b}

для любого b ∈ p(M). Действительно, предполагая, что суще-
ствует элемент

d ∈ acl({b}) ∩
⋃
n∈ω

(Rp
θ(M))n(Γ, b) \ {b},

получаем, что b полуизолирует d в модели M. Значит, в силу
транзитивности отношения полуизолированности элемент b бу-
дет полуизолировать a, где |= θ(a, b) и a ∈ p(M), — противоречие.

Из (GPIP) для типа p(x) относительно формулы ψ(x, y) сле-
дует это же свойство относительно формулы θ(x, y), а значит,
и свойство попарного пересечения для орграфа Γ. Таким обра-
зом, Γ — властный орграф. ¤
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Заметим, что в условиях предложения 1.4.2 конечное число
неглавных 1-типов влечет соотношение

acl({a}) ∩
⋃
n∈ω

(Rp
θ(M))n(a,Γ) = {a} (1.1)

для любой вершины a из орграфа Γ =
〈
p(M);Rp

θ(M)
〉
.

Действительно, предполагая, что тип tp(b/a) алгебраичен для
некоторого b ∈ (Rp

θ(M))n(a, Γ), b 6= a, в исходной теории най-
дется полуизолирующая формула θ(a, y) такая, что |= θ(a, b) ∧
∃=ky θ(a, y) для некоторого k ∈ ω. Из того, что b не полуи-
золирует a и число неглавных 1-типов конечно, следует суще-
ствование кортежа c, реализующего главный тип и такого, что
|= θ(c, b) ∧ ∃=ky θ(c, y). Это означает, что в простой модели реа-
лизуется неглавный тип p(x), — противоречие.

В предположении, что число неглавных 1-типов бесконеч-
но, соотношение (1.1) может не выполняться. В качестве ил-
люстрации рассмотрим следующий пример ω-стабильной теории
с неглавным 1-типом p0(x), имеющим несимметричное отноше-
ние полуизолированности посредством формулы Q(x, y) с усло-
вием acl({a}) =

⋃
n∈ω

Qn(a,M) для любой реализации a типа p0(x).

П р и м е р 1.4.3. Обозначим через Ω множество непустых
конечных последовательностей α = 〈α0, α1, . . . , αn〉 таких, что
αi ∈ ω, i ≤ n, l(α) = α0 + 2.

Пусть T0 — теория сигнатуры 〈P (1)
α , Q(2)〉α∈Ω со следующими

аксиомами:

1) если α = α′ ˆm ∈ Ω, то

` (
Pα′ ˆ (m+1)(x) → Pα′ ˆ m(x)

)∧∃≥ωx
(
Pα′ ˆ m(x) ∧ ¬Pα′ ˆ (m+1)(x)

)
;

2) если α1 = α′1 ˆ0, α2 = α′2 ˆ0 — кортежи из Ω и α′1 6= α′2, то` ¬∃x (Pα1(x) ∧ Pα2(x));

3) отношение Q образует график свободного (без циклов) уна-
ра с бесконечным числом прообразов у каждого элемента;

4) ` ∀x, y ((P〈0,m〉(x) ∧ ¬P〈0,m+1〉(x) ∧ Q(x, y)) → (P〈0,m〉(y) ∧
¬P〈0,m+1〉(y))), m ∈ ω;
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5) если |= P〈0,m〉(a) ∧ ¬P〈0,m+1〉(a), то множество реализаций
формулы Q(x, a) состоит из бесконечного числа реализаций
формулы P〈0,m〉(x)∧¬P〈0,m+1〉(x), а также бесконечного числа ре-
ализаций формул P〈1,k,m〉(x)∧¬P〈1,k,m+1〉(x) для каждого k ∈ ω;

6) если α = k ˆα′ ˆ l ˆm — кортеж из Ω, k ≥ 1, то

` ∀x, y

( (
Pk ˆ α′ ˆ l ˆ m(x) ∧ ¬Pk ˆ α′ ˆl ˆ (m+1)(x) ∧Q(x, y)

) →

(
P(k−1) ˆ α′ ˆ m(y) ∧ ¬P(k−1) ˆ α′ ˆ (m+1)(y)

) )
,

m ∈ ω;
7) если k 6= 0 и |= Pk ˆ α ˆ m(a) ∧ ¬Pk ˆ α ˆ (m+1)(a), то множе-

ство реализаций формулы Q(x, a) состоит из бесконечного числа
реализаций формул P(k+1) ˆ α ˆ l ˆ m(x)∧¬P(k+1) ˆ α ˆ l ˆ (m+1)(x) для
каждого l ∈ ω.

Построение насыщенной модели, удовлетворяющей аксиомам
1–7, позволяет проверить полноту теории T0. Ее ω-стабильность
вытекает из того, что каждая формула без параметров эквива-
лентна булевой комбинации формул вида Pα(x), α ∈ Ω,
и ∃z (Qn1(x, z)∧ Qn2(y, z)), n1, n2 ∈ ω. При этом как и в примере
1.2.3 счетность числа 1-типов над любым счетным множеством A
вытекает из счетного числа вариантов распределения расстояний
от элементов из A до реализаций типов.

Для типа p0(x) ∈ S1(∅), определяемого множеством формул{
P〈0,m〉 | m ∈ ω

}
, отношение полуизолированности несимметрич-

но посредством формулы Q(x, y). Для любого a |= p0 множество
реализаций формулы Q(x, a) исчерпывается реализациями ти-
па p0, а также реализациями неглавных типов p〈1,k〉(x) ∈ S1(∅),
определяемых множествами формул

{
P〈1,k,m〉 | m ∈ ω

}
, k ∈ ω.

В силу того, что отношение Q образует график свободного уна-
ра с бесконечным числом прообразов у каждого элемента, для
любого элемента a модели M |= T0 выполняется

acl({a}) = dcl({a}) =
⋃
n∈ω

Qn(a,M). ¤

В связи с приведенными выше рассуждениями представляет-
ся перспективной проблема описания властных орграфов, обо-
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гащаемых до структур неглавных властных 1-типов как в слу-
чае конечного числа неглавных 1-типов, так и их бесконечного
числа.

Напомним, что частично упорядоченное множество 〈X;≤〉
называется направленным вниз (вверх ), если для любых x, y ∈ X
существует z ∈ X с условиями z ≤ x и z ≤ y (x ≤ z и y ≤ z).

Укажем основные возможности, которыми исчерпываются
структуры транзитивных замыканий властных орграфов, полу-
ченных из структур неглавных властных типов p(x), для кото-
рых число неглавных l(x)-типов конечно.

Теорема 1.4.3. Пусть Γ = 〈X;Q〉 — насыщенный власт-
ный орграф, в котором acl({a}) ∩ ⋃

n∈ω
Qn(a,Γ) = {a} для любого

a ∈ X. Тогда его транзитивное замыкание TC(Γ) =
〈

X;
⋃

n∈ω
Qn

〉

изоморфно направленному вниз множеству с транзитив-
ной группой автоморфизмов и имеющему один из следующих
порядков:

(1α) плотный частичный порядок с максимальными анти-
цепями, содержащими α элементов, α ∈ (ω + 1) \ {0};

(2) частичный порядок с бесконечным числом покрывающих
элементов для любого элемента.

Д о к а з а т е л ь с т в о. Рефлексивность и транзитивность
отношения ≤ орграфа TC(Γ) = 〈X;≤〉 очевидны. Антисиммет-
ричность отношения ≤ вытекает из бесконтурности орграфа Γ.
Существование в частично упорядоченном множестве TC(Γ) ниж-
них граней для любых двух элементов вытекает из свойства по-
парного пересечения. Если порядок ≤ не является плотным, то
бесконечность числа покрывающих элементов для любого эле-
мента a ∈ X вытекает из условия acl({a}) ∩ ⋃

n∈ω
Qn(a,Γ) = {a},

поскольку в этой ситуации совместная формула a < x∧¬∃y (a <
y ∧ y < x) не принадлежит алгебраическому типу над элемен-
том a. ¤

Заметим, что указанные плотные частичные порядки с мак-
симальными антицепями мощности α реализуются заменой каж-
дого элемента в плотном линейном порядке без концевых элемен-
тов на класс эквивалентности, содержащий α попарно несравни-
мых элементов.
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Отметим, что частичный порядок с бесконечным числом по-
крывающих элементов над каждым элементом получается лишь
из властных орграфов, у которых формула Q(x, y) не является
главной.

Действительно, если Q(x, y) — главная формула, то из ис-
тинности |= Q(a, b) ∧ Q(a, c) ∧ Q(c, b) для любого элемента a и
некоторых элементов b, c и существования автоморфизмов, фик-
сирующих a и связывающих любые элементы из Q(a,Γ), следу-
ет, что для любого элемента b из Q(a,Γ) найдется элемент c,
принадлежащий Q(a, Γ)∩Q(Γ, b). Следовательно, в графе TC(Γ)
между любыми двумя различными элементами имеется проме-
жуточный элемент. Таким образом, справедливо

Следствие 1.4.4. Если Γ = 〈X; Q〉 — властный орграф
с главной формулой Q(x, y), то отношение

⋃
n∈ω

Qn является

плотным частичным порядком.
Заметим, что если отношение ≤ в транзитивном замыкании

насыщенного властного орграфа Γ = 〈X,Q〉 не является фор-
мульно определимым в языке графа Γ (т. е. если длины крат-
чайших маршрутов не ограничены), то по теореме компактности
в TC(Γ) над каждым элементом a имеется бесконечная антицепь,
принадлежащая Q(a,Γ). Таким образом, из теоремы 1.4.3 выте-
кает

Следствие 1.4.5. Пусть Γ = 〈X; Q〉 — насыщенный власт-
ный орграф с неограниченными длинами кратчайших маршру-
тов и такой, что acl({a})∩ ⋃

n∈ω
Qn(a,Γ) = {a} для любого a ∈ X.

Тогда его транзитивное замыкание TC(Γ) =
〈

X;
⋃

n∈ω
Qn

〉
изо-

морфно направленному вниз множеству с транзитивной груп-
пой автоморфизмов и имеющему один из следующих порядков:

(1) плотный частичный порядок бесконечными антицепя-
ми;

(2) частичный порядок с бесконечным числом покрывающих
элементов для любого элемента.

Отметим, что наряду с доказанной необходимостью локаль-
ного наличия властных орграфов в структурах неглавных власт-
ных типов открытым является вопрос о достаточности, т. е. о воз-
можности обогащения любого властного орграфа до структуры
властного типа.
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Напомним несколько понятий из теории стабильности, отно-
сящихся к классу простых теорий [10], [26], [27]. Говорят, что
формула ϕ(x, a) в теории T копируется над множеством A, ес-
ли существуют натуральное число m и кортежи an, n ∈ ω, для
которых выполняются условия:

(1) tp(a/A) = tp(an/A), n ∈ ω;
(2) множество формул {ϕ(x, an) | n ∈ ω} m-несовместно, т. е.

для любого множества w ⊂ ω мощности m формула
∧

n∈w
ϕ(x, an)

не совместна в T .
Кортежи a и b называются зависимыми над A, если найдется

формула ϕ(x, a) в теории T , которая копируется над A и удо-
влетворяет условию |= ϕ(b, a). Если кортежи a и b не являются
зависимыми над A, то они называются независимыми над A.
Кортежи, зависимые (независимые) над ∅, называются просто
зависимыми (независимыми). Последовательность кортежей на-
зывается независимой, если каждый кортеж этой последователь-
ности независим с любым кортежом, составленным из координат
остальных элементов последовательности.

Говорят, что тип p(x) имеет бесконечный собственный вес,
если существует реализация a типа p(x) и бесконечная незави-
симая последовательность (an)n∈ω реализаций типа p(x) такая,
что кортежи a и an зависимы для любого n ∈ ω.

Следующее утверждение показывает, что властные ор-
графы не встречаются в структурах известных классов простых
теорий, не содержащих эренфойхтовых теорий.

Предложение 1.4.6. Если T = Th(Γ) — простая теория
властного орграфа Γ = 〈X;Q〉, то (единственный) тип p ∈
S1(∅) имеет бесконечный собственный вес.

Д о к а з а т е л ь с т в о. Покажем сначала, что если |=
Qk(a, b) для некоторого k > 0, то элементы a и b зависимы. Для
этого достаточно установить, что формула Qk(a, x) копируется
над ∅. Действительно, существует такое число m ∈ ω, что для
любого элемента a0 найдется не более m элементов a1, . . . , am,
удовлетворяющих условиям Qk(ai, aj) для всех 1 ≤ i < j ≤ m,
поскольку в противном случае по теореме компактности и в силу
бесконтурности орграфа Γ найдется бесконечная последователь-
ность (an)n∈ω с условием

|= Qk(ai, aj) ⇔ i < j,

что противоречит простоте теории T .

57



Определим по индукции последовательность (an)n∈ω. Эле-
мент a0 выберем из множества X произвольно. Если элементы
a0, . . . , an−1 уже выбраны, то в качестве элемента an выберем эле-
мент с условием Γ |= Qk(an−1, an), принадлежащий максимально
большому числу множеств Qk(ai, Γ), i < n. Из замеченного выше
следует, что множество {Qk(an, x) | n ∈ ω} m-несовместно. По-
скольку любые два элемента связаны автоморфизмом, то фор-
мула Qk(a, x) копируется над ∅.

Теперь заметим, что в силу свойства попарного пересечения,
для любых элементов a1, . . . , an ∈ X существует элемент

a ∈ Q(Γ, a1) ∩Q2(Γ, a2) ∩ . . . ∩Qn(Γ, an),

и, в частности, любые n элементов, образующих независимую по-
следовательность, зависят от некоторого элемента a. В силу то-
го, что любые два элемента связаны автоморфизмом, а число n
не ограничено, существует бесконечное число элементов, обра-
зующих независимую последовательность и зависящих от эле-
мента a. ¤



Г л а в а 2

ГЕНЕРИЧЕСКИЕ КОНСТРУКЦИИ

§ 2.1. Семантические генерические конструкции

Построение генерической структуры, удовлетворяющей тре-
буемым свойствам, начинается с определения класса K0 конеч-
ных структур счетной предикатной сигнатуры, наделенного ин-
вариантным относительно перехода к изоморфным структурам
отношением частичного порядка 6 “быть самодостаточной под-
структурой” (или “быть сильной подструктурой”) и удовлетворя-
ющего следующим аксиомам:

1) если A 6 B, то A ⊆ B;
2) если A 6 C, B ∈ K0 и A ⊆ B ⊆ C, то A 6 B;
3) ∅ — наименьший элемент системы (K0; 6);
4) (свойство амальгамирования) для любых структур

A,B, C ∈ K0, имеющих вложения f0 : A → B и g0 : A → C
с условиями f0(A) 6 B и g0(A) 6 C, существует структура D ∈
K0 и вложения f1 : B → D, g1 : C → D, для которых f1(B) 6 D,
g1(C) 6 D и f0 ◦ f1 = g0 ◦ g1.

После определения класса K0 из конечных структур клас-
са K0 с помощью операции амальгамирования (т. е. погружения
структур B и C над A в структуры D согласно свойству амальга-
мирования) шаг за шагом строится счетная (K0; 6)-генерическая
модель M, удовлетворяющая следующим условиям:

а) для любой конечной подструктуры A ⊆ M существует
структура B ∈ K0, A ⊆ B ⊆M, для которой B 6 M, т. е. B 6 B′
для любой структуры B′ ∈ K0 с условием B ⊆ B′ ⊆M;

б) для любой конечной подструктуры A ⊆M и любой струк-
туры B ∈ K0 с условием A 6 B существует структура B′ 6 M,
для которой B 'A B′.
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Таким образом, справедлива следующая теорема (теорема
2.12 из работы Дж. Болдуина, Н. Ши [72],).

Теорема 2.1.1. Для любого частично упорядоченного
класса (K0; 6), удовлетворяющего условиям 1–4, существует
(K0; 6)-генерическая модель.

Приведенная схема представляет семантический подход к по-
строению генерической модели M и соответствующей генериче-
ской теории Th(M).

Удобство семантического подхода для реализации заданных
теоретико-модельных свойств демонстрируется многочисленны-
ми примерами (см. библиографию, отраженную в историческом
обзоре), в которых каждый предикат не определим через осталь-
ные.

§ 2.2. Синтаксические генерические конструкции

При построении генерических теорий, в которые заклады-
вается формульная выразимость некоторых предикатов через
остальные, более предпочтительным (а иногда и неизбежным)
является синтаксический подход , в котором вместо конечных
структур рассматриваются полные или неполные типы над ко-
нечными множествами, содержащие некоторую внешнюю инфор-
мацию об элементах.

Синтаксический подход к построению генерических теорий,
излагаемый в этом параграфе, обобщает описанный выше се-
мантический подход и так же приводит к построению генериче-
ских моделей. Этот подход будет использоваться ниже в третьей
и четвертой главах для построения генерических теорий, пред-
ставляющих всевозможные как стабильные, так и нестабильные
эренфойхтовы теории относительно предпорядков Рудина — Кей-
слера и функций распределения числа предельных моделей. При-
водимые в последующих параграфах примеры показывают, что
синтаксический подход образует собственное обобщение семан-
тического подхода к построению генерических моделей.

В дальнейшем в этом параграфе через X, Y, Z, . . . мы будем
обозначать конечные множества переменных, через A,B, C, . . . —
конечные множества элементов, а также конечные множества
в алгебраических системах или сами алгебраические системы
с конечными носителями, через Φ(A),Ψ(B),X(C), . . . — диаграм-
мы, т. е. полные или неполные типы над соответствующими мно-
жествами, не имеющие свободных переменных.
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Если Φ(A) — тип, то через [Φ(A)]AX будет обозначаться тип
Φ(X), который получается в результате некоторой биективной
подстановки в тип Φ(A) переменных X вместо констант из A,
а через [Φ(A)]AB — тип Φ(B), который получается в результате
некоторой биективной подстановки в тип Φ(A) констант из B
вместо констант из A.

Зафиксируем не более чем счетную сигнатуру Σ и рассмот-
рим класс T0 (полных или неполных) типов Φ(A) над конечными
множествами A таких, что ϕ(a) ∈ Φ(A) или ¬ϕ(a) ∈ Φ(A) для
любой бескванторной формулы ϕ(x) и любого кортежа a ∈ A.
Предположим, что класс T0 снабжен частичным порядком 6,
замкнутым относительно биективных подстановок [Φ(A)]AA′ по-
парно различных констант из A′ вместо констант из A в типы
Φ(A) ∈ T0. Кроме того, предположим, что результаты биектив-
ных подстановок [Φ(A)]AX множеств переменных X вместо кон-
стант из A в типы Φ(A) ∈ T0 (по всем множествам A) образуют
счетное множество.

Частично упорядоченный класс (T0; 6) называется генериче-
ским, если T0 замкнут относительно пересечений и выполняются
следующие условия:

i) если Φ 6 Ψ, то Φ ⊆ Ψ;
ii) если Φ 6 X, Ψ ∈ T0 и Φ ⊆ Ψ ⊆ X, то Φ 6 Ψ;
iii) некоторый тип Φ0(∅) — наименьший элемент системы

(T0;6);
iv) (свойство t-амальгамирования) для любых типов Φ(A),

Ψ(B), X(C) ∈ T0 если существуют инъекции f0 : A → B и g0 :
A → C с условиями [Φ(A)]Af0(A) 6 Ψ(B) и [Φ(A)]Ag0(A) 6 X(C), то
существует тип Θ(D) ∈ T0 и инъекции f1 : B → D и g1 : C → D,
для которых [Ψ(B)]Bf1(B) 6 Θ(D), [X(C)]Cg1(C) 6 Θ(D) и f0 ◦ f1 =
g0 ◦ g1;

v) (свойство локальной реализуемости) если Φ(A) ∈ T0

и Φ(A) ` ∃xϕ(x) (соответственно t — терм сигнатуры Σ∪A, не со-
держащий свободных переменных), то существуют тип Ψ(B) ∈
T0, Φ(A) 6 Ψ(B), и элемент b ∈ B, для которых Ψ(B) ` ϕ(b)
((t ≈ b) ∈ Ψ(B));

vi) (свойство t-однозначности) для любых типов Φ(A),
Ψ(A) ∈ T0 из совместности множества Φ(A) ∪ Ψ(A) следует
Φ(A) = Ψ(A).
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Если Φ 6 Ψ, то будем говорить, что Φ — сильный подтип
типа Ψ.

Тип Φ(A) называется (сильно) вложимым в тип Ψ(B), если
существует инъекция f : A → B такая, что [Φ(A)]Af(A) ⊆ Ψ(B)
([Φ(A)]Af(A) 6 Ψ(B)). При этом, инъекция f называется (силь-
ным) вложением типа Φ(A) в тип Ψ(B) и обозначается через
f : Φ(A) → Ψ(B).

Тип Φ(A) называется (сильно) вложимым в модель M, если
Φ(A) (сильно) вложим в некоторый тип Ψ(B), где M |= Ψ(B).
При этом, соответствующее вложение f : Φ(A) → Ψ(B) называ-
ется (сильным) вложением типа Φ(A) в модель M и обознача-
ется f : Φ(A) →M.

Пусть T0 — класс типов, P — класс моделей, M — модель
из класса P. Класс T0 называется конфинальным в модели M,
если для любого конечного множества A ⊆ M существует ко-
нечное множество B, A ⊆ B ⊆ M , и тип Φ(B) ∈ T0 такой, что
M |= Φ(B). Класс T0 называется конфинальным в классе P, ес-
ли T0 конфинален в любой модели из класса P. Через T0 будем
обозначать класс всех моделей M с условием конфинальности
класса T0 вM, а через P — подкласс класса T0 такой, что каж-
дый тип Φ ∈ T0 является истинным в некоторой модели из P.

Расширим отношение 6 c генерического класса (T0, 6) на
класс подмножеств из моделей класса T0.

Пусть M — модель из класса T0, A и B — конечные мно-
жества в модели M, A ⊆ B. Будем говорить, что A — сильное
подмножество множества B (в моделиM) и писать A 6 B, если
Φ(A) 6 Ψ(B) для некоторых типов Φ(A), Ψ(B) ∈ T0 c условием
M |= Ψ(B).

Конечное множество A называется сильным подмножеством
множества M0 ⊆ M (в модели M), где A ⊆ M0, если A 6 B
для любого конечного множества B такого, что A ⊆ B ⊆ M0
и Φ(A) ⊆ Ψ(B) для некоторых типов Φ(A), Ψ(B) ∈ T0 c услови-
ем M |= Ψ(B). Если A — сильное подмножество множества M0,
то как и выше будем писать A 6 M0. Если A 6 M в модели M,
то будем говорить, что A — самодостаточное множество (в мо-
дели M).

Заметим, что в силу свойства t-однозначности типы Φ(A)
и Ψ(B) из определения сильных подмножеств задаются един-
ственным образом. Тип Φ(A) ∈ T0, соответствующий самодоста-
точному множеству A в модели M, называется самодостаточ-
ным типом (в модели M).
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Следующее утверждение, обобщающее лемму 2.8 из работы
Дж. Болдуина и Н. Ши [72], показывает, что для конечных мно-
жеств, соответствующих генерическим классам, типы которых
порождены равномерно конечными типами, условие самодоста-
точности типово определимо.

Предложение 2.2.1. Пусть T0 — генерический класс, со-
стоящий из типов Φ(A), выводимых из конечных подтипов,
мощности которых равномерно ограничены в зависимости от
мощностей |A|, и пусть M — модель из класса T0. Тогда для
любого конечного множества A 6 M существует тип ΓA(X)
такой, что M |= ΓA(A), и для любого множества A′ ⊆ M
из M |= ΓA(A′) следует A′ 6 M .

Д о к а з а т е л ь с т в о. Пусть A — самодостаточное мно-
жество в модели M, Φ(A) — тип из T0, M |= Φ(A). Для лю-
бого множества B, A ⊆ B ⊆ M , и любых типов Ψ(B) ∈ T0

с условиями Φ(A) 66 Ψ(B) обозначим через Ψ0(X,Y ) минималь-
ный по включению конечный тип, из которого выводится тип
[[Ψ(B)]AX ]B\AY , где X ∩ Y = ∅. Искомым является тип

ΓA(X) ­ Φ(X) ∪ {∀Y ¬ ∧Ψ(X, Y ) | A ⊆ B, Φ(A) 66 Ψ(B)}. ¤
Будем говорить, что класс (T0; 6) обладает свойством сов-

местного вложения (JEP), если для любых типов Φ(A), Ψ(B) ∈
T0 существует тип X(C) ∈ T0 такой, что типы Φ(A) и Ψ(B)
сильно вложимы в X(C).

Очевидно, что каждый генерический класс обладает JEP.
Будем говорить, что модель M ∈ P имеет конечные замы-

кания относительно класса (T0; 6), если любое конечное мно-
жество A ⊆ M содержится в некотором самодостаточном мно-
жестве в M. Класс P имеет конечные замыкания относительно
класса (T0; 6), если конечные замыкания имеет любая модель
из P.

Очевидно, что счетная модельM имеет конечные замыкания
относительно класса (T0; 6) тогда и только тогда, когда M =⋃
i∈ω

Ai для некоторых самодостаточных множеств Ai с условиями

Ai 6 Ai+1, i ∈ ω.
Счетная модель M ∈ T0 называется (T0;6)-генерической,

если выполняются следующие условия:
а) M имеет конечные замыкания;
б) если A 6 M , Φ(A),Ψ(B) ∈ T0, M |= Φ(A) и Φ(A) 6 Ψ(B),

то существует множество B′ 6 M такое, что A ⊆ B′ и M |=
Ψ(B′).
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Аналогично построению (K0; 6)-генерической модели нали-
чие генерического класса (T0; 6) позволяет с помощью t-амаль-
гамирования шаг за шагом построить (T0;6)-генерическую мо-
дель M.

Таким образом, справедлива следующая
Теорема 2.2.2. Для любого генерического класса (T0; 6) су-

ществует (T0; 6)-генерическая модель.
Теория Th(M) (T0; 6)-генерической модели M называется

(T0;6)-генерической теорией. Теория T называется генериче-
ской, если T — (T0; 6)-генерическая теория для некоторого ге-
нерического класса (T0; 6).

Модель M называется (T0; 6)-универсальной, если каждый
тип из класса T0 сильно вложим в M.

Модель M называется (T0; 6)-однородной, если для любых
самодостаточных множеств A и B в M таких, что для соответ-
ствующих типов Φ(A) и Ψ(B), свидетельствующих о самодоста-
точности, из равенства [Φ(A)]AB = Ψ(B) и из наличия отображе-
ния f , осуществляющего подстановку [Φ(A)]AB, равную Ψ(B), сле-
дует существование автоморфизма модели M, содержащего f .

Легко заметить, что (T0;6)-генерическая модель является
(T0;6)-универсальной и (T0; 6)-однородной.

Генерический класс (T0; 6), состоящий из бескванторных ти-
пов, называется бескванторным.

Следующая теорема показывает, что конструкция любой
(K0; 6)-генерической модели представляется в виде конструкции
некоторой (T0;6)-генерической модели.

Теорема 2.2.3. Для любой (K0; 6)-генерической модели M
существует такой бескванторный класс (T0; 6′), что M —
(T0;6′)-генерическая модель.

Д о к а з а т е л ь с т в о. Искомым является бесквантор-
ный генерический класс (T0;6′), где T0 ­ {Φ(A) | Φ(X) —
бескванторный тип tpqf (A), A ∈ K0}, Φ(A) 6′ Ψ(B) ⇔ A 6 B. ¤

Любой генерический класс (T0; 6), состоящий из типов Φ(A),
соответствующих конечным структурам A с носителями A, поз-
воляет построить класс K0, состоящий из всех конечных струк-
тур, изоморфных структурам A, удовлетворяющим бесквантор-
ным подтипам Φ(A)qf типов Φ(A) ∈ T0. После введения клас-
са K0 определим отношение 6′ со следующим условием: A 6′
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B ⇔ Φ(A) 6 Ψ(B) для некоторых Φ(A), Ψ(B) ∈ T0 c условиями
A |= Φ(A)qf и B |= Ψ(B)qf .

Полученный класс (K0; 6′) удовлетворяет вышеперечислен-
ным условиям 1–4, накладываемым на класс, порождающий
(K0; 6)-генерическую модель. При этом, (K0; 6′)-генерическая
модель может быть не изоморфна (T0;6)-генерической мо-
дели. Однозначность восстановления (T0; 6)-генерической мо-
дели по системе (K0;6′) предполагает для каждой структуры
A ∈ K0 и соответствующих типов Φ(A) ∈ T0 включение в эти
типы информации о числе всевозможных расширений B струк-
туры A с условием A 6′ B, а также взаимосвязи элементов этих
расширений. При наличии и использовании такой информации
(T0;6)-генерическая модель определяется однозначно с точно-
стью до изоморфизма.

§ 2.3. Самодостаточные классы

Генерический класс (T0; 6) называется самодостаточным,
если выполняется следующая аксиома:

vii) если Φ,Ψ,X ∈ T0, Φ 6 Ψ и X ⊆ Ψ, то Φ ∩X 6 X.
В дальнейшем в этом и в следующих двух параграфах мы

будем через (T0; 6) обозначать самодостаточный генерический
класс, через M — (T0; 6)-генерическую модель, через T — тео-
рию Th(M), через K — подкласс класса T0, состоящий из всех
моделей теории T .

Для иллюстрации последнего условия (Mod(T ) ⊆ T0) приве-
дем два класса примеров.

Очевидно, что условию Mod(T ) ⊆ T0 удовлетворяет любой
бескванторный генерический класс (T0; 6) конечной сигнатуры,
замкнутый относительно ограничений типов Φ(A) ∈ T0 на лю-
бые подмножества множества A. Этому же условию удовлетво-
ряет любой самодостаточный класс (T0;6), удовлетворяющий
следующему свойству t-покрытия:

viii) каждый тип Φ(X) теории T выводится из некоторого
типа [ΨΦ(B)]BX∪Y , где ΨΦ(B) ∈ T0.

Пусть Φ и Ψ — типы из класса (T0; 6). Пара (Φ, Ψ) называет-
ся минимальной, если Φ ⊆ Ψ, Φ 66 Ψ и для любого типа Ψ′ ∈ T0

из условия Φ ⊆ Ψ′ $ Ψ следует Φ 6 Ψ′.
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ПустьM — модель из класса T0, S — множество в моделиM.
Будем говорить, что множество S замкнуто в модели M и пи-
сать S 6 M , если для любой минимальной пары (Φ(A), Ψ(B))
с условием M |= Ψ(B) из A ⊆ S следует B ⊆ S.

Покажем, что запись S 6 M согласуется с записью A 6 M
в случае, когда S — конечное множество и некоторый тип Φ(S)
принадлежит классу T0, M |= Φ(S).

Предложение 2.3.1. Пусть M — модель из класса T0,
Φ(A) — тип из класса T0, M |= Φ(A). Следующие условия эк-
вивалентны:

(1) A — самодостаточное множество в модели M;
(2) для любой минимальной пары (Φ′(A′), Ψ(B)) с условием

M |= Ψ(B) из A′ ⊆ A следует B ⊆ A.

Д о к а з а т е л ь с т в о. (1) ⇒ (2). Пусть A — самодоста-
точное множество вM, (Φ′(A′),Ψ(B)) — минимальная пара с усло-
вием M |= Ψ(B) и A′ ⊆ A. По аксиоме vii имеем Φ(A) ∩Ψ(B) 6
Ψ(B). Тогда из минимальности пары (Φ′(A′), Ψ(B)) получаем
A′ ⊆ A ∩B и B = A ∩B, т. е. B ⊆ A.

(2) ⇒ (1). Предположим, что A 66 M , т. е. найдется конеч-
ное множество B ⊆ M такое, что A ⊂ B и для соответствую-
щих типов Φ(A),Ψ(B) ∈ T0 выполняется Φ(A) 66 Ψ(B). Тогда из
конечности множества B и из аксиомы vii следует существова-
ние минимальной пары (Φ(A), Ψ0(B0)) с условием M |= Ψ0(B0),
и при этом B0 6⊆ A. Последнее противоречит условию 2. ¤

Отметим, что из аксиомы vii вытекает следующее свойство
моделей, аналогичное этой аксиоме: еслиM,N ,N ′ ∈ T0, M 6 N
и N ′ ⊆ N , то M ∩N ′ 6 N ′.

Установим утверждение, обобщающее лемму 2.18 из работы
Дж. Болдуина и Н. Ши [72].

Предложение 2.3.2. Следующие условия эквивалентны:
(1) в классе (T0; 6) нет бесконечной возрастающей цепи ми-

нимальных пар;
(2) класс K имеет конечные замыкания;
(3) любая ω-насыщенная модель из класса K имеет конечные

замыкания;
(4) некоторая ω-насыщенная модель из класса K имеет ко-

нечные замыкания.
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Д о к а з а т е л ь с т в о. Импликация (1) ⇒ (2) вытекает
из того, что если класс K не имеет конечных замыканий, т.е.
если некоторое конечное множество A некоторой моделиM∈ K
не расширяется до самодостаточного множества, то не расши-
ряется до самодостаточного множества конечное множество B
с условиями A ⊆ B ⊆ M , M |= Φ(B), Φ(B) ∈ T0, которое суще-
ствует в силу K ⊆ T0. Тогда по индукции строится бесконечная
возрастающая цепь минимальных пар, начинающаяся с некото-
рой пары (Φ(B), Ψ(C)).

Импликации (2) ⇒ (3) и (3) ⇒ (4) очевидны.
Импликация (4) ⇒ (1) справедлива, поскольку из существо-

вания бесконечной возрастающей цепи минимальных пар
в (T0; 6) следует ее вложимость в любую ω-насыщенную модель
из класса K, а это невозможно в моделях с конечным замыкани-
ем. ¤

Из предложения 2.3.2 вытекает
Следствие 2.3.3. Если генерическая модель M насыщена,

то класс K имеет конечные замыкания.
Пусть M и N — некоторые модели из класса T0, S — за-

мкнутое множество в моделиM. Инъекция f : S → N называет-
ся сильным вложением множества S в модель N , если f(S) —
замкнутое множество в модели N и для любого типа Φ(A) ∈ T0

такого, что M |= Φ(A) и A ⊆ S, имеет место N |= Φ(f(A)).
Будем говорить, что генерический класс (T0; 6) имеет амаль-

гамирование над замкнутыми (самодостаточными)множества-
ми, если для любых моделей M0,M1 ∈ K и любого замкнутого
(самодостаточного) множества S в некоторой модели из классаK
из существования сильных вложений f : S → M0 и g : S → M1

следует существование моделиN |= T и элементарных вложений
f ′ : M0 → N и g′ : M1 → N таких, что f ◦ f ′ = g ◦ g′. При этом
будем также говорить, что (T0; 6)-генерическая теория T имеет
амальгамирование над замкнутыми (самодостаточными) мно-
жествами.

Следующая теорема обобщает лемму 2.21 из работы Дж. Бол-
дуина и Н. Ши [72].

Теорема 2.3.4. Пусть (T0; 6) — самодостаточный генери-
ческий класс,M — (T0; 6)-генерическая модель, K — класс всех
моделей теории T = Th(M), имеющий конечные замыкания.

67



Следующие условия эквивалентны:
(1) теория T имеет амальгамирование над замкнутыми

множествами;
(2) теория T имеет амальгамирование над самодостаточ-

ными множествами;
(3) M — ω1-универсальная модель;
(4) M — ω-насыщенная модель.
Д о к а з а т е л ь с т в о. Импликация (1) ⇒ (2) очевидна.

Импликация (2) ⇒ (1) вытекает из теоремы компактности и то-
го, что класс K имеет конечные замыкания.

(2) ⇒ (3). ПустьN — счетная модель теории T . Покажем, что
модель N элементарно вложима вM. Представим множество N
в виде объединения

⋃
i∈ω

Ai возрастающей 6-цепи самодостаточ-

ных в N множеств Ai, i ∈ ω. В силу того, чтоM — генерическая
модель, множества Ai сильно вложимы в модельM посредством
сильных вложений fi : Ai → M , так, что fi ⊆ fi+1, i ∈ ω. Обозна-
чим через f вложение

⋃
i∈ω

fi, а через N ′ — образ f(N). Легко заме-

тить, что N ′ является носителем подмодели N ′ моделиM. Пока-
жем, что N ′ 4 M. Достаточно установить, что (N ′, a) ≡ (M, a)
для любого кортежа a ∈ N ′. Так как класс K имеет конечные
замыкания, кортеж a расширяется до некоторого кортежа b, ну-
мерующего образ f(Ai) некоторого множества Ai. Из самодоста-
точности множества Ai вытекает самодостаточность множества
f(Ai) как в модели N ′, так и в модели M. Поскольку теория T
имеет амальгамирование над самодостаточными множествами,
справедливо (N ′, b) ≡ (M, b) и, значит, (N ′, a) ≡ (M, a).

(3) ⇒ (4). Пусть M — ω1-универсальная модель. Поскольку
класс K имеет конечные замыкания, достаточно показать, что
вM реализуются все 1-типы над самодостаточными множества-
ми вM. Пусть A — самодостаточное множество вM, Φ(A) — тип
из T0, для которого M |= Φ(A), p — тип из S1(A). Рассмотрим
счетное элементарное расширение N модели M, в котором реа-
лизуется тип p посредством некоторого элемента a, а также эле-
ментарное вложение f модели N в модель M. Поскольку f(A)
является самодостаточным множеством в M и M |= Φ(f(A)),
существует автоморфизм g модели M, переводящий f(A) на A.
Тогда элемент g(f(b)) является искомой реализацией типа p в мо-
дели M.
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(4) ⇒ (2). Зафиксируем сильные вложения f : A → M0

и g : A → M1 и тип Φ(A) ∈ T0, для которого M0 |= Φ(f(A))
и M1 |= Φ(g(A)). По теореме компактности можно считать, что
M0 иM1 — счетные модели. Так какM — насыщенная модель,
существуют элементарные вложения f1 : M0 →M и g1 : M1 →
M. Но тогда f1(f(A)) и g1(g(A)) — самодостаточные множества
в моделиM и выполняетсяM |= Φ(f1(f(A))),M |= Φ(g1(g(A))).
Следовательно, существует автоморфизм h моделиM, переводя-
щий f1(f(A)) на g1(g(A)). Отображения g1 и f1◦h свидетельству-
ют о том, что M является требуемой амальгамой моделей M0

и M1. ¤
Пусть K — класс, имеющий конечные замыкания, M — мо-

дель из класса K, S — множество в модели M. Наименьшее
по включению замкнутое множество в модели M, содержащее
множество S, называется внутренним замыканием множества S
в модели M и обозначается через iclM(S) или через S, если
из контекста ясно о какой модели M идет речь. Если множе-
ство S конечно, то оно называется самодостаточным замыка-
нием множества S. Тип из класса T0, соответствующий само-
достаточному замыканию A множества A, обозначается через
Φ(A). Если Φ(A) ∈ T0 и M |= Φ(A), то тип Φ(A) называется
самодостаточным замыканием типа Φ(A).

Теорема 2.3.5. Если класс K имеет конечные замыкания,
то для любой модели M ∈ K и любого конечного множества
A ⊆ M существует самодостаточное замыкание A. При этом
справедливо соотношение A ⊆ aclM(A).

Д о к а з а т е л ь с т в о. Пусть A1 и A2 — самодостаточные
множества в M, содержащие множество A. Тогда по аксиоме vii
их пересечение A1 ∩ A2 также будет самодостаточным множе-
ством в M, содержащим множество A. Так как мощности само-
достаточных множеств конечны, существует единственное само-
достаточное множество в M, содержащее множество A и имею-
щее наименьшую мощность.

Покажем, что A ⊆ aclM(A). Пусть N — ω-насыщенное эле-
ментарное расширение модели M. Предположим, что p ­
tp(A/A) — неалгебраический тип. Тогда в модели N существу-
ет реализация A′ типа p, отличная от A. Однако iclM(A) =
iclN (A) = A. Следовательно, существование A′ противоречит
единственности iclN (A). ¤
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Следствие 2.3.6. Если класс K имеет конечные замыка-
ния, то генерическая модель M однородна.

Д о к а з а т е л ь с т в о. Пусть a и b — два кортежа в мо-
дели M, имеющие один и тот же тип, A и B — множества, со-
стоящие из элементов кортежей a и b соответственно. Тогда из
условий A ⊆ aclM(A) и B ⊆ aclM(B) получаем, что для типов
Φ(A),Ψ(B) ∈ T0 (где M |= Φ(A), M |= Ψ(B)) выполняется со-
отношение Φ(B) = Ψ(B). Поскольку M — генерическая модель,
это означает, что существует автоморфизм f ∈ Aut(M), перево-
дящий A на B с условием f(A) = B. ¤

§ 2.4. Генеричность счетных однородных моделей

Генерический класс (T0; 6) называется (минимально) наслед-
ственным, если T0 состоит из (минимальных по включению)
типов Φ(A), содержащих всевозможные формулы, описывающие
число копий системы элементов множества B над системой эле-
ментов множества A, а также взаимосвязь элементов копий, для
каждого множества B ⊇ A, где соответствующий тип Ψ(B) при-
надлежит T0 и удовлетворяет условию Φ(A) 6 Ψ(B).

Теорема 2.4.1. Любая не более чем счетная однородная (на-
сыщенная) алгебраическая система M является (T0;6)-гене-
рической моделью для некоторого наследственного генери-
ческого класса (T0;6) (со свойством t-покрытия).

Д о к а з а т е л ь с т в о. Пусть M — счетная однородная
алгебраическая система. Искомым классом является наслед-
ственный класс (T0;6), где T0 состоит из всех копий полных
типов Φ(A) всевозможных конечных множеств A ⊆ M , а 6 —
отношение включения. ЕслиM — насыщенная модель, то из ма-
лости теории Th(M) следует, что класс (T0; 6) обладает свой-
ством t-покрытия. ¤

Поскольку каждая полная счетная теория имеет однородную
модель, из теоремы 2.4.1 вытекает

Следствие 2.4.2. Любая полная счетная теория является
генерической.

Известно, что из малости теории T следует существование
ее счетной насыщенной модели. Следовательно, по теореме 2.4.1
теория T является (T0; 6)-генерической для некоторого генери-
ческого класса (T0; 6) со свойством t-покрытия.
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Обратно, если T — (T0;6)-генерическая теория для некото-
рого генерического класса (T0; 6) со свойством t-покрытия, то
из счетности числа типов [Φ(A)]AX , где Φ(A) ∈ T0, и из свойства
t-покрытия вытекает счетность множества S(T ) типов теории T ,
т. е. малость теории T .

Таким образом, справедлива следующая
Теорема 2.4.3. Для любой полной счетной теории T сле-

дующие условия эквивалентны:
(1) T — малая теория;
(2) T — (T0; 6)-генерическая теория для некоторого генери-

ческого класса (T0; 6) со свойством t-покрытия.
Генерический класс (T0; 6) называется полным, если некото-

рый тип Φ(A) ∈ T0 содержит некоторую полную теорию сигна-
туры Σ.

Очевидно, что из полноты генерического класса (T0;6) сле-
дует, что совокупность формул, входящих в типы из множе-
ства T0, порождают (T0;6)-генерическую теорию. Вместе с тем
условие наследственности класса (T0; 6) не может гарантиро-
вать порождение полной теории. Например, при генерическом
построении бесконечного линейно упорядоченного множества по-
средством минимально наследственного класса (T0;6) формула
∀x, y ((x ≤ y) ∨ (y ≤ x)) не выводится из совокупности формул,
входящих в типы Φ(X), где Φ(A) ∈ T0 для некоторых A.

Напомним, что в доказательстве теоремы 2.4.1 о представи-
мости любой счетной однородной модели в качестве генериче-
ской используются полные генерические классы. Вместе с тем,
при решении различных задач генерические классы определяют-
ся для построения заранее неизвестной теории. Поэтому в гене-
рические классы предпочтительно включать типы, содержащие
минимум необходимой информации с тем, чтобы требуемая тео-
рия обладала необходимыми свойствами.

Пусть (T0; 6) и (T′
0;6′) — генерические классы сигнатур Σ

и Σ′ соответственно, Σ ⊆ Σ′. Будем говорить, что класс (T′
0; 6′)

доминирует класс (T′
0; 6′) и писать T0 E T′

0, если для любого
типа Φ(A) ∈ T0 существует тип Φ′(A′) ∈ T′

0 такой, что Φ(A) ⊆
Φ′(A′) и из условия существования некоторых конечных систем,
являющихся расширениями над A, а также наличия информа-
ции о взаимосвязи элементов этих расширений, записанной в ти-
пе Φ(A), следует существование таких же расширений над A,
а также наличие аналогичной информации о взаимосвязи эле-
ментов этих расширений, записанной в типе Φ′(A′).
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Очевидно, что отношение E образует предпорядок на классе
генерических классов.

Легко видеть, что если модель M изоморфно вложима в мо-
дельM′ ¹ Σ, то минимально наследственный класс (T′

0; 6′), сов-
падающий с замыканием множества типов Φ′(B) всевозможных
конечных множеств B ∈ M ′ относительно биективных подста-
новок констант и отношением включения 6′, доминирует мини-
мально наследственный класс (T0; 6), совпадающий с замыка-
нием множества типов Φ(A) всевозможных конечных множеств
A ∈ M относительно биективных подстановок констант и отно-
шением включения 6.

Вместе с тем, из условияT0ET′
0 вытекает, что (T0;6)-генери-

ческая модель изоморфно вложима в обеднение (T′
0;6′)-генери-

ческой модели до сигнатуры Σ.
Таким образом, справедлива следующая
Теорема 2.4.4. Пусть M и M′ — счетные однородные мо-

дели сигнатур Σ и Σ′ соответственно. Следующие условия эк-
вивалентны:

(1) модель M изоморфно вложима в модель M′ ¹ Σ;
(2) существуют генерические классы (T0; 6) и (T′

0; 6′) та-
кие, что M — (T0; 6)-генерическая модель, M′ — (T′

0; 6′)-гене-
рическая модель и T0 E T′

0.

§ 2.5. Свойство однородного t-амальгамирования
и насыщенные генерические модели

Предположим, что (T0; 6) — самодостаточный класс, удовле-
творяющий следующим условиям:

а) для любого типа Φ(A) ∈ T0 из типа Φ(A) выводится фор-
мула χΦ(A), описывающая условие самодостаточности замыка-
ния Φ(A); при этом формула χΦ(A) также содержит формулу,
выводимую из Φ(A), описывающую верхнюю оценку мощности
множества A;

б) для любых самодостаточных типов Φ(A) и Ψ(B),
где Φ(A) 6 Ψ(B), и любой формулы ψ(X,Y ) из Ψ(X ∪Y ) (здесь
X и Y — непересекающиеся множества переменных, биективные
с множествами A и B \A) существует формула ϕ(X), выводимая
из Φ(X), такая, что следующая формула истинна в модели M:

∀X ((χΦ(X) ∧ ϕ(X)) → ∃Y (χΨ(X,Y ) ∧ ψ(X, Y ))).
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При наличии всех указанных условий будем говорить,
что класс (T0;6) обладает свойством однородного t-амальгами-
рования.

Заметим, что понятие однородного t-амальгамирования обоб-
щает понятие однородного амальгамирования, определенное в ра-
боте Дж. Болдуина и Н.Ши [72]. При этом, в отличие от свойства
однородного амальгамирования, при выполнении свойства одно-
родного t-амальгамирования не предполагается наличие функ-
ции f ∈ ωω, представляющей единые верхние оценки f(n)
для мощностей самодостаточных замыканий A, зависящих лишь
от мощностей n данных множеств A.

В качестве примера генерического класса, обладающего свой-
ством однородного t-амальгамирования, но не имеющего указан-
ной верхней оценки, можно взять класс типов, соответствую-
щих конечным ациклическим неорграфам с неограниченными
валентностями всех элементов. Действительно, при рассмотре-
нии элементов an и bn, связанных кратчайшими маршрутами
длины n, получаем неограниченные мощности самодостаточных
замыканий, образуемых добавлениями всех элементов кратчай-
ших маршрутов: |{an, bn}| = n + 1.

Следующая теорема обобщает теорему 2.28 из работы
Дж. Болдуина и Н. Ши [72].

Теорема 2.5.1. Если (T0; 6) — самодостаточный класс,
обладающий свойством однородного t-амальгамирования,
и класс K имеет конечные замыкания, то (T0; 6)-генерическая
модель M ω-насыщена. При этом любое конечное множество
A ⊆ M расширяется до своего самодостаточного замыкания
A ⊆ M , тип tp(A) содержит тип Φ(Y ) для самодостаточного
типа Φ(A) и выполняется Φ(Y ) ` tp(A).

Д о к а з а т е л ь с т в о. Пусть M — (T0; 6)-генерическая
модель, N — ω-насыщенная модель теории Th(M). Покажем,
что модели M и N L∞,ω-эквивалентны. Для этого достаточно
установить между M и N взаимную продолжаемость конечных
частичных изоморфизмов f : A∼→A′ для любых самодостаточ-
ных множеств A ⊆ M и A′ ⊆ N , реализующих самодостаточные
типы Φ(A) и Φ′(A′), где Φ′(A′) = Φ(A′).

Пусть f : A∼→A′ — конечный частичный изоморфизм, удо-
влетворяющий указанным выше условиям. Рассмотрим самодо-
статочный тип Ψ′(B′) ∈ (T0; 6) с условиями Φ′(A′) 6 Ψ′(B′)
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и N |= Ψ′(B′). Поскольку M — (T0; 6)-генерическая модель,
в M имеется изоморфная копия B множества B′ над A′, реали-
зованная над A такая, что M |= Ψ(B), Ψ(B) = Ψ′(B) и Φ(A) 6
Ψ(B) для самодостаточного типа Ψ(B). Это означает, что суще-
ствует требуемое расширение g : B∼→B′ частичного изоморфиз-
ма f .

Рассмотрим самодостаточный тип Ψ(B) ∈ (T0;6) с усло-
виями Φ(A) 6 Ψ(B) и M |= Ψ(B). Из истинности формул

∀x ((χΦ(X) ∧ ϕ(X)) → ∃Y (χΨ(X,Y ) ∧ ψ(X, Y ))).

в модели M следует их истинность в модели N . Из локальной
выполнимости множества {(χΨ(A′, Y )}∪{ψ(A′, Y ) | ψ(A,B\A) ∈
Ψ(B)} и ω-насыщенности модели N следует выполнимость в N
этого множества, т. е. наличие множества B′ ⊆ N с условием
N |= Ψ′(B′), Ψ′(B′) = Ψ(B′) и Φ′(A′) 6 Ψ′(B′) для самодостаточ-
ного типа Ψ′(B′). Это снова означает, что существует требуемое
расширение g : B∼→B′ частичного изоморфизма f .

Из доказанной возможности расширений изоморфизмов f :
A∼→A′, сохраняющих формулы соответствующих самодостаточ-
ных типов Φ(A) и Φ′(A′) на основе известного метода перекид-
ки получаем, что модель M с константно выделенным множе-
ством A изоморфна счетной элементарной подмодели модели N
с константно выделенным множеством A′. Тогда в силу произ-
вольности выбора множеств A и A′ и насыщенности модели N
заключаем, что в модели M реализуется любой тип над конеч-
ным множеством и M — насыщенная модель.

Из возможности расширения частичных изоморфизмов f :
B∼→B′, сохраняющих формулы соответствующих самодостаточ-
ных типов Ψ(B) и Ψ′(B′), также следует, что если Ψ(B) = Ψ′(B),
то существует автоморфизм моделиM, расширяющий исходный
частичный изоморфизм между B и B′. Следовательно, tpM(B) =
tpM(B′). Из возможности расширения любого типа Φ(A) до его
самодостаточного замыкания Φ(A), вытекающей из теоре-
мы 2.3.5, следует, что любое конечное множество A ⊆ M расши-
ряется до своего самодостаточного замыкания A ⊆ M такого, что
тип tp(A) содержит тип Φ(Y ) для самодостаточного типа Φ(A)
и выполняется Φ(Y ) ` tp(A). ¤
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Из теоремы 2.5.1, теоремы компактности и леммы 1.2.3 выте-
кает, что для любого самодостаточного класса (T0; 6), обладаю-
щего свойством однородного t-амальгамирования, если класс K
имеет конечные замыкания, то (T0; 6)-генерическая теория
T = Th(M) ∆(T0)-базируема, где ∆(T0) — множество, состо-
ящее из всевозможных формул, которые получаются навешива-

нием кванторов существования на конъюнкции
n∧

i=1
ϕi(X) формул

ϕi(X) ∈ Φ(X), i = 1, . . . , n, где Φ(A) ∈ T0 для некоторого мно-
жества A. Таким образом, из теоремы 2.5.1 вытекает

Следствие 2.5.2. Если P — некоторое свойство формул,
сохраняющееся при переходе к булевым комбинациям формул,
(T0;6) — самодостаточный класс, обладающий свойством од-
нородного t-амальгамирования, и класс K имеет конечные за-
мыкания, то любая формула (T0; 6)-генерической теории обла-
дает свойством P тогда и только тогда, когда свойством P
обладает любая формула из множества ∆(T0).

В работе В. Харника и Л. Харрингтона [104] установлено, что
любая булева комбинация стабильных формул является стабиль-
ной формулой. На основании следствия 2.5.2 получаем

Следствие 2.5.3. Если (T0;6) — самодостаточный класс,
обладающий свойством однородного t-амальгамирования,
и класс K имеет конечные замыкания, то (T0; 6)-генерическая
теория стабильна тогда и только тогда, когда стабильна лю-
бая формула из множества ∆(T0).

§ 2.6. О свойстве конечных замыканий в слияниях
генерических классов

В работе [123] Е. Хрушовский определил механизм слияния
двух генерических теорий для получения сильно минимальной
теории, имеющей структуру с полями двух разных характери-
стик. Его техника получила в последнее время существенное раз-
витие в связи с вопросами существования слияний полей и слия-
ний векторных пространств, имеющих различные заданные свой-
ства (см. А. Баудиш, А. Мартин-Пизарро, М. Циглер [88]–[87];
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А. Хассон, М. Хилс [109]; К. Холланд [117], [118]; М. Циглер
[208]). Рассмотренные в параграфе 1.2 совмещения и раскраски
моделей в случае их счетности и однородности можно проин-
терпретировать как частные случаи слияния соответствующих
генерических классов.

Как показано в параграфе 2.3, каждый самодостаточный ге-
нерический класс порождает операцию самодостаточного замы-
кания на своей генерической модели. При слиянии генерических
классов эти операции посредством транзитивного замыкания рас-
ширяются до операции самодостаточного замыкания на генери-
ческой модели этого слияния. Тем самым возникает система ко-
нечных замыканий, порождающая новую, более общую опера-
цию конечных замыканий.

Поскольку насыщенность генерической модели обусловлена
формульной определимостью операции самодостаточного замы-
кания A каждого конечного множества A, возникает естествен-
ный вопрос о возможности построения слияния генерических
теорий, имеющих формульно определимые операции самодоста-
точных замыканий, с условием формульной определимости ре-
зультирующей операции самодостаточного замыкания.

В этом параграфе мы дадим точную формулировку обозна-
ченной проблемы слияния генерических классов и приведем до-
статочные условия существования таких слияний, при которых
все модели имеют конечные замыкания.

Пусть (T; 6) — генерический класс. Будем говорить, что
(T;6) обладает свойством конечных замыканий, если конечные
замыкания имеет любая модель (T; 6)-генерической теории.

Следующая теорема представляет характеризацию свойства
конечных замыканий для генерических классов, использующую
отношение доминирования.

Теорема 2.6.1. Генерический класс (T; 6) сигнатуры Σ
обладает свойством конечных замыканий тогда и только то-
гда, когда (T; 6) доминируется некоторым генерическим клас-
сом (T′; 6′) сигнатуры Σ, удовлетворяющим следующим усло-
виям:

1) каждый тип Φ(A) из класса T′ содержит описание неко-
торого своего минимального самодостаточного расширения
и ограничивается до типа над A из класса T;
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2) каждый тип p(x) ∈ S(∅) (T′;6′)-генерической теории
расширяется до некоторого типа q(y) ∈ S(∅), содержащего
некоторый тип [Φ(A)]AY , где Y — множество координат кор-
тежа y, Φ(A) ∈ T′.

Д о к а з а т е л ь с т в о. Предположим, что класс (T;6) об-
ладает свойством конечных замыканий. Тогда каждое конечное
множество в модели (T;6)-генерической теории T расширяется
до самодостаточного множества. Из счетности множества всех
типов [Φ(A)]AX , соответствующих типам Φ(A) ∈ T, вытекает, что
всевозможные попарно несовместные расширения типов Φ(A)
до типов Ψ(A), содержащих описания их самодостаточных рас-
ширений, формируют искомый генерический класс (T′; 6′), в ко-
тором отношение 6′ наследует отношение 6.

Обратно, предположим, что генерический класс (T;6) до-
минируется некоторым генерическим классом (T′; 6′) той же
сигнатуры и таким, что каждый тип Φ(A) из класса T′ содер-
жит описание некоторого своего минимального самодостаточно-
го расширения и ограничивается до типа над A из класса T,
а каждый тип p(x) ∈ S(∅) (T′; 6′)-генерической теории T рас-
ширяется до некоторого типа q(y) ∈ S(∅), содержащего неко-
торый тип [Φ(A)]AY , где Y — множество координат кортежа y,
Φ(A) ∈ T′. Тогда (T′;6′)-генерическая модель является (T; 6)-
генерической. Поскольку в каждом типе p ∈ S(T ) содержится
информация о существовании самодостаточных расширений его
реализаций, имеет место свойство конечных замыканий для ге-
нерического класса (T; 6). ¤

На основании условия 2 теоремы 2.6.1 из наличия свойства
конечных замыканий для класса (T; 6) вытекает счетность чис-
ла ограничений типов q(y) ∈ S(∅) на типы [Φ(A)]AY .

Генерический класс (T′; 6′), о котором идет речь в теоре-
ме 2.6.1, называется генерическим классом, свидетельствующем
о свойстве конечных замыканий для класса (T; 6). Подобное до-
бавление внешней информации о свойствах типов данного гене-
рического класса (T; 6), образующее обогащение генерического
класса, будем также называть свидетельством о соответствую-
щем свойстве.

Пусть (T0;60), (T1; 61) и (T2; 62) — генерические классы
сигнатур Σ0, Σ1 и Σ2 соответственно, Σ0 = Σ1∩Σ2, 60 = 61 ∩ 62.
Слиянием или сплавом классов (T1;61) и (T2;62) над классом
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(T0;60) называется генерический класс (T3; 63) сигнатуры Σ1∪
Σ2, для которого (T3; 63) ¹ Σi = (Ti; 6i), i = 1, 2. При этом
(T3;63)-генерическая модель (теория) называется слиянием или
сплавом (T1; 61)-генерической и (T2; 62)-генерической моделей
(теорий).

Слияния генерических классов (T1;61) и (T2; 62) над
(T0;60) будем обозначать через

(T1; 61) F(T0;60) (T2; 62).

Слияние (T1; 61)-генерической модели M1 (теории T1)
и (T2;62)-генерической модели M2 (теории T2) над (T0;60)-
генерической моделью M0 (теорией T0) обозначается через
M1 FM0 M2 (T1 FT0 T2).

Очевидно, что слияние классов (T1; 61) и (T2; 62) может не
существовать (если, например, цепь самодостаточных замыка-
ний данного множества относительно 61 и 62 не стабилизирует-
ся), а если существует, то, вообще говоря, определяется неодно-
значно. При этом наличие свойства конечных замыканий или од-
нородного t-амальгамирования для каждого из классов (T1; 61)
и (T2; 62) не влечет выполнение соответствующего свойства для
слияния.

Кроме того заметим, что свойство конечных замыканий мо-
жет выполняться как при наличии единых оценок мощностей за-
мыканий в зависимости от мощностей исходных конечных мно-
жеств, так и в случае отсутствии этих оценок при условии, что
мощность и структура замыкания описана в типе любого данно-
го конечного множества. Генерические классы, имеющие указан-
ные мощностные оценки будем называть PE-классами, а генери-
ческие классы без таких оценок — NPE-классами.

PE-Классами являются все примеры генерических классов,
подобных примерам Хрушовского, порождаемых неотрицатель-
ными предразмерностными функциями δ и имеющих насыщен-
ные генерические модели (см. обзоры Дж. Болдуин [73], [75];
Б. Пуаза [174]), а генерические классы свободных ациклических
(о них пойдет речь в третьей главе) и кубических теорий, явля-
ющиеся NPE-классами, описаны в работах автора [51] и [59].

На основании теоремы 2.6.1 свойство конечных замыканий
для слияний генерических классов очевидным образом характе-
ризуется в терминах обогащений генерических классов.
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Пусть Mi — (Ti; 6i)-генерические модели, i = 0, 1, 2,
M3 — (T1; 61) F(T0;60) (T2; 62)-генерическая модель, где
(Ti;6i) и (T1; 61)F(T0;60) (T2; 62) — самодостаточные гене-
рические классы.

Очевидно, что модель M0 элементарно вложима в модели
M1 ¹ Σ0 и M2 ¹ Σ0, а модели M1 и M2 — в модели M3 ¹ Σ1 и
M3 ¹ Σ2 соответственно. Поэтому в дальнейшем будем считать,
чтоM0 — элементарная подмодель моделейM1 ¹ Σ0 иM2 ¹ Σ0,
аM1 иM2 в свою очередь являются элементарными подмоделя-
ми моделей M3 ¹ Σ1 и M3 ¹ Σ2, и при этом M3 = M1 FM0 M2.

Обозначим через Cli операции самодостаточных замыканий
в моделях Mi, i = 1, 2, 3.

Очевидно, что для любого конечного множества A ⊆ M3

справедливо соотношение Cl3(A) ⊇ ⋃
n∈ω

An, где A0 = A, An+1 =

Cl1(Cl2(An)). Более того, в силу конечности множества Cl3(A)
цепь множеств An, n ∈ ω, стабилизируется, начиная с некоторо-
го n. Это число будем называть итерационным числом и обозна-
чать через nA(M3) или просто nA.

При наличии равенства Cl3(A) =
⋃

n∈ω
An для любого конеч-

ного множества A ⊆ M3 будем говорить, что операция Cl3 по-
рождается операциями Cl1 и Cl2 и писать Cl3 = 〈Cl1,Cl2〉.

Заметим, что условия совпадения или несовпадения операто-
ров Cl3 и 〈Cl1, Cl2〉 свидетельствуются некоторым обогащением
данного слияния генерических классов.

Слияния генерических классов в стиле Хрушовского (сплавы
Хрушовского) (см. Е. Хрушовский [123]; А. Баудиш, А. Мартин-
Пизарро, М. Циглер [88]–[87]; А. Хассон, М. Хилс [109]; К. Хол-
ланд [117], [118]; М. Циглер [208]), определяемые неотрицатель-
ными линейными предразмерностными функциями δi классов
(Ti;6i), i = 0, 1, 2, c неотрицательными линейными предразмер-
ностными функциями слияния

δ(A) = δ1(A) + δ2(A)− δ0(A),

вообще говоря, не имеют замыкания вида 〈Cl1, Cl2〉, поскольку
замкнутые относительно Cl1 и Cl2 множества (с неуменьшаемы-
ми значениями δ1(A) и δ2(A)) могут быть незамкнуты относи-
тельно Cl3 (суммарное число весов связей относительно δ1(A)
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и δ2(A) может превосходить число элементов учитываемых при
подсчете δ(A)). При этом, итерационные числа nA могут быть
неограниченными: sup{nA} = ∞.

Теории графов Хервига [113] и теории орграфов, о которых
пойдет речь в четвертой главе, также можно рассматривать как
сплавы Хрушовского. При этом, счетная графовая сигнатура,
снабженная весами ребер или дуг, позволяет проинтерпретиро-
вать эти теории T как слияния счетного множества теорий Tk

сигнатур {I(2)
k }, k ∈ ω, удовлетворяющих условию ClT 6= 〈Clk〉k∈ω,

где ClT — самодостаточное замыкание в генерической модели
теории T , а Clk — самодостаточные замыкания в генерических
моделях теорий Tk, k ∈ ω.

Несущественные совмещения M3 моделей M1 и M2 с тож-
дественными замыканиями Cl1 и Cl2 порождают тождественное
замыкание Cl3. Другие примеры слияний генерических клас-
сов с условием Cl3 = 〈Cl1, Cl2〉 представлены в третьей главе.

В дальнейшем в этом параграфе мы будем рассматривать
операции замыкания Cl3, порожденные операциями Cl1 и Cl2.
Зафиксируем некоторое слияние генерических классов

(T3;63) ­ (T1; 61) F(T0;60) (T2; 62).

Следующее утверждение представляет очевидную (в силу тео-
ремы компактности) характеризацию сохранения свойства ко-
нечных замыканий при переходе от классов (T1;61) и (T2; 62)
к классу (T3;63).

Предложение 2.6.2. Генерический класс (T3; 63) не обла-
дает свойством конечных замыканий тогда и только тогда,
когда в (T3; 63)-генерической модели найдется последователь-
ность An, n ∈ ω, равномощных конечных множеств, у кото-
рых замыкания Cl3(An) получаются применением не менее n
итераций относительно Cl1 и Cl2, и описание неограниченного
числа итераций для указанных множеств совместно с (T3; 63)-
генерической теорией.

В качестве иллюстрации приведем пример слияния (T3; 63)
генерических классов, для которого выполняется Cl3 = 〈Cl1, Cl2〉
и не имеет место свойство конечных замыканий.

П р и м е р 2.6.1. Пусть (Ti; 6i) — генерические классы гра-
фовых сигнатур {Q(2)

i }, i = 1, 2, типы которых описывают по-
парно непересекающиеся ребра так, что каждая вершина либо
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изолирована, либо принадлежит ровно одному ребру, не являю-
щемуся петлей. При этом потребуем, чтобы выполнялись следу-
ющие условия:

1) число ребер и число изолированных вершин не ограниче-
ны;

2) каждый конечный граф с заданным числом ребер и с за-
данным числом изолированных вершин представлен некоторым
типом из Ti;

3) если вершина a принадлежит множеству A, где Φ(A) ∈ Ti

и в описании Φ(A) указано, что a принадлежит ребру [a, b], то
b ∈ A;

4) отношения 61 и 62 совпадают с отношениями включения.
Заметим, что самодостаточное замыкание любого конечного

множества A в (Ti; 6i)-генерической модели получается добав-
лением к каждому концу ребра, лежащему в A, другого конца
этого ребра.

Определим теперь слияние генерических классов (T1; 61)
и (T2; 62), позволив каждой вершине быть либо изолированной,
либо принадлежать одному ребру, либо принадлежать двум реб-
рам разных цветов (Q1 и Q2), так, чтобы в описаниях типов
содержалась информация лишь о конечных цепях, но имеющих
любую заданную длину.

Самодостаточными множествами (T3; 63)-генерической мо-
дели являются конечные множества, замкнутые относительно
добавления противоположных концов ребер. Вместе с тем, нали-
чие неограниченных цепей означает существование счетной мо-
дели (T3; 63)-генерической теории, имеющей бесконечную цепь.
Никакой элемент этой цепи не содержится в самодостаточном
множестве, которое по определению должно быть конечным. ¤

При практическом построении операции Cl3 с нетождествен-
ными замыканиями Cl1 и Cl2 и сохранением свойства конечных
замыканий уместно пользоваться принципом минимизации ите-
раций, или MI-принципом, при котором итерационные числа nA

минимальны. Эта минимизация может мажорироваться оцен-
ками f чисел nA в зависимости от мощностей |A|: nA ≤ f(|A|).
Если существует мажорирующая оценка числа итераций f для
всех множеств A, входящих в самодостаточные типы Φ(A) ∈ T3,
сохраняющаяся при переходе к самодостаточным амальгамам
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в классе T3, то эта оценка будет иметь место во всех моделях
(T3;63)-генерической теории. Из наличия мажорирующей оцен-
ки для генерического класса (T3; 63) вытекает свойство конеч-
ных замыканий для этого класса. Тем самым, справедливо сле-
дующее

Предложение 2.6.3. Пусть класс (T3; 63) совпадает с ге-
нерическим классом (T1; 61) F(T0;60) (T2;62), Cl3 = 〈Cl1, Cl2〉,
классы (Ti; 6i) обладают свойством конечных замыканий, i =
1, 2, и существует мажорирующая оценка числа итераций для
класса (T3;63). Тогда класс (T3; 63) обладает свойством конеч-
ных замыканий.

Укажем достаточное условие существования минимальной ма-
жорирующей оценки (nA ≡ 1) для слияния

(T3;63) ­ (T1; 61) F(T0;60) (T2; 62),

при котором замыкания Cl1 и Cl2 могут быть одновременно не-
тождественными.

Предположим, что на носителе (T3;63)-генерической моде-
ли M3 можно определить (не обязательно формулой) отноше-
ние эквивалентности E, удовлетворяющее следующим условиям
для любого конечного множества A ⊆ M3:

1) Cl1(A) =
⋃

a∈A

Cl1(A ∩ E(a));

2) Cl2(C) = C для любого множества C, удовлетворяющего
условию Cl2(A) ⊆ C ⊆ ⋃

a∈Cl2(A)

E(a).

Тогда будем говорить, что (Cl1,Cl2) — E-ступенчатая спе-
циальная система замыканий с условием минимальности, или
ESSM-система.

Покажем, что при наличии ESSM-системы (Cl1, Cl2) суще-
ствует минимальная мажорирующая оценка числа итераций для
самодостаточного класса (T3; 63). Действительно, пусть A — ко-
нечное множество в модели (T3;63)-генерической теории. То-
гда множество B ­ Cl1(Cl2(A)) Cl1-замкнуто, поскольку опера-
ция Cl1 транзитивна, а Cl2-замкнутость множества B вытекает
из того, что B ⊆ ⋃

a∈Cl2(A)

E(a).
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Следующее обобщение понятия ESSM-системы гарантирует
существование мажорирующей оценки числа итераций для сли-
яния (T3;63).

Предположим, что на носителе (T3; 63)-генерической мо-
дели M3 можно определить (не обязательно формулой) отноше-
ние эквивалентности E, удовлетворяющее следующим условиям
для любого конечного множества A ⊆ M3, где M3 |= Φ(A) для
некоторого типа Φ(A) ∈ T3:

1) Cl1(A) =
⋃

a∈A

Cl1(A ∩ E(a));

2) если C ⊆ ⋃
a∈Cl2(A)

E(a) и Cl2(C) ⊆ ⋃
a∈Cl2(A)

E(a), то

Cl2(C) = C;

3) существует конечное число mA E-классов E1, . . . , EmA , опи-

санное некоторой формулой из Φ(A) и такое, что Cl3(A) ⊆
mA⋃
i=1

Ei.

Тогда будем говорить, что (Cl1,Cl2) — E-ступенчатая спе-
циальная система замыканий, или ESS-система.

Покажем, что при наличии ESS-системы (Cl1, Cl2) существу-
ет минимальная мажорирующая оценка числа итераций для са-
модостаточного класса (T3; 63). Действительно, пусть A — ко-
нечное множество в модели (T3; 63)-генерической теории. Тогда
число итераций ограничивается значением mA + 1, поскольку

каждая итерация определяет подмножество
mA⋃
i=1

Ei, а при стаби-

лизации числа E-классов, содержащих результат двух последо-
вательных итераций, в силу условий 1 и 2 получается одновре-
менно Cl1- и Cl2-замкнутое множество.

Таким образом, справедлива следующая

Теорема 2.6.4. Пусть класс (T3; 63) совпадает с генериче-
ским классом (T1; 61)F(T0;60)(T2;62), (Cl1, Cl2) — ESS-система,
и классы (Ti;6i), i = 1, 2, обладают свойством конечных замы-
каний. Тогда класс (T3;63) обладает свойством конечных за-
мыканий.

Генерический класс (T3; 63), о котором идет речь в теореме
2.6.4, обозначим через (T1; 61) FESS

(T0;60) (T2; 62).

83



Пусть (Ti; 6i), (T′
i;6′

i), i = 1, . . . , n, — генерические классы,
удовлетворяющие следующим условиям:

1) (T′
1; 6′

1) = (T1; 61);
2) (T′

i+1; 6′
i+1) = (T′

i; 6′
i)FESS

(T′i;6′i)∩(Ti;6i)
(Ti; 6i), i = 1, . . . ,

n− 1.
Генерический класс (T′

n;6′
n) обозначим через

(FESS)n
i=1(Ti;6i).

Из теоремы 2.6.4 вытекает, что свойство конечных замыканий
сохраняется при конечном итерировании процессов построения
генерических классов на основе ESS-систем, т. е. при переходе от
классов (Ti;6i), i = 1, . . . , n, к классу (FESS)n

i=1(Ti; 6i).

Следствие 2.6.5. Любой класс вида (FESS)n
i=1(Ti; 6i) обла-

дает свойством конечных замыканий.



Г л а в а 3

ГЕНЕРИЧЕСКИЕ ЭРЕНФОЙХТОВЫ
ТЕОРИИ

§ 3.1. Генерическая теория с несимметричным от-
ношением полуизолированности

Приводимое в этом и следующем параграфах построение
устанавливает существование властного орграфа Γgen = 〈X, Q〉
с неограниченными длинами кратчайших маршрутов, который
с помощью некоторой несущественной Q-упорядоченной раскрас-
ки обогащается до счетной насыщенной модели M с неглавным
властным типом p∞(x) ∈ S1(∅) таким, что орграф

〈
p∞(M);Rp∞

Q (M)
〉

изоморфен орграфу Γgen, где

Rp∞
Q (M) = {(a, b) ∈ (p∞(M))2 | M |= Q(a, b)}.

Построение орграфа Γgen будем проводить одновременно
с его раскрашиванием. При этом будет использоваться описан-
ный в предыдущей главе синтаксический подход к построению
генерических моделей.

Пусть Γ1 = 〈X1;Q1〉 — цветной подграф бесконтурного цвет-
ного орграфа Γ2 = 〈X2; Q2〉 с раскраской Col : X2 → ω ∪ {∞},
a и b — вершины из X1, S — (a, b)-маршрут, не лежащий цели-
ком в Γ1. Маршрут S называется внешним (над Γ1), если лишь
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концы из S принадлежат X1. Обозначим через W (Γ1, Γ2) множе-
ство троек (a, b, n), a, b ∈ X1, n ∈ ω \ {0, 1}, таких, что элементы
a и b связаны в Γ2 кратчайшим (a, b)-маршрутом длины n, и
при этом любой кратчайший (a, b)-маршрут является внешним
над Γ1. Тройка 〈X1, Q1,W1〉, где W1 = W (Γ1,Γ2), называется
c0-подграфом орграфа Γ2, если множество вершин X1 конечно.

Отношение “быть c0-подграфом” обозначим через ⊆c0 , т. е.
при наличии множества W1 будем писать 〈Γ1,W1〉 ⊆c0 Γ2. Си-
стема 〈Γ1,W1〉 часто будет рассматриваться самостоятельно, на-
зываться c-графом и обозначаться также через 〈X1, Q1, W1〉, где
Γ1 = 〈X1; Q1〉. При этом множество X1 будет называться носи-
телем c-графа 〈Γ1,W1〉.

Для c-графа Γ1 = 〈X1, Q1,W1〉 обозначим через cc(Γ1) ми-
нимальный орграф Γ ⊇ Γ1, содержащий для каждой тройки
(a, b, n) ∈ W1 кратчайший (a, b)-маршрут длины n и такой, что
каждая вершина из Γ \ Γ1 имеет степень 2.

Определим отношение ⊆c на классе c-графов. c-Граф Γ̃1 =
〈X1, Q1, W1〉 называется c-подграфом c-графа Γ̃2 = 〈X2, Q2,W2〉
и пишем Γ̃1 ⊆c Γ̃2, если X1 ⊆ X2, Q1 = Q2 ∩ (X1)2 и W1 =
W (Γ̃1, cc(Γ̃2)).

Очевидно, что отношение ⊆c образует частичный порядок
на любом множестве c-графов.

В дальнейшем в этом параграфе через A,B, . . . (возможно
с индексами) будем обозначать c-графы, через A,B, . . . — их со-
ответствующие носители. При этом пустое множество ∅ счита-
ется носителем c-графа, имеющего вид 〈∅,∅,∅〉. Запись A ⊆c N
будет часто использоваться также вместо записи A ⊆c0 N .

Обозначим через K∗ класс всех c-графов A = 〈A,QA,WA〉
таких, что для любых вершин a, b ∈ A существование (a, b)-
маршрута (в графе 〈A; QA〉 или в виде условия (a, b, n) ∈ WA)
влечет неравенство Col(a) ≤ Col(b).

Очевидно, что любой c-подграф c-графа из класса K∗ также
является c-графом из класса K∗.

Обозначим через K класс всех цветных бесконтурных оргра-
фов, у которых каждый c-подграф принадлежит классу K∗.

Если A и B — c0-подграфы орграфа N из класса K, то мно-
жества A ∩ B и A ∪ B являются носителями c0-подграфов ор-
графа N , которые будем обозначать через A ∩N B и A ∪N B
соответственно.
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Очевидно, что значение A∩N B не зависит от выбора оргра-
фа N , а значение A∪N B может меняться при смене орграфа N .
В дальнейшем в вышеуказанных записях мы будем опускать ин-
декс N , если из контекста будет ясно о каком орграфе идет речь.

Если A, B = 〈B, QB,WB〉 и C = 〈C, QC ,WC〉 — c-графы, A =
B ∩ C, то свободной c-амальгамой c-графов B и C над A (обозна-
чаемой через B∗AC) называется c-граф 〈B∪C, QB∪QC ,WB∪WC〉.

Очевидно, что свободная c-амальгама B ∗A C существует для
любых c-графов A,B, C с условием A = B∩C. При этом c-графы
A, B и C являются c-подграфами c-графа B ∗A C.

Разнозначное отображение f : A → B называется c-вложени-
ем c-графаA = 〈A,QA, WA〉 в c-граф B = 〈B,QB,WB〉 (обознача-
ется f : A →c B), если f — вложение цветного графа A = 〈A,QA〉
в цветной граф B = 〈B, QB〉 такое, что WB ∩ (f(A)× f(A)×ω) =
{(f(a1), f(a2), n) | (a1, a2, n) ∈ WA}.

c-Графы A и B называются c-изоморфными, если существует
c-вложение f : A →c B с условием f(A) = B. При этом отобра-
жение f называется c-изоморфизмом между A и B, а c-графы A
и B — c-изоморфными копиями.

Разнозначное отображение f : A → N называется c-вложени-
ем c-графа A в орграф N (обозначается f : A →c N ), если f —
c-вложение c-графа A в c0-подграф f(A) орграфа N , имеющий
носитель f(A).

Лемма 3.1.1. (амальгамационная лемма). Класс K∗ удовле-
творяет c-амальгамационному свойству (c-AP), т. е. для любых
c-вложений f0 : A →c B и g0 : A →c C, где A,B, C ∈ K∗, суще-
ствует c-граф D ∈ K∗ и c-вложения f1 : B →c D и g1 : C →c D
такие, что f0 ◦ f1 = g0 ◦ g1.

Д о к а з а т е л ь с т в о. Без ограничения общности можно
считать, что A ⊆c B и A ⊆c C. Очевидно, что в качестве D
годится c-граф B ∗A C. ¤

Обозначим через K∗
0 подкласс класса K∗, порожденный из

множества цветных орграфов Γα,β,γ = 〈{0, 1, 2}, {(0, 1), (0, 2),
(1, 2)}〉, где Col(0) = α, Col(1) = β, Col(2) = γ, α ≤ β ≤ γ,
γ ∈ ω ∪ {∞}, операциями взятия c-подграфов, c-изоморфных
копий, свободных c-амальгам, операции, позволяющей для лю-
бого c-графа A и любой его пары вершин (a, b), Col(a) ≤ Col(b),
не связанной маршрутами в графе cc(A), добавлять к множе-
ству WA одну произвольно выбранную тройку (a, b, m), где m —
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натуральное число, большее максимальной из длин кратчайших
маршрутов в графе cc(A), а также обратной операции, позволя-
ющей удалять произвольную тройку (a, b, m) из множества WA
c-графа A.

Операцию добавления к записям W информации об указан-
ных выше маршрутах назовем операцией трассировки, а опера-
цию удаления информации об этих маршрутов — операцией дет-
рассировки.

По определению каждый c-граф A снабжен некоторой рас-
краской Col : A → ω∪{∞}. Функция Col′ : A → ω∪{∞} называ-
ется допустимой перераскраской c-графа A, если после замены
функции Col на функцию Col′ образуется c-граф из класса K0.
c-Граф, получаемый в результате перераскраски, обозначим че-
рез A(Col′).

Лемма 3.1.2. Если A — c-граф из класса K∗
0, Col′ — его до-

пустимая перераскраска, то c-граф A(Col′) принадлежит клас-
су K∗

0.
Д о к а з а т е л ь с т в о легко проводится индукцией по числу

шагов построения c-графа A из графов Γα,β,γ . ¤
Обозначим через K0 класс всех цветных бесконтурных ор-

графов, у которых каждый конечный подграф образует c-граф
из класса K∗

0.

Теорема 3.1.3. Существует счетный цветной насыщенный
орграф M∈ K0, удовлетворяющий следующим условиям:

1) если f : A →c M и g : A →c B — c-вложения и B ∈ K∗
0,

то существует c-вложение h : B →c M такое, что f = g ◦ h;
2) если A и B — c-изоморфные c-подграфы орграфа M, то

tpM(A) = tpM(B);
3) раскраска обеднения M ¹ Q модели M до графовой сигна-

туры Σ = {Q} несущественна и Q-упорядочена;
4) формула Q(x, y) является главной формулой в теории

Th(M ¹ Q).

Д о к а з а т е л ь с т в о. Модель M строится с помощью
амальгамационной леммы в виде объединения c-графов (An)n∈ω,
An ⊆c An+1, из класса K∗

0. При этом требуется выполнение сле-
дующего свойства: для любого c-графа A ⊆c An и любого
c-графа B ∈ K∗

0 с условием A ⊆c B существует копия C ⊆c M
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c-графа B над A, такая, что C является c-подграфом орграфаAm

при некотором m > n. Более того, цвета элементов из C \ A
при взятии графовых копий над A распределяются произволь-
ным допустимым способом, т. е. так, чтобы для любых вершин
a, b ∈ C из существования (a, b)-маршрута следовало неравенство
Col(a) ≤ Col(b). Возможность осуществления всевозможных ука-
занных распределений цветов вытекает из леммы 3.1.2.

Из счетности числа требований следует существование счет-
ной модели M, удовлетворяющей всем указанным условиям.

Покажем, что модельM насыщена. ПустьM′ — ω-насыщен-
ная модель теории Th(M), A ⊆c M, A′ ⊆c M′ и f : A →c A′ —
c-изоморфизм. Если A′ ⊆c B′ ⊆c M′, то из конструкции моде-
ли M следует существование c-изоморфной копии B c-графа B′
над A′, реализующейся над A вM. Это означает, что существует
c-изоморфизм g : B →c B′, расширяющий c-изоморфизм f .

Пусть теперь A ⊆c B ⊆c M, X и Y — непересекающиеся мно-
жества переменных, биективно соответствующие множествам A
и B \ A, ϕn(X) (соответственно ψn(X, Y )), n ∈ ω, — формула,
описывающая

а) конечные цвета элементов из A (из B);
б) отрицания цветов, не превосходящих n, для элементов изA

(из B) бесконечного цвета;
в) существование и длины маршрутов, связывающих элемен-

ты из A (из B);
г) отсутствие связывающих элементы из A (из B) маршру-

тов длины, не превосходящей n, если элементы маршрутами не
связаны.

Тогда в силу конструкции модели M справедливо

M |= ∀X (ϕn(X) → ∃Y ψn(X, Y )),

и, значит,
M′ |= ∀X (ϕn(X) → ∃Y ψn(X, Y )).

Отсюда следует, что множество формул {ψn(A′, Y ) | n ∈ ω}
локально выполнимо в M′ и, следовательно, выполнимо в M′
в силу ω-насыщенности модели M′. Это означает, что найдет-
ся c-граф B′ ⊆c M′, где A′ ⊆c B′, и c-изоморфизм g : B → B′,
расширяющий c-изоморфизм f .
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Из доказанной возможности расширений любых c-изомор-
физмов f : A →c A′ на основе известного метода перекидки
получаем, что модель M с выделенными константами, образу-
ющими носитель c-графа A, изоморфна счетной элементарной
подмодели моделиM′ с выделенными константами, образующи-
ми носитель c-графа A′. Тогда в силу произвольности выбора
c-изоморфных c-графов A и A′ и насыщенности модели M′ за-
ключаем, что в моделиM реализуется любой тип над конечным
множеством, M — насыщенная модель и теория Th(M) мала.

Из возможности расширения c-изоморфизмов c-графов, ле-
жащих в насыщенных моделях, также следует, что если A и B —
c-изоморфные c-подграфы цветного орграфа M, то существует
автоморфизм моделиM, расширяющий исходный c-изоморфизм
между A и B. Следовательно, tpM(A) = tpM(B).

Поскольку тип любого c-графа изM определяется формула-
ми, содержащими не более двух свободных переменных и описы-
вающими цвета элементов, а также существование маршрутов
между элементами, раскраска орграфа M ¹ Q несущественна.
Из неубывания номеров цветов при движении по маршрутам сле-
дует Q-упорядоченность раскраски.

Если в модели M ¹ Q элементы a и b связаны дугой, то
тип tp(a ˆ b) определяется формулой Q(x, y) и, следовательно,
Q(x, y) — главная формула теории Th(M ¹ Q). ¤

Отметим, что доказательство теоремы 3.1.3 по существу по-
вторяет доказательство теоремы 2.5.1 применительно к генери-
ческому классу T0 типов, соответствующих c-графам. При этом,
установлено, что класс T0 обладает свойством однородного t-
амальгамирования.

Теория T0 ­ Th(M) цветного орграфа, построенного при
доказательстве теоремы 3.1.3, называется K∗

0-генерической тео-
рией, а ее счетная насыщенная модель M — K∗

0-генерической
моделью.

Из конструкции теории T0 следует, что для любой моделиM′
теории T0 из M′ |= Q(a, b) следует (a, b) ∈ IECTM′ , т. е. тип
tpx ˆ y(aˆb) определяется формулой Q(x, y), а также цветами эле-
ментов a и b. Таким образом, из предложения 1.2.13 и теоремы
3.1.3 вытекает

Следствие 3.1.4. Отношение полуизолированности SIp∞(x)
несимметрично.

В дальнейшем мы установим, что орграф Γgen ­ M ¹ Q об-
ладает свойствами, указанными в начале настоящего параграфа.
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Пусть A — c-подграф модели M, a, b — элементы из A. Рас-
смотрим c-граф B, полученный добавлением к c-графу A эле-
мента c такого, что Col(c) ≤ min{Col(a),Col(b)}, а также добав-
лением дуг (c, a) и (c, b). Очевидно, что c-граф B принадлежит
классу K∗

0 и его копия расширяет c-граф A в модели M. Тогда
выполняется

T0 ` ∀x, y (Colk(x)∧Colm(y) → ∃≥ωz (Coln(z)∧Q(z, x)∧Q(z, y)))

для любых k,m, n с условием n ≤ min{k, m}. В частности, ес-
ли a и b — реализации типа p∞(x), то найдется реализация c |=
p∞ такая, что |= Q(c, a) ∧ Q(c, b). Следовательно, орграф Γ∞ =〈
p∞(M);Rp∞

Q (M)
〉

обладает свойством попарного пересечения.
Транзитивность группы Aut(Γ∞) очевидна. Формула Rp∞

Q (x, y)
является главной в теории Th(Γ∞) по теореме 3.1.3. Из кон-
струкции теории T0 вытекает равенство aclΓ∞({a}) = {a} для
любого a ∈ p∞(M). Следовательно, Γ∞ — властный орграф.

По конструкции орграф Γ∞ изоморфен орграфу Γgen и по-
следний также является властным орграфом. Заметим также,
что в силу конструкции орграф Γ−1

gen = 〈M ; Q−1〉 изоморфен ор-
графу Γgen.

Таким образом, справедливо

Следствие 3.1.5. Орграфы Γgen и Γ−1
gen являются властны-

ми.

В силу конструкции моделиM для любых элементов a1, . . . , an

найдутся элементы bi ∈ Q(ai,M), i = 1, . . . , n, попарно несравни-
мые относительно

⋃
n∈ω

Qn. Из определения класса K∗
0 следует су-

ществование элемента c ∈
n⋂

i=1
Q(bi,M) и, значит,

n⋂
i=1

Q2(ai,M) 6=
∅. По теореме компактности, а также в силу бесконтурности ор-
графа с отношением Q2 найдется последовательность (an)n∈ω

с условием |= Q2(ai, aj) ⇔ i < j. Отсюда и из бесконтурности
орграфа Γgen вытекает, что формула ϕ(x, y1 ŷ2) ­ Q2(y1, x) ∧
Q2(x, y2) имеет свойство дерева (см. [10]) и на основании крите-
рия простоты (см. следствие 2.8.9 в книге Ф. Вагнера [27]) спра-
ведливо

Следствие 3.1.6. Теория T0 не проста.
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Остается открытым вопрос об отсутствии свойства строгого
порядка теории T0. В пользу позитивного ответа на него указы-
вает тот факт, что на универсуме нет бесконечных частичных
порядков по отношениям Qn, а в процессе построения генериче-
ской модели используются лишь свободные амальгамы.

Теорема 3.1.7. 1. Тип q теории T0 является главным то-
гда и только тогда, когда любые два различных элемента ai и aj

из любой реализации a типа q соединены некоторым (ai, aj)-
маршрутом или (aj , ai)-маршрутом, и все элементы реализа-
ций типа q имеют конечные цвета.

2. Тип q теории T0 реализуется в моделиMp∞ тогда и толь-
ко тогда, когда для любой реализации a типа q любые два ее раз-
личных элемента ai и aj соединены некоторым (ai, aj)-маршру-
том или (aj , ai)-маршрутом и выполняются следующее усло-
вие: если среди элементов кортежа a есть элементы конечно-
го цвета, af — элемент конечного цвета, являющийся общим
концом маршрутов, связывающих все элементы конечных цве-
тов с элементом af , и если среди элементов кортежа a есть
элементы бесконечного цвета, a∞ — элемент бесконечного цве-
та, являющийся общим началом маршрутов, связывающих все
элементы бесконечных цветов с элементом af , то существует
(af , a∞)-маршрут.

Д о к а з а т е л ь с т в о. Пусть q — произвольный тип тео-
рии T0, a — реализация типа q.

1. Предположим, что q — главный тип. Тогда из неизолиро-
ванности типа p∞ следует, что цвета всех элементов ai ∈ a конеч-
ны. Предположим, что существуют различные элементы ai, aj ∈
a, не связанные ни (ai, aj)-маршрутами, ни (aj , ai)-маршрутами.
Тогда по определению класса K∗

0, начиная с некоторого n, суще-
ствуют кортежи an, у которых соответствующие элементы an

i
и an

j соединены (an
i , an

j )-маршрутом длины n и не соединены
более короткими маршрутами, а остальные длины кратчайших
маршрутных связей те же, что и у элементов a, и при этом цвета
элементов кортежей an совпадают с соответствующими цветами
элементов кортежа a. Это означает, что тип q не изолируется
одной формулой, т. е. не может быть главным.

Предположим теперь, что любые два различных элемента
ai, aj ∈ a соединены некоторым (ai, aj)- или (aj , ai)-маршрутом
и все элементы из a имеют конечные цвета. Тогда в силу пункта 2
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теоремы 3.1.3 формула, описывающая цвета элементов, а также
длины кратчайших маршрутов, изолирует тип q, т. е. q — глав-
ный тип.

2. Предположим, что q — тип, реализующийся в моделиMp∞ ,
a — реализация типа p∞, ϕ(a, y) — совместная формула, для ко-
торой выполняется ϕ(a, y) ` q(y) и |= ϕ(a, a). Покажем, что все
различные элементы кортежа aˆa попарно связаны некоторыми
маршрутами. Действительно, если это не так, т. е. некоторые раз-
личные элементы ai, aj ∈ aˆa не связаны ни (ai, aj)-маршрутами,
ни (aj , ai)-маршрутами, то по определению класса K∗

0, начиная
с некоторого n, существуют кортежи anˆan, у которых соответ-
ствующие элементы an

i , an
j соединены (an

i , an
j )-маршрутом дли-

ны n и не соединены более короткими маршрутами, а остальные
длины кратчайших маршрутных связей те же, что и у элемен-
тов aˆa, и при этом цвета элементов кортежей anˆan совпадают
с соответствующими цветами элементов кортежа â a. В силу эли-
минации кванторов теории T0 согласно пункту 2 теоремы 3.1.3
для формулы ϕ(x, y) справедливо |= ϕ(an, an), начиная с некото-
рого n. Поскольку |= p∞(an), условие |= ϕ(an, an) противоречит
тому, что ϕ(a, y) ` q(y). Таким образом, все различные элементы
кортежа aˆa попарно связаны некоторыми маршрутами.

Теперь заметим, что из бесконтурности орграфа Γgen и упо-
рядоченности раскраски следует существование элемента af ∈ a
максимального конечного цвета среди всех элементов конечно-
го цвета (если элементы конечного цвета существует) и такого,
что все маршруты, связывающие элемент af с элементами из a,
имеющими конечные цвета, заканчиваются элементом af .

Вместе с тем, среди всех элементов из a, имеющих беско-
нечный цвет (если такие элементы существуют), найдется эле-
мент a∞ бесконечного цвета такой, что все маршруты, связыва-
ющие a∞ с остальными элементами бесконечного цвета, начина-
ются с элемента a∞.

Осталось заметить, что из упорядоченности раскраски сле-
дует существование (af , a)-маршрута, а из условия полуизоли-
рованности a∞ над a (посколькуMp∞ = Ma) следует существо-
вание (a, a∞)-маршрута. Таким образом, существует (af , a∞)-
маршрут, и необходимость условия, описанного в доказываемом
утверждении, для реализуемости типа q в модели Mp∞
установлена.
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Предположим теперь, что в кортеже a все различные эле-
менты попарно связаны маршрутами. Если в a нет элементов
бесконечного цвета, то в силу пункта 1 тип q является главным
и, значит, реализуется в моделиMp∞ . Если a содержит элементы
бесконечного цвета, то в силу упорядоченности раскраски тип q
изолируется множеством формул p∞(y∞) (где a∞ — элемент бес-
конечного цвета из a, из которого выходят все маршруты, свя-
зывающие элемент a∞ со всеми элементами a, имеющими беско-
нечный цвет), а также формулой, описывающей конечные цвета
элементов из a, а также длины кратчайших маршрутов, связы-
вающих элементы из a. Это означает, что тип q реализуется в мо-
дели Ma∞ . ¤

§ 3.2. Генерические теории с неглавными властны-
ми типами

В этом параграфе будет описана конструкция, позволяющая
строить теории с неглавными властными типами в виде обогаще-
ния теории T0 цветного орграфаM из предыдущего параграфа.

Очевидно, что неограниченность длин кратчайших маршру-
тов влечет существование не p∞-главного p∞-типа в теории T0.
В примере 1.3.1 показан механизм реализации не p-главного p-
типа в моделиMp. Мы будем пользоваться приведенным в этом
примере приемом для нахождения обогащения теории T0, имею-
щего властный 1-тип, определяемый множеством p∞(x).

Тип r(y1, . . . , yk) из S(T0) называется (p∞, y1)-главным, если
p∞(y1) ⊆ r(y1, . . . , yk) и для некоторой формулы ϕ(y1, . . . , yk) ∈ r
выполняется {ϕ(y1, . . . , yk)} ∪ p∞(y1) ` r(y1, . . . , yk).

Очевидно, что в модели Mp∞ реализуются в точности та-
кие типы q(y2, . . . , yk) из S(T0), которые содержатся в (p∞, y1)-
главных типах r(y1, y2, . . . , yk) ∈ S(T0).

В дальнейшем для превращения типа p∞ во властный тип
мы будем вводить для каждого типа q(y2, . . . , yk), не содержа-
щегося ни в одном (p∞, y1)-главном типе r(y1, y2, . . . , yk), новый
k-местный предикат Rq так, чтобы множество {Rq(y1, . . . , yk)} ∪
p∞(y1) было совместно и выполнялось {Rq(y1, . . . , yk)}∪p∞(y1) `
q(y2, . . . , yk).

С этой целью перенумеруем множество q всех типов
q(y1, . . . , yk) кортежей aq с попарно различными координатами,
для которых множества элементов из aq содержат не равное еди-
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нице число элементов конечного цвета и модельMaq не изоморф-
на простой модели или модели Mp∞ : q = {qm(y1, . . . , ykm) | m ∈
ω}. При этом на основании теоремы 3.1.3 типы qm(y1, . . . , ykm)
определяются типами c-изоморфизма Am своих реализаций am.
Поэтому в дальнейшем типы qm(y1, . . . , ykm) будут отождеств-
ляться с типами c-изоморфизма Am.

Для каждого типа qm(y) ∈ q и соответствующего типа c-
изоморфизма Am зафиксируем изолирующее тип qm(y) множе-
ство ΦAm

(y) формул ϕn(y), n ∈ ω, описывающих
а) конечные цвета элементов из am;
б) отрицания цветов, меньших n, для элементов из am, име-

ющих бесконечный цвет;
в) существование и длины кратчайших маршрутов, связыва-

ющих элементы из am;
г) отсутствие связывающих элементы из am маршрутов дли-

ны, меньшей n, если элементы маршрутами не связаны.
Теперь рассмотрим тип c-изоморфизма A произвольного кор-

тежа a = (a1, . . . , ak) множества A = {a1, . . . , ak} мощности k,
не лежащего в модели Mp∞ и содержащего s 6= 1 элементов ко-
нечного цвета.1 Обозначим через maxA значение max{Col(ai) |
Col(ai) ∈ ω, ai ∈ A}, если множество A содержит элементы ко-
нечного цвета. В противном случае, т. е. если цвета всех элемен-
тов из A бесконечны, положим maxA ­ 0.

Определим (k+1)-местные отношения RA, удовлетворяющие
следующим условиям:

1) ` ∃y RA(x, y) ↔ ∧
n<maxA

¬Coln(x);

2) для любого n ≥ maxA формула RA(x, y1, . . . , yk)∧Coln(x)
эквивалентна конъюнкции формулы ϕn(y) ∈ ΦA(y),2 и форму-
лы, описывающей следующие свойства:

1Ограничение s 6= 1 вводится лишь для удобства дальнейшего изложения.
Оно не умаляет общности рассмотрения типов c-изоморфизма для последу-
ющей реализации соответствующих типов в модели Mp∞ , поскольку к лю-
бому множеству, имеющему один элемент конечного цвета, можно добавить
еще один элемент конечного цвета, а для любых типов q1 и q2 из условий
Mp∞ |= q2 и q1 ⊆ q2 следует Mp∞ |= q1.

2Типы изоморфизма кортежей, реализующих формулу RA(a, y),
Col(a) = n ≥ maxA, аппроксимируют описание типа c-изоморфизма кор-
тежа a, которое при n → ∞ соответствует описанию типа c-изоморфизма
кортежа a.
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а) если 〈ai1 , . . . , air〉 (где i1 < . . . < ir) — кортеж всех эле-
ментов ai из a, имеющих бесконечный цвет, 〈aj1 , . . . , ajs〉 (где
j1 < . . . < js) — кортеж всех элементов aj из a, имеющих конеч-
ные цвета, то существуют элементы z0, . . . , zr−1 и u0, . . . , us−1

такие, что zr−1 = yir , выполняется Q(zm−1, zm) ∧ Q(zm−1, yim),
Col(zm−1) = n, m = 1, . . . , r − 1, us−1 = yjs , выполняет-
ся Q(um, um−1) ∧ Q(yjm , um−1), m = 1, . . . , s − 1, Col(um−1) =
max{Col(um),Col(yjm)} при 1 < m < s, Col(u0) = n при s > 1;
если s = 0, то x = z0; если r = 0, то x = u0; если r ≥ 1 и s ≥ 2, то
` Q(x, z0) ∧Q(x, u0);

б) в c-графе, состоящем из элементов x, y1, . . . , yk, z0, . . . , zr−1,
u0, . . . , us−1, нет дуг кроме дуг, указанных в пункте a и в описа-
нии A для элементов y, а также нет внешних кратчайших марш-
рутов длины, не превосходящей n, кроме внешних кратчайших
маршрутов, связывающих элементы y и описанных в A.3

Из пункта 2 вытекает, что если A и A′ — множества, несов-
падающие или совпадающие, но не являющиеся c-изоморфными
при сохранении фиксированных нумераций, то соответствующие
отношения RA и RA′ не пересекаются, начиная с некоторого цве-
та по первой координате.

Заметим, что предикаты RA, где A — типы изоморфизмов
элементов, имеющих бесконечный цвет, утончают графовую
структуру, не увеличивая множества двухместных отношений,
определяемых проекциями

∃y1, . . . , yi−1, yi+1, . . . , yk (RA(x, y) ∧ ϕ(x)) (3.1)

и

∃x, y1, . . . , yi−1, yi+1, . . . , yj−1, yj+1, . . . , yk (RA(x, y)∧ϕ(x)), (3.2)

где ϕ(x) — формула, выделяющая некоторое множество элемен-
тов, имеющих конечное или коконечное множество цветов. Дей-
ствительно, в силу определения отношения RA любое отноше-
ние, соответствующее проекции вида (3.1), определяется форму-
лой, описывающей переходы от x к yi с помощью некоторых Q-
маршрутов. Отношения, соответствующие проекциям вида (3.2),

3Это означает, что типы c-изоморфизмов множеств A имеют однозначное
расширение до типов c-изоморфизма, включающих элементы x, z0, . . . , zr−1,
u0, . . . , us−1, где x удовлетворяет типу p∞.
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определяются формулами, описывающими наличие или отсут-
ствие связей между yi и yj с помощью Q-маршрутов некоторой
ограниченной длины.

Тот же эффект наблюдается при взятии проекций отноше-
ний RA, где A — типы изоморфизмов элементов, имеющих ко-
нечные цвета.

При наличии в кортеже a как элементов бесконечного цвета,
так и элементов конечных цветов отношение RA для соответ-
ствующего типа изоморфизма A приводит к образованию новых
бинарных отношений посредством формул ψ(x, yi) вида (3.1),
где yi соответствует элементу некоторого конечного цвета l. При
этом, выполнимость или невыполнимость формулы ψ(an, al

i)
на реализациях an и al

i натуральных цветов n и l соответственно
характеризуется соотношением между цветом n и длиной крат-
чайшего (al

i, an)-Q-маршрута. Формулы вида (3.2) сохраняют, как
замечено выше, прежнюю графовую структуру.

Покажем, что при наличии указанного выше утончения гра-
фовой структуры посредством отношений RA, требуемое обо-
гащение можно осуществить новым построением генерической
модели M из c-графов, обогащенных конечными записями о по-
зитивных связях между элементами через промежуточные эле-
менты посредством проекций отношений RA.

Это построение начнем с описания классаK∗
1 конечных струк-

тур, снабженных конечными записями о взаимоотношении эле-
ментов, удовлетворяющими условиям 1 и 2. Поскольку искомая
генерическая модель обогащает K∗

0-генерическую модель, будем
считать, что каждое конечное множество A, входящее в K∗

1
и ограниченное на графовую сигнатуру {Q} c раскраской Col,
образует c-граф 〈A,Q,W 〉 из класса K∗

0. Кроме того, введение
отношений RAm

требует добавления к записи W позитив-
ной информации о взаимоотношении элементов по проекциям
∃yl1 , . . . , ylt RAm

(x, y) в соответствии с пунктом 2.
Перед завершением определения структур класса K∗

1 отме-
тим следующее. Как показано в теореме 3.1.3, тип c-изоморфизма
каждого c-графа A (т. е. информация о цветах элементов и о по-
парной связи элементов через кратчайшие маршруты) определя-
ет тип множества A в генерической модели. В определении каж-
дого отношения RA принадлежность каждого набора aˆa этому
отношению задается либо главной формулой, описывающей со-
отношение между элементами, лежащими в простой модели, ли-
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бо последовательностью формул (описанных в пункте 2), в кото-
рых локально описывается отсутствие связей между какими-то
элементами из a посредством маршрутов при сохранении фик-
сированных по длине связей между элементом a и элементами
из a.

Последнее описание, как замечено выше для бинарных от-
ношений, напрямую зависит от соотношения между цветами ап-
проксимаций an (в простой модели) элемента a (эти аппроксима-
ции назовем источниками) и длинами кратчайших routes между
соответствующими элементами аппроксимаций an (в простой мо-
дели) кортежа a (эти аппроксимации назовем последователями):
если номер цвета источника an не превосходит (неограниченных
при n → ∞) длин кратчайших routes между элементами после-
дователей an, то при наличии элементов z0, . . . , zr−1, u0, . . . , us−1,
описанных в пункте 2, отношение RA выполняется, а если но-
мер цвета источника an больше какой-то из неограниченных при
n → ∞ длин кратчайших маршрутов между элементами после-
дователя an, то при тех же условиях отношение RA выполнять-
ся не будет. В дальнейшем соотношения “номер цвета источни-
ка an — попарные, неограниченные при n →∞ длины кратчай-
ших маршрутов между элементами последователя an”, а также
между источниками и элементами последователей, имеющими
конечные цвета, будем для краткости называть соотношения-
ми CL.

Поскольку в генерической теории все n-типы определяются
2-типами, описывающими цвета элементов и длины кратчайших
маршрутов, соотношения CL можно охарактеризовать формула-
ми ρ(x, yi, yj), описывающими следующие условия:

i) возможность прохождения Q-маршрутом от элемента x,
соответствующего an, к промежуточному элементу z, имеющему
тот же цвет, что и x, и находящемся на удалении от элемента x,
равном максимальной из длин кратчайших (an, an

i )-маршрутов
и (an, an

j )-маршрутов, если цвета элементов ai и aj бесконечны;
ii) возможность прохождения Q−1-маршрутом от элемента x,

соответствующего an, к промежуточному элементу z, имеющему
тот же цвет, что и x, и находящемся на удалении от элемента x,
равном максимальной из длин кратчайших (an

i , an)-маршрутов
и (an, an

j )-маршрутов, если цвета элементов ai и aj конечны;
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iii) возможность перехода от промежуточного элемента z
к элементам yi и yj по некоторому фиксированному трехмест-
ному отношению RA∗(z, yi, yj), если цвета элементов ai и aj од-
новременно бесконечны или одновременно конечны;

iv) возможность прохождения Q-маршрутом фиксированной
длины от элемента x, соответствующего an, к элементу yi,
соответствующего элементу an

j , а также отсутствие возможно-
сти прохождения Q−1-маршрутом длины, не превосходящей n,
от элемента x к элементу yj , где элемент aj имеет цвет,
меньший n.4

Действительно, если набор an ˆ an принадлежит отноше-
нию RA, то выполняется условие на соотношение CL. Тогда в си-
лу конструкции генерической модели найдутся промежуточные
элементы z, о которых идет речь в описании формул ρ(x, yi, yj),
имеющие цвет элемента an и связанные с yi и yj указанными
выше отношениями.

Обратно, при наличии для набора anˆan, описаний фиксиро-
ванных цветов элементов и длин кратчайших маршрутов, соот-
ветствующих отношению RA, а также формул ρ(x, yi, yj), из сов-
падения цветов промежуточных элементов z и элемента x выте-
кает условие CL. Следовательно, по определению набор an ˆ an

принадлежит отношению RA.
В дальнейшем будем считать, что проекции вида (3.1) с эле-

ментами yi, имеющими конечные цвета, также представлены
формулами ρ(x, yi, yj), и при этом yi = yj .

Заметим также, что использование различных отношений RA
в формулах ρ эквивалентно использованию фиксированных от-
ношений RA∗ , взятие которых зависит лишь от конфигурации
цветов и длин кратчайших маршрутов для пар элементов. Та-
ким образом, формулы ρ(x, yi, yj) c отношениями RA∗ являются
трехместными индикаторами позитивных или негативных вхож-
дений формул ∃yl1 ...ylt RAm

(x, y) в типы теории рассматрива-
емой генерической модели. Эти индикаторы мы присоединим
как к описаниям типов c-изоморфизма Am при определении са-
мих отношений RAm

(формулы ρ(yi, yj , yk) или их отрицания
конъюнктивно добавляются к формулам ϕn(y)), так и к общим
описаниям типов кортежей. При этом за счет добавления фор-

4Описанное в этом пункте соотношение для (x, yi, yj) соответствует про-
екции некоторого отношения RA, оставляющей свободными координаты x,
yi и yj .
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мул ρ расширяется и сама сигнатура, обусловленная типами c-
изоморфизмаAm с добавлениями формул ρδ(yi, yj , yk), δ ∈ {0, 1}.
Эта расширенная сигнатура остается счетной в силу конечного
числа вариантов добавления позитивных формул ρ к каждому
типу c-изоморфизма.

Окончательно определяем, что класс K∗
1 состоит из всех ко-

нечных систем сигнатуры Col ∪ {Q} ∪ {RAm
| m ∈ ω}, которые

получаются из c-графов, принадлежащих классу K∗
0, добавлени-

ем согласованных с пунктом 2 отношений RAm
(с расширенными

c помощью формул ρ типами c-изоморфизмов Am) и всевозмож-
ных допустимых формул ρ(ai, aj , ak).

Конечные структуры A с конечными записями WA, обра-
зующие класс K∗

1, называются c1-структурами. Обозначим че-
рез K1 класс всех моделей сигнатуры Col∪{Q}∪{RAm

| m ∈ ω},
у которых каждое конечное подмножество образует c1-структуру
из класса K∗

1.
Понятие c1-вложения f : A →c1 B для c1-структур A и B,

при котором сохраняется соответствующая запись WA (Wf(A) =
WB ¹ f(A)), естественным образом обобщает понятие c-вложения.
Тем самым определяется и понятие c1-вложения f : A →c1 N
c1-структуры A в модель N из класса K1.

c1-Структуры A и B называются c1-изоморфными, если су-
ществует c1-вложение f : A →c1 B с условием f(A) = B.

Теорема 3.2.1. Существует счетная насыщенная модель
M∈ K1, удовлетворяющая следующим условиям:

а) если f : A →c1 M и g : A →c1 B — c1-вложения и B ∈ K∗
1,

то существует c1-вложение h : B →c1 M такое, что f = g ◦ h;
б) если A и B — c1-изоморфные c1-структуры в моде-

ли M, то tpM(A) = tpM(B);
в) обеднение модели M до сигнатуры Col ∪ {Q} является

K∗
0-генерической моделью;
г) каждая формула RA(a, y), где |= p∞(a), является главной,

и тип c1-изоморфизма каждой реализации формулы RA(a, y)
совпадает с типом c1-изоморфизма A.

Д о к а з а т е л ь с т в о существования счетной насыщенной
модели M из класса K1, удовлетворяющей условиям а–в, почти
слово в слово повторяет доказательство теоремы 3.1.3. При этом
в описание формул ϕn(X) и ψn(X, Y ) для каждой пары вершин
(a, b) добавляется следующая информация:
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а) позитивная информация о связях троек элементов с помо-
щью формул ρ, если указанные связи в c1-структурах существу-
ют;

б) отрицание связей троек элементов с помощью формул ρ,
в которых длины кратчайших маршрутов до промежуточных
элементов z не превосходят n, если указанные связи в c1-структу-
рах отсутствуют.

Покажем, что для любой реализации a типа p∞ и любого
предикатного символа RA формула RA(a, y) является главной.
Пусть b и c — произвольные кортежи, для которых |= RA(a, b)∧
RA(a, c). Тогда по определению отношения RA получаем, что
c1-структуры B и C, состоящие из элементов aˆ b и aˆc будут
c1-изоморфны. Из совпадения типов tpM(B) и tpM(C) вытекает
существование автоморфизма, фиксирующего элемент a и пере-
водящего b в c. Тем самым, tp(b/a) = tp(c/a) и, следовательно,
RA(a, y) — главная формула. Совпадение типов c1-изоморфизма
кортежей b и c с типом c1-изоморфизма A следует из определе-
ния формулы RA(x, y). ¤

Теория T1 ­ Th(M) модели M, которая строится для дока-
зательства теоремы 3.2.1, называется K∗

1-генерической теорией,
а сама счетная насыщенная модельM — K∗

1-генерической моде-
лью.

Поскольку в теории T1 каждый тип над пустым множеством
определяется типом соответствующей c1-структуры, а для каж-
дого типа q c1-структуры, не лежащей в простой модели, найдет-
ся главная формула ∃yl1 ...ylt RA(a, y) (где |= p∞(a)), для которой
∃yl1 ...ylt RA(x, y)(a, y) ` q, то в модели Mp∞ реализуются все
типы теории T1. Таким образом, тип p∞(x) является властным
типом и справедлива следующая

Теорема 3.2.2. Существует полная теория с неглав-
ным властным типом, обогащающая теорию T0.

Укажем требования, приводящие к построению теории T2 ⊃
T0, в которой все неглавные типы являются властными.

С этой целью переопределим отношения RA, заменив усло-
вие 1 на следующее условие:
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1′) `
(
∃y RA(x, y) ↔ ∧

n<maxA
¬Coln(x)

)
∧


∃y (RA(x, y) ∧ ϕn(y)) ↔

∧

t<max{maxA,n}
¬Colt(x)


 , n ∈ ω,

а условие 2 на условие 2′, которое получается из условия 2 заме-
ной формул ϕn(y) на формулы ϕn(y) ∧ ¬ϕn+1(y) с внесенными
в них формулами ρ.

Повторив описание класса K∗
1 с условиями 1′ и 2′, получа-

ем класс K∗
2 счетной сигнатуры, которую с точностью до пере-

именования символов можно считать совпадающей с сигнатурой
класса K∗

1. Конечные структуры A с конечными записями, об-
разующие класс K∗

2, называются c2-структурами. Обозначим
через K2 класс всех моделей сигнатуры Col ∪ {Q} ∪ {RAm

|
m ∈ ω}, у которых каждое конечное подмножество образует c2-
структуру из класса K∗

2. Аналогично понятию c1-вложения поня-
тие c2-вложения f : A →c2 B для c2-структурA и B, при котором
сохраняется соответствующая запись WA (Wf(A) = WB ¹ f(A)),
обобщает понятие c-вложения. Тем самым определяется и по-
нятие c2-вложения f : A →c2 N c2-структуры A в модель N
из класса K2.

Теорема 3.2.3. Существует счетная насыщенная модель
M∈ K2, удовлетворяющая следующим условиям:

а) если f : A →c2 M и g : A →c2 B — c2-вложения и B ∈ K∗
2,

то существует c2-вложение h : B →c2 M такое, что f = g ◦ h;
б) если A и B — c2-изоморфные c2-структуры в моде-

ли M, то tpM(A) = tpM(B);
в) обеднение модели M до сигнатуры Col ∪ {Q} является

K∗
0-генерической моделью;
г) каждая формула RA(a, y), где |= p∞(a), является главной,

и тип c2-изоморфизма каждой реализации формулы RA(a, y)
совпадает с типом c2-изоморфизма A;

д) каждая формула RA(x, a), где A — тип c2-изоморфизма
кортежа a, является главной, и каждая реализация формулы
RA(x, a) является реализацией типа p∞.

Д о к а з а т е л ь с т в о пунктов (а)–(г) повторяет доказа-
тельство соответствующих пунктов теоремы 3.2.1.
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Докажем пункт (д). Рассмотрим произвольную форму-
лу RA(x, a), где A — тип c2-изоморфизма кортежа a. Покажем,
что RA(x, a) — главная формула. Пусть b и c — произвольные
элементы, для которых |= RA(b, a) ∧ RA(c, a). Тогда по опреде-
лению отношения RA получаем, что c2-структуры B и C, состо-
ящие из элементов bˆa и cˆa будут c2-изоморфны. Из совпадения
типов tpM(B) и tpM(C) вытекает существование автоморфиз-
ма, фиксирующего кортеж a и переводящего b в c. Тем самым,
tp(b/a) = tp(c/a) и, следовательно, RA(x, a) — главная форму-
ла. Условие RA(x, a) ` p∞(x) следует из определения формулы
RA(x, y). ¤

Теория T2 ­ Th(M) модели M, которая строится для дока-
зательства теоремы 3.2.3, называется K∗

2-генерической теорией,
а сама счетная насыщенная модельM — K∗

2-генерической моде-
лью.

Из пункта (д) теоремы 3.2.3 вытекает, что для каждого не-
главного типа q(y) теории T2 в модели Mq реализуется тип p∞
и, следовательно, каждый неглавный тип является властным.
Более того, в силу предложения 1.1.3 введение предикатов RA
позволяет для любого кортежа a, имеющего некоторый тип c2-
изоморфизма Am, найти реализацию a типа p∞(x) такую, что
|= RA(a, a), и, следовательно, в силу предложения 1.1.3 мо-
дель Ma совпадает с моделью Ma. Таким образом, все про-
стые модели над кортежами, реализующими неглавные типы,
изоморфны модели Mp∞ и справедлива следующая теорема.

Теорема 3.2.4. Существует малая теория T2, обогащаю-
щая теорию T0 и удовлетворяющая условию |RK(T2)| = 2.

§ 3.3. Теория с тремя счетными моделями

Укажем сначала общие принципы обогащения теории T2, при-
водящие к построению теории T с |RK(T )| = 2 и свойством
(CEP).

Пусть a0, a
′
0, a1, a

′
1, . . . , an, a′n, a′′n, b0, b1, где b0 6= b1, — реали-

зации властного типа p∞(x) теории T2 такие, что Mai = Ma′i ,
i = 0, . . . , n, Man = Ma′′n , Mai ≺ Mai+1 , |= Q(ai+1, a

′
i), i =

0, . . . , n − 1, Man ≺ Mb0 , Man ≺ Mb1 , |= Q(b0, a
′
n) ∧ Q(b1, a

′′
n),

элементы b0 и b1 не связаны ни (b0, b1)-маршрутами, ни (b1, b0)-
маршрутами. Амальгамой взаимореализуемости моделей Mb0
и Mb1 над типом q кортежа 〈a0, a

′
0, a1, a

′
1, . . . , an, a′n, a′′n, b0, b1〉
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называется модель M (обозначаемая через Mb0 ∗q Mb1), являю-
щаяся обогащением объединенияMb0 ∪Mb1 двухместными пре-
дикатами Rq = {(b0, b1)} и R′

q = {(b1, b0)}.5
Обогатим теорию T2 до теории T с помощью всевозможных

двухместных предикатных символов Rq и R′
q так, чтобы для лю-

бых указанных выше реализаций a0, a
′
0, a1, a

′
1, . . . , an, a′n, a′′n, b0, b1

типа p∞ модельMb0 расширялась до простой модели над b0, со-
держащей амальгаму взаимореализуемости Mb0 ∗q Mb1 .

Более того, потребуем, чтобы в насыщенной модели обога-
щенной теории выполнялись условия 1′ и 2′ из параграфа 3.2,
а также следующие условия:

3) Rq(b0, y) и R′
q(b1, y) — главные формулы для любого

типа q;
4) отношение R∗ =

⋃
q
(Rq ∪R′

q) образует ациклический неори-

ентированный граф с неограниченными длинами кратчайших
маршрутов, составленный из попарно непересекающихся отно-
шений Rq ∪ R′

q, где R′
q = (Rq)−1, Rq ∩ R′

q = ∅ или Rq = R′
q,

с бесконечным числом образов и прообразов каждого элемента
по каждому из отношений Rq, R′

q;
5) каждая компонента связности по отношению R∗ состоит

из одноцветных элементов, и для каждого цвета α ∈ ω ∪ {∞}
существует бесконечно много компонент связности, состоящих
из элементов цвета α;

6) транзитивное замыкание отношения R∗ не пересекается
с транзитивным замыканием отношения Q;

7) компоненты связности по отношению R∗ образуют классы
эквивалентности, частично упорядоченные транзитивным замы-
канием отношения Q ∪ id.

При выполнении указанных условий модели Mb0 будут эле-
ментарно включать модели Mb1 и наоборот. При этом в силу
конструкции для любых моделей Ma и Mb, где a, b |= p∞, ес-
ли Ma ≺ Mb и в модели Mb реализуется некоторый неглавный
тип над a, то найдется такая последовательность a0, a

′
0, . . . , an, a′n

реализаций типа p∞, что a0 = a, Mai = Ma′i , i = 0, . . . , n,
5Заметим, что для c2-структур при рассмотрении амальгам взаимореа-

лизуемости элементы ai и a′i совпадают, поскольку каждая модель Mp∞
имеет лишь один элемент, над которым все реализующиеся в этой модели
типы являются главными. После введения отношений Rq и R′q таких элемен-
тов становится бесконечно много, и при рассмотрении элементарных цепей
нужно учитывать возможное различие элементов ai и a′i.
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Mai ≺ Mai+1 , |= Q(ai+1, a
′
i), i = 0, . . . , n − 1, Man = Mb. То-

гда любая предельная над типом p∞ модель M будет представ-
ляться в виде объединения элементарной цепи (Man)n∈ω над ти-
пом p∞, равной элементарной цепи (Ma′n)n∈ω, где |= Q(an+1, a

′
n),

|= p∞(a′n), и в силу конструкции любые две модели, предельные
над типом p∞, будут изоморфны. Таким образом выполнится
условие (CEP), что по следствию 1.1.15 с учетом |RK(T )| = 2
повлечет равенство I(T, ω) = 3.

Перед построением теории T изучим описанную в пунктах 4
и 5 теорию Ta сигнатуры Σ = Col∪{Rq | q ∈ Q}∪{R′

q | q ∈ Q}, гдеQ — некоторое счетное множество индексов. Эта теория будет
являться подтеорией теории T и называться свободной ацикли-
ческой теорией с цветопостоянными компонентами связности
или сокращенно facc-теорией.

ПустьM — модель теории Ta, A — конечное множество вM.
ca-Графом называется система A сигнатуры Σ, состоящая из но-
сителя A, раскрашенного с помощью функции Col, отношений
Rq, R′

q на множестве A и конечной записи W о существова-
нии, длинах и наборах имен дуг кратчайших маршрутов, по-
парно связывающих элементы из A. По аналогии с c-графами
ca-графы A с соответствующими носителями A обозначаются че-
рез 〈A,Rq, R

′
q,W 〉q∈Q.

Для ca-графа A = 〈A,Rq, R
′
q,W 〉q∈Q обозначим через cc(A)

минимальный граф Γ ⊇ 〈A,Rq, R
′
q〉q∈Q с помеченными дугами,

содержащий для каждой пары (a, b) ∈ A2, связанной маршрутом
согласно записи из W , сам кратчайший (a, b)-маршрут с указан-
ным в W наборов имен дуг.

Определим отношение ⊆ca на классе ca-графов. ca-Граф
A = 〈A,Rq,A, R′

q,A,WA〉q∈Q называется ca-подграфом ca-
графа B = 〈B,Rq,B, R′

q,B,WB〉q∈Q и пишем A ⊆ca B, если A ⊆
B, Rq,A = Rq,B ∩ A2 и WA — запись о кратчайших маршрутах,
связывающих элементы из A в графе cc(B).

ca-Граф A = 〈A, Rq, R′
q,W 〉q∈Q называется замкнутым, если

A содержит все маршруты, указанные в записи W , т. е.
A = cc(A).

Если A, B = 〈B,Rq,B, R′
q,B,WB〉q∈Q и C = 〈C,Rq,C , R′

q,C ,
WC〉q∈Q — замкнутые ca-графы, A = B ∩ C, то свободной ca-
амальгамой ca-графов B и C над A (обозначаемой через B ∗A C)
называется ca-граф 〈B ∪C, Rq,B ∪Rq,C , Rq,B ∪Rq,C ,WB ∪WC〉q∈Q.
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Разнозначное отображение f : A → B называется ca-вложе-
нием ca-графа A = 〈A,Rq,A, R′

q,A,WA〉q∈Q в ca-граф B =
〈B,Rq,B, R′

q,B,WB〉q∈Q (обозначается f : A →ca B), если f — вло-
жение цветного графа A = 〈A,Rq,A, R′

q,A〉q∈Q в цветной граф
B = 〈B,Rq,B, R′

q,B〉q∈Q такое, что запись Wf(A) ca-подграфа ca-
графа B с носителем f(A) совпадает с записью, которая полу-
чается из записи WA заменой всех элементов a ∈ A на элемен-
ты f(a).

ca-ГрафыA и B называются ca-изоморфными, если существу-
ет ca-вложение f : A →ca B с условием f(A) = B. При этом
отображение f называется ca-изоморфизмом между A и B, а ca-
графы A и B — ca-изоморфными копиями.

Лемма 3.3.1. (ca-амальгамационная лемма). Класс всех за-
мкнутых ca-графов удовлетворяет ca-амальгамационному свой-
ству (ca-AP), т. е. для любых ca-вложений f0 : A →ca B и
g0 : A →ca C, где A, B, C — замкнутые ca-графы, существует
замкнутый ca-граф D и ca-вложения f1 : B →ca D и g1 : C →ca D
такие, что f0 ◦ f1 = g0 ◦ g1.

Д о к а з а т е л ь с т в о. Без ограничения общности можно
считать, что A ⊆ca B и A ⊆ca C. Очевидно, что в качестве D
можно взять замкнутый ca-граф B ∗A C. ¤

Очевидно, что насыщенная модель facc-теории может быть
представлена в виде генерической модели, которая строится из
всевозможных замкнутых ca-графов с помощью ca-амальгама-
ционной леммы.

В следующем предложении перечисляются основные свой-
ства facc-теорий.

Предложение 3.3.2. Для любой facc-теории Ta справедли-
вы следующие утверждения:

(1) счетная насыщенная модель M теории Ta состоит из
счетного числа компонент связности для каждого цвета α ∈
ω ∪ {∞};

(2) если A и B — ca-изоморфные ca-подграфы счетной насы-
щенной модели M теории Ta, то tpM(A) = tpM(B);

(3) тип tpM(A) теории Ta является главным тогда и толь-
ко тогда, когда цвета всех элементов из A конечны и любые
одноцветные элементы принадлежат одной компоненте связ-
ности; при этом простая модель M0 состоит из элементов
конечных цветов, образующих по одной компоненте связности
для каждого конечного цвета;
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(4) тип tpM(A) теории Ta реализуется в моделиMp∞ тогда
и только тогда, когда подтип всех элементов из A, имеющих
конечные цвета, является главным и элементы из A, имеющие
бесконечный цвет, принадлежат одной компоненте связности.

Д о к а з а т е л ь с т в о очевидно. ¤
Построение теории T , обогащающей как теорию T2, так и не-

которую facc-теорию, проводится по шагам, аналогичным по-
строению теории T2.

Определим понятие c3-графа в соответствии со следующими
условиями. При этом будем считать, что сигнатура каждого c3-
графа состоит из одноместных предикатных символов раскрас-
ки Col, двухместного предикатного символа Q и счетного вполне
упорядоченного множества двухместных предикатных символов
Rq и R′

q для некоторых типов c3-изоморфизма, соответствующих
типам q.

I. Если A = 〈A,Q, W 〉 — c-граф из класса K∗
0, то система

〈A,Q, Rq, R′
q, W ′〉q∈Q, полученная из A добавлением пустых от-

ношений Rq, R′
q и записей о длинах всех кратчайших Q-маршру-

тов, связывающих элементы из A, является c3-графом.
II. Каждый ca-граф с добавленным пустым отношением Q

является c3-графом.
III. Пусть Γδ = 〈Aδ, Q, Rq,δ, R

′
q,δ,Wδ〉q∈Q, δ ∈ {0, 1}, — c3-

графы с носителями Aδ = {a0, a
′
0, a1, a

′
1, . . . , an, a′n, a′′n, bδ},

ai и a′i — элементы одного цвета, связанные (единственным) крат-
чайшим маршрутом в неорграфе с отношением R∗, i = 0, 1, . . . , n,
an и a′′n — также элементы одного цвета, связанные (единствен-
ным) кратчайшим маршрутом в неорграфе с отношением R∗,
|= Q(ai+1, a

′
i), i = 0, . . . , n − 1, |= Q(b0, a

′
n) ∧ Q(b1, a

′′
n), b0 и b1 —

элементы одного цвета, не связанные ни (b0, b1)-маршрутами, ни
(b1, b0)-маршрутами в графе с отношением, представляющемся
в виде объединения отношения Q и (конечного числа) отношений
Rq ∪ R′

q, участвующих в кратчайших маршрутах, связывающих
элементы из A0 ∪A1. Тогда c3-графом является система

Γ = 〈A0 ∪A1, Q, Rq, R
′
q,W0 ∪W1 ∪Wr(b0, b1)〉q∈Q,

называемая амальгамой взаимореализуемости Γ0 и Γ1 где отно-
шения Q и Rq, определенные в c3-графах Γ0 и Γ1, объединяют-
ся, а к пустым отношениям Rr и R′

r (где r — тип, описывающий
бескванторные связи между элементами A0 ∪ A1, а также вза-
имоотношения элементов из A0 ∪ A1 согласно записи W0 ∪ W1)
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добавляются пары (b0, b1) и (b1, b0) соответственно; Wr(b0, b1) —
запись о существовании множества A0 ∪ A1, расширяющего до
системы Γ граф 〈{b0, b1}, Q, Rq, R

′
q〉q∈Q с пустыми отношениями

Q, Rq и R′
q за исключением Rr = {(b0, b1)} и R′

r = {(b1, b0)}.
IV. Определим иррефлексивное отношение < на множе-

стве Q: q1 < q2 ⇔ в записи Wq2(b0, b1) упоминается об отно-
шении Rq1 . Очевидно, что при пошаговом определении отноше-
ний Rq и R′

q согласно пункту III транзитивное замыкание отно-
шения < можно расширить до отношения полного порядка 6
на множестве Q, состоящем из всех типов r, описанных в пунк-
те III. В дальнейшем будем считать, что множество двухместных
сигнатурных символов Σ2 ­ {Q} ∪ {Rq | q ∈ Q} ∪ {R′

q | q ∈ Q}
вполне упорядочено, где Q — наименьший элемент, символ Rq1

не превосходит символа Rq2 , если q1 6 q2, а символ R′
q1

находит-
ся между символом Rq1 и непосредственно следующим за ним
символом Rq2 . 6

V. Если Γ = 〈A,Q, Rq, R
′
q,W 〉q∈Q — c3-граф, то для любо-

го множества A0 ⊆ A c3-графом, называемым c3-подграфом c3-
графа Γ, является система

〈A0, Q ∩A2
0, Rq ∩A2

0, R
′
q ∩A2

0,W0〉q∈Q,

где W0 состоит из индуцированных c3-графом Γ следующих за-
писей:

а) Wq(b0, b1) для всех пар (b0, b1), принадлежащих отноше-
ниям Rq ∩A2

0;
б) описание длин кратчайших маршрутов в c-подграфе c-

графа 〈A,Q, Wc〉, имеющем носитель A0, где Wc — запись о крат-
чайших маршрутах по отношению Q в c3-графе Γ;

в) описание длин и наборов имен дуг кратчайших маршру-
тов в ca-подграфе ca-графа 〈A,Rq, R

′
q,Wca〉q∈Q, имеющем носи-

тель A0, где Wca — запись о длинах и наборах имен дуг крат-
чайших маршрутов по отношениям Rq, R′

q, q ∈ Q, в c3-графе Γ;
г) записи о существовании и длинах n кратчайших (a, b)-

маршрутов (если такие маршруты существуют) через промежу-
точные элементы c, для которых существуют (a, c)-маршруты

6В силу полной упорядоченности символов из Σ2 каждая запись
Wr(b0, b1) при построении генерической модели позволит расширить c3-граф
с носителем {b0, b1} и этой записью до конечного c3-графа, в котором все
участвующие в нем записи вида Wq(a, b) реализованы.
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по отношению Q и (c, b) ∈ R0, где R0 — наименьший сигна-
турный символ из Q; при этом формула θn(x, y), описывающая
кратчайшие (a, b)-маршруты через промежуточные элементы c,
эквивалентна каждой формуле, описывающей кратчайшие (a, b)-
маршруты через промежуточные элементы c′, где (a, c′)-маршру-
ты по отношению Q, имеют ту же длину n, а элементы c′ и b
связаны в ca-графе заданным набором имен дуг.

Потребуем, чтобы записи, указанные в пунктах а–г, взаимо-
исключали друг друга для любой фиксированной пары вершин
(a, b), а сама запись W также состояла из взаимоисключающих
записей для пар (a, b) ∈ A2, описанных в пунктах а–г. Кроме то-
го потребуем, чтобы некоторая формула θn(a, b) присутствовала
в записи W для любой пары (a, b), связанной некоторым марш-
рутом в графе с отношением Q∪R∗ и не связанной маршрутами
ни в графе с отношением Q, ни в графе с отношением R∗.

VI. ПустьA, B = 〈B,QB, Rq,B, R′
q,B,WB〉q∈Q и C = 〈C, QC , Rq,C ,

R′
q,C , WC〉q∈Q — замкнутые c3-графы, т. е. c3-графы, которые

вместе с любыми двумя вершинами, принадлежащими одной ком-
поненте связности по отношению R∗, содержат кратчайший R∗-
маршрут, A = B ∩ C. Тогда c3-графом является свободная c3-
амальгама 〈B ∪C,QB ∪QC , Rq,B ∪Rq,C ,WB ∪WC ∪W 〉 c3-графов
B и C над A (обозначаемая через B ∗A C), где W — запись, вклю-
чающая все формулы θn(a, b) для вершин a, b ∈ B ∪ C, не при-
надлежащих одновременно ни B, ни C и связанных кратчайшим
маршрутом с участием наименьшего числа n ≥ 1 Q-дуг и не ме-
нее одной R∗-дуги.

VII. Пусть A = 〈A,Q, Rq, R
′
q, W 〉q∈Q — c3-граф, (a, b) — па-

ра вершин, для которых некоторая формула θn(a, b) принадле-
жит записи W , α = (α1, . . . , αm) — набор сигнатурных символов
из Σ2, в котором символ Q участвует не менее n раз, а сим-
волы из Q — не менее одного раза. Тогда c3-графом является
система, которая получается добавлением к A внешнего (a, b)-
маршрута, последовательность дуг которого имеет тот же набор
имен, что и α, а степени новых вершин равны двум. Операция
добавления указанного внешнего маршрута называется операци-
ей c3-трассировки.

Обозначим через ∆0 класс, состоящий из всех c3-графов, со-
ответствующих какому-либо c-графу или ca-графу согласно
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пунктам I и II, а также включающий всевозможные c3-графы
вида:

— Γ0,q = 〈{0, 1, 2}, {(0, 1), (0, 2)}, Rq, R′
q,W 〉q∈Q, Col(0) ≤

Col(1), Col(1) = Col(2), Γ1,q = 〈{0, 1, 2}, {(1, 0), (2, 0)}, Rq, R
′
q,

W 〉q∈Q, Col(0) ≥ Col(1), Col(1) = Col(2), где Rq = {(1, 2)}, ес-
ли Rq ∩R′

q = ∅, Rq = {(1, 2), (2, 1)}, если Rq = R′
q, W = Wq(1, 2);

— Γ0,q1,δ1,...,qn,δn = 〈{0, 1, 2}, {(0, 1), (0, 2)}, Rq, R′
q,W 〉q∈Q,

Col(0) ≤ Col(1), Col(1) = Col(2), Γ1,q1,δ1,...,qn,δn = 〈{0, 1, 2}, {(1, 0),
(2, 0)}, Rq, R

′
q, W 〉q∈Q, n ≥ 2, где отношения Rq и R′

q пусты, а
запись W содержит информацию о наличии кратчайшего R∗-
маршрута, соединяющего 1 и 2 с помощью последовательности
дуг, имеющей набор имен ((Rq1)

δ1 , . . . , (Rqn)δn), δ1, . . . , δn ∈
{−1, 1};

— Γ0,n = 〈{0, 1, 2}, {(0, 1), (0, 2)}, Rq, R′
q,W 〉q∈Q, Col(0) ≤

Col(1) ≤ Col(2), Γ1,n = 〈{0, 1, 2}, {(1, 0), (2, 0)}, Rq, R
′
q,W 〉q∈Q,

Col(1) ≤ Col(2) ≤ Col(0), n ≥ 2, где отношения Rq и R′
q пусты,

а запись W содержит формулу θn(1, 2).
Аналогично понятиям c1-вложения и c2-вложения понятие

c3-вложения f : A →c3 B для c3-графов A и B, при котором
сохраняется соответствующая запись WA (Wf(A) = WB ¹ f(A)),
обобщает как понятие c-вложения, так и понятие ca-вложения.

Дваc3-графа A и B называются c3-изоморфными, если суще-
ствует c3-вложение f : A →c3 B с условием f(A) = B. При этом
отображение f называется c3-изоморфизмом между A и B, а c3-
графы A и B — c3-изоморфными копиями.

VIII. Любой c3-граф является конечной системой и получает-
ся из c3-графов, принадлежащих классу ∆0, некоторым конеч-
ным числом применений операций взятия допустимых перерас-
красок, амальгам взаимореализуемости, c3-подграфов, свобод-
ных c3-амальгам, c3-трассировок и c3-изоморфных копий соглас-
но пунктам III–VII, операции, позволяющей для любого c3-графа
A = 〈A,Q, Rq, R

′
q, W 〉q∈Q и любой его пары вершин (a, b) ∈ A2,

Col(a) ≤ Col(b), не связанной Q-маршрутами или R∗-маршрутами
в минимальном графе, включающем все описанные в W марш-
руты, добавлять к записи W одну из произвольно выбранных
записей о существовании кратчайшего (a, b)-маршрута длины,
большей максимальной длины кратчайших маршрутов по отно-
шению Q, а также обратной операции, позволяющей для лю-
бой пары элементов удалять из записи позитивную информацию
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о внешних кратчайших Q-маршрутах, информацию о принад-
лежности элементов одному классу R∗ ∪ id-эквивалентности или
о связи элементов формулами θn.

Обозначим класс всех c3-графов через K∗
3, а через K3 класс

всех цветных графов, у которых каждый конечный подграф об-
разует c3-граф из класса K∗

3.
Разнозначное отображение f : A → N называется c3-вложе-

нием c3-графа A в граф N ∈ K3 (обозначается f : A →c3 N ),
если f — c3-вложение c3-графа A в c3-подграф f(A) графа N ,
имеющий носитель f(A).

Комбинируя доказательство лемм 3.1.1 и 3.3.1 устанавливаем
следующую амальгамационную лемму.

Лемма 3.3.3. (c3-амальгамационная лемма). Класс K∗
3 удо-

влетворяет c3-амальгамационному свойству (c3-AP), т. е. для
любых c3-вложений f0 : A →c3 B и g0 : A →c3 C, где A, B, C —
замкнутые c3-графы из класса K∗

3, существует замкнутый c3-
граф D ∈ K∗

3 и c3-вложения f1 : B →c3 D и g1 : C →c3 D такие,
что f0 ◦ f1 = g0 ◦ g1.

Теорема 3.3.4. Существует счетный цветной насыщен-
ный граф M∈ K3, удовлетворяющий следующим условиям:

1) если f : A →c3 M и g : A →c3 B — c3-вложения и B ∈ K∗
3,

то существует c3-вложение h : B →c3 M такое, что f = g ◦ h;
2) если A и B — c3-изоморфные замкнутые c3-подграфы гра-

фа M, то tpM(A) = tpM(B);
3) раскраска обеднения M ¹ Q модели M до графовой сигна-

туры Σ = {Q} несущественна и Q-упорядочена;
4) формула Q(x, y) является главной формулой в теории

Th(M ¹ Σ2), а формулы Rq(a, y) и R′
q(a, y) являются главными

для любого элемента a ∈ M .

Д о к а з а т е л ь с т в о аналогично доказательству теоремы
3.1.3 с заменой c-графов на замкнутые c3-графы и применени-
ем леммы 3.3.3 для замкнутых c3-графов. При этом в описание
формул ϕn(X) и ψn(X,Y ) для каждой пары вершин (a, b) добав-
ляется следующая информация:

а) позитивная информация о наборах имен кратчайших R∗-
маршрутов, если такие (a, b)-маршруты существуют;

б) отрицание связывающих элементы a и b R∗-маршрутов
длины не превосходящей n и состоящих из дуг, имена которых
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принадлежат начальному отрезку длины n вполне упорядочен-
ного множества Q, если элементы a и b не связаны R∗-маршру-
тами;

в) формулы θm от соответствующих переменных для всех эле-
ментов, удовлетворяющих этим формулам;

г) формулы ¬θ1 ∧ . . . ∧ ¬θn от соответствующих переменных
для всех элементов, не удовлетворяющих ни одной из формул θm.

Из описания c3-графов вытекает несущественность и Q-упо-
рядоченность раскраски Col, а из замкнутости c3-графов, состо-
ящих из одной Q-дуги или R∗-дуги — изолированность формулы
Q(x, y) в теории Th(M ¹ Σ2) и изолированность формул Rq(a, y)
и R′

q(a, y) для любого элемента a ∈ M . ¤
Теория T3 ­ Th(M) модели M, которая строится для дока-

зательства теоремы 3.3.4, называется K∗
3-генерической теорией,

а сама счетная насыщенная модельM — K∗
3-генерической моде-

лью.
Аналогично теореме 3.1.7 доказывается
Теорема 3.3.5. 1. Тип q теории T3 является главным то-

гда и только тогда, когда q расширяется до типа r теории T3,
реализующегося замкнутыми c3-графами, в которых любые два
различных элемента соединены некоторым Q-маршрутом или
R∗-маршрутом, и все элементы реализаций типа r имеют ко-
нечные цвета.

2. Тип q теории T3 реализуется в моделиMp∞ тогда и толь-
ко тогда, когда q расширяется до типа r теории T3, реализую-
щегося замкнутыми c3-графами A, в которых любые два различ-
ных элемента ai и aj соединены некоторым Q-маршрутом или
R∗-маршрутом и выполняются следующее условие: если среди
элементов множества A есть элементы конечного цвета и
элементы бесконечного цвета, то

(a) найдутся связанные R∗-маршрутами элементы af,1, . . . ,
af,k конечного цвета, такие, что для каждого элемента a ∈
A \ {af,1, . . . , af,k} конечного цвета и для каждого i ∈ {1, . . . , k}
существует Q-маршрут из a в af,i,;

(б) найдутся связанные R∗-маршрутами элементы a∞,1, . . . ,
a∞,l бесконечного цвета, такие, что для каждого элемента
a ∈ A \ {a∞,1, . . . , a∞,l} бесконечного цвета и для каждого j ∈
{1, . . . , l} существует Q-маршрут из a∞,j в a;

(в) для любых i ∈ {1, . . . , k} и j ∈ {1, . . . , l} существуют
Q-маршруты из af,i в a∞,j.
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Определим класс K∗
4 конечных структур, снабженных конеч-

ными записями о взаимоотношении элементов, удовлетворяющи-
ми условиям 1′ и 2′ из предыдущего параграфа, где вместо ти-
пов c1-изоморфизма A рассматриваются всевозможные типы c3-
изоморфизма, снабженные формулами ρ и такие, что простые
модели над этими типами не изоморфны ни простой модели,
ни модели Mp∞ . Будем считать, что каждое конечное множе-
ство A, входящее в K∗

4 и ограниченное на графовую сигнатуру Σ2
c раскраской Col, образует c3-граф 〈A,Q,Rq, R

′
q,W 〉q∈Q из клас-

са K∗
3, а к записи к записи W добавлена позитивная информация

о взаимоотношении элементов по проекциям ∃yl1 ...ylt RAm
(x, y)

и по формулам ρ в соответствии с пунктом 2′.
Конечные структуры A с конечными записями WA, образую-

щие класс K∗
4, называются c4-структурами. c4-Структуры, яв-

ляющиеся замкнутыми c3-графами, также называются замкну-
тыми.

Обозначим через K4 класс всех моделей сигнатуры Col∪Σ2∪
{RAm

| m ∈ ω}, у которых каждое конечное подмножество об-
разует c4-структуру из класса K∗

4.
Понятие c4-вложения f : A →c4 B для c4-структур A и B,

при котором сохраняется соответствующая запись WA (Wf(A) =
WB ¹ f(A)), естественным образом обобщает ранее введенные
понятия ci-вложений. Тем самым определяется и понятие c4-
вложения f : A →c4 N c4-структуры A в модель N из клас-
са K4.

Две c4-структуры A и B называются c4-изоморфными, если
существует c4-вложение f : A →c4 B с условием f(A) = B.

Теорема 3.3.6. Существует счетная насыщенная модель
M∈ K4, удовлетворяющая следующим условиям:

а) если f : A →c4 M и g : A →c4 B — c4-вложения и B ∈ K∗
4,

то существует c4-вложение h : B →c4 M такое, что f = g ◦ h;
б) если A и B — c4-изоморфные замкнутые c4-структуры

в модели M, то tpM(A) = tpM(B);
в) обеднение модели M до сигнатуры Col∪Σ2 является K∗

3-
генерической моделью;

г) каждая формула RA(a, y), где |= p∞(a), является главной,
и тип c4-изоморфизма каждой реализации формулы RA(a, y)
совпадает с типом c4-изоморфизма A;

д) каждая формула RA(x, a), где A — тип c4-изоморфизма
кортежа a, является главной, и каждая реализация формулы
RA(x, a) является реализацией типа p∞.
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Д о к а з а т е л ь с т в о состоит в очевидной комбинации
доказательств теоремы 3.2.3 и теоремы 3.3.4. ¤

Теория T4 ­ Th(M) модели M, которая строится для дока-
зательства теоремы 3.3.7, называется K∗

4-генерической теорией,
а сама счетная насыщенная модельM — K∗

4-генерической моде-
лью.

Повторяя доказательство теоремы 3.2.4 с использованием тео-
ремы 3.3.6, устанавливаем следующую теорему.

Теорема 3.3.7. Теория T4 удовлетворяет условию
|RK(T4)| = 2.

Теорема 3.3.8. Существует единственная с точностью до
изоморфизма предельная модель теории T4 над типом p∞.

Д о к а з а т е л ь с т в о. Существование предельной моде-
ли вытекает из предложения 1.1.8 и следствия 1.1.9 в силу несим-
метричности отношения полуизолированности SIp∞ по формуле
Q(x, y). Для доказательства единственности предельной модели
достаточно показать, что любая предельная модель M над ти-
пом p∞ насыщена.

Пусть (Man)n∈ω — произвольная элементарная цепь над ти-
пом p∞, объединение которой совпадает с предельной моде-
лью M. В силу теоремы 3.3.5 для каждого элементарного рас-
ширения моделиMan до моделиMan+1 существует R∗-маршрут
из an+1 в an или существует Q-маршрут из an+1 в an. Поскольку
предельная модель не изоморфна моделиMp∞ , а в случае суще-
ствования R∗-маршрута из an+1 в an модель Man элементарно
расширяется до простой модели над an, совпадающей с моделью
Man+1 , из элементарной цепи (Man)n∈ω можно удалить все мо-
дели Man , для которых существуют R∗-маршруты из an в an−1.

После удаления всех указанных моделей в силу конструкции
генерической модели полученную элементарную цепь (Ma′n)n∈ω

можно расширить с помощью моделей Ma, где a — элементы,
составляющие для каждого n ∈ ω при наличии Q-маршрутов
из a′n+1 в a′n один из этих кратчайших Q-маршрутов. Кроме то-
го, полученная элементарная цепь расширяется до элементарной
цепи, в которой с каждой моделью с одной стороны соседствует
совпадающая с ней модель, а с другой стороны — собственная
элементарная подсистема или надсистема.
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Рассмотрим теперь произвольный 1-тип q(x, b) ∈ S(b), где
b — кортеж из M . Покажем, что q(x, b) реализуется в моделиM.
Действительно, кортеж b принадлежит некоторой модели Man ,
и в силу определения отношений RA, для некоторого типа c4-
изоморфизма A, содержащего реализации типа q(x, y), и для
некоторого n′ ≥ n найдется элемент c ∈ Man′ такой, что некото-
рая проекция ∃zi1 , . . . , zim RA(c, z) реализуется кортежем b. По-
скольку RA(c, z) — главная формула, то существует реализую-
щий ее кортеж d ∈ M , расширяющий кортеж b, и по выбору
типа c4-изоморфизма A некоторая координата кортежа d реали-
зует тип q(x, b). Поскольку тип q выбран произвольно, модельM
является насыщенной. ¤

На основании следствия 1.1.15 и теорем 3.3.7, 3.3.8 справед-
лива следующая

Теорема 3.3.9. Существует генерическая теория T , обо-
гащающая генерическую теорию T3 и удовлетворяющая
условию I(T, ω) = 3.

§ 3.4. Реализации основных характеристик полных
теорий с конечным числом счетных моделей

Напомним, что в теореме 1.1.13 приведена характеризация
класса полных теорий с конечным числом счетных моделей. По-
кажем, что любая из описанных в этой теореме ситуаций реали-
зуется.

Теорема 3.4.1. Для любого конечного предупорядоченного
множества 〈X;≤〉 с наименьшим элементом x0 и наибольшим
классом x̃1 в упорядоченном фактор-множестве 〈X;≤〉/∼ по
отношению ∼ (где x ∼ y ⇔ x ≤ y и y ≤ x), а также для любой
функции f : X/∼ → ω, удовлетворяющей условиям f(x̃0) = 0,
f(x̃1) > 0 при |X| > 1, f(ỹ) > 0 при |ỹ| > 1, существует пол-
ная теория T и изоморфизм g : 〈X;≤〉 →̃ RK(T ) такой, что
IL(g(ỹ)) = f(ỹ) для любого ỹ ∈ X/∼.

Д о к а з а т е л ь с т в о. Пусть 〈X;≤〉 — конечное предупо-
рядоченное множество с наименьшим элементом x0 и наиболь-
шим классом x̃1 в упорядоченном фактор-множестве 〈X;≤〉/∼,
f : X/∼→ ω — функция, удовлетворяющая следующим усло-
виям: f(x̃0) = 0, f(x̃1) > 0 при |X| > 1, f(ỹ) > 0 при |ỹ| > 1.
Без ограничения общности будем считать, что |X| > 1. Зафик-
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сируем нумерацию ν : |X| → X такую, что из ν(m) < ν(n) и
ν(m) 6∼ ν(n) следует m < n, а любому ∼-классу соответствует
интервал в |X|. Рассмотрим теорию T0 одноместных предика-
тов P1, . . . , P|X|−1, образующих разбиение на |X|−1 бесконечных
классов, с несущественной раскраской Col : M → ω ∪{∞} такой,
что ` ∃≥ω (Pi(x) ∧ Coln(x)), i = 1, . . . , |X| − 1, n ∈ ω. Покажем,
что существует обогащение T теории T0 c изоморфизмом
g : 〈X;≤〉 →̃ RK(T ) таким, что:

а) g(ν(i)) = Mpi , где Mpi — тип изоморфизма простой мо-
дели Mpi над реализацией типа pi(x) из S1(∅), изолируемого
множеством формул {Pi(x)∧¬Coln(x) | n ∈ ω}, i = 1, . . . , |X|−1,
а p1(x), . . . , p|X|−1(x) — все неглавные 1-типы над ∅ от перемен-
ной x;

б) IL(g(ỹ)) = f(ỹ) для любого ỹ ∈ X/∼.
Построение теории T =

⋃
i<|X|

Ti проведем по индукции в со-

ответствии с нумерацией ν. Пусть уже построены теории T0, . . . ,
Tk−1, а элементы ν(k), ν(k + 1), . . . , ν(k + l) образуют ∼-класс.

Если f(ν̃(k)) = 0, то l = 0 и теорию Tk зададим обогащени-
ем сигнатуры теории Tk−1 новыми двухместными предикатными
символами Rki (где класс ν̃(k) покрывает класс ν̃(i), i 6= 0) с вы-
полнением следующих условий:

1) Rki(a, y) — главная формула и Rki(a, y) ` pi(y) для любого
a |= pk;

2) для любых a, b |= pi существует бесконечно много элемен-
тов c |= pk и бесконечно много элементов d, не реализующих
типы p1(x), . . . , p|X|−1, таких, что

|= Rki(c, a) ∧Rki(c, b) ∧Rki(d, a) ∧Rki(d, b);

при этом из c |= pk и |= Rki(c, a) следует, что a не полуизолиру-
ет c.

Очевидно, условия 1–2 можно реализовать так, что мо-
дель Mpk

теории Tk будет иметь единственную реализацию
типа pk и, значит, IL(g(ν̃(k))) = 0 = f(ν̃(k)). Кроме того, в Mpk

по индукции будут реализовываться все типы pi, подчиняющиеся
типу pk, т. е. удовлетворяющие соотношению ν(i) ≤ ν(k).

Предположим, что f(ν̃(k)) = r > 0. Зададим теорию T 0
k обо-

гащением сигнатуры теории Tk−1 новыми двухместными преди-
катными символами Rki (где класс ν̃(k) покрывает класс ν̃(i),
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i 6= 0) с условиями 1 и 2, а также двухместными предикатными
символами R′

ij (где ν(i), ν(j) ∈ ν̃(k)) со следующими условиями:
3) R′

ij(a, y) — главная формула и R′
ij(a, y) ` pj(y) для любого

a |= pi;
4) для любых a, b |= pj существует бесконечно много элемен-

тов c |= pi и бесконечно много элементов d, не реализующих типы
p1(x), . . . , p|X|−1, таких, что

|= R′
ij(c, a) ∧R′

ij(c, b) ∧R′
ij(d, a) ∧R′

ij(d, b);

при этом из c |= pi и |= R′
ij(c, a) следует, что a не полуизолирует c;

5) для любых элементов a и b, не реализующих типы pk+l+1,
. . . , p|X|−1, существует бесконечно много элементов c |= pj таких,
что |= R′

ij(a, c) ∧R′
ij(b, c);

6) отношение R′
k =

⋃
ν(i),ν(j)∈ν̃(k)

R′
ij образует орграф, изоморф-

ный орграфу Γgen.
Как и выше предикаты Rki обеспечивают подчинение ти-

пов pi типу pk при ν(i) < ν(k) и ν(i) 6∼ ν(k), а отношения R′
ij —

взаимоподчиняемость типов pi и pj , а также неизоморфность мо-
делей Mpi и Mpj при i 6= j.

Теперь аналогично условиям 1′ и 2′ из параграфа 3.2 с за-
меной предиката Q на предикат R′

k расширим сигнатуру преди-
катными символами RA так, чтобы типам pi, i = k, . . . , k + l,
подчинялись все типы q(x) ∈ S(Tk) с условиями pj(xi) 6⊆ q(x)
для j > k + l, и указанным типам q, не подчиняющимся типам
pi, i < k, подчинялись все типы pk, . . . , pk+l, а модели Mq были
изоморфны модели Mpk

.
Для выполнения условия IL(g(ν̃(k))) = r зададим на струк-

туре реализаций типа pk графовую структуру с двухместными
отношениями R′′

1 , . . . , R
′′
r такими, что

7) R′′
i (a, y) — главная формула и R′′

i (a, y) ` pk(y) для любого
a |= pk, i ≤ r;

8) для любых a, b |= pk существует бесконечно много элемен-
тов c |= pk и бесконечно много элементов d, не реализующих
типы p1(x), . . . , p|X|−1, таких, что:

|= R′′
i (c, a) ∧R′′

i (c, b) ∧R′′
i (d, a) ∧R′′

i (d, b);

при этом из |= R′′
i (c, a) и c |= pj следует, что a не полуизолирует c;
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9) отношение R′
k

⋃ r⋃
i=1

R′′
i образует орграф, изоморфный

орграфу Γgen.
Если Ma и Mb — простые модели над реализациями a и b

типа pk соответственно, такими, что |= R′′
i (a, b) и Mb ≺ Ma, то

будем называть модель Ma R′′
i -расширением модели Mb. Эле-

ментарная цепь (Ms)s∈ω над типом pk называется R′′
i -цепью, ес-

ли Ms+1 — R′′
i -расширение модели Ms для любого s.

ЕслиMa иMb — простые модели над реализациями a и b ти-
па pi соответственно, ν(i) ∼ ν(k), такими, что |= R′

ii(a, b) иMb ≺
Ma, то модель Ma называется R′

ii-расширением модели Mb.
Аналогично условиям 3–7 из параграфа 3.3 расширим сигна-

туру символами Rq так, чтобы выполнялись следующие условия:
10) для любой предельной над типом pk+i, 0 ≤ i ≤ l, моде-

ли M найдется отношение R′′
j такое, что M является объедине-

нием R′′
j -цепи (Ms)s∈ω над типом pk;

11) предельные над типом pk моделиM1 иM2 эквивалентны
тогда и только тогда, когда найдется предикат R′′

i такой, чтоM1

иM2 являются объединениями R′′
i -цепей и не являются объеди-

нениями R′′
j -цепей для j > i.

Заметим, что свойства 10–11 реализуются с помощью преди-
катов Rq, “говорящих” о том, что:

а) любое R′
kk-расширениеMa моделиMb содержит R′′

1-расши-
рение и наоборот;

б) для любого i, ν(i) ∼ ν(k), i 6= k, и любой конечной элемен-
тарной цепи Ma1 , . . . ,Mas , a1, . . . , as |= pi, существуют реализа-
ции b1, . . . , bs−1 типа pk такие, что последовательностьMa1 ,Mb1 ,
. . . ,Mbs−1 ,Mas также образует элементарную цепь;

в) если Mb0 и Mb1 — R′′
s -расширения модели Man , q — тип

кортежа 〈a0, a
′
0 . . . , an, a′n, a′′n, b0, b1〉 элементов, реализующих

тип pk и таких, что Mai+1 — R′′
ti-расширение модели Ma′i , рав-

ной Mai , |= R′′
ti(ai+1, a

′
i), Mb0 , Mb1 — R′′

tn-расширения моде-
ли Man , равной Ma′n и Ma′′n , |= R′′

tn(b0, a
′
n) ∧ R′′

ti(b1, a
′′
n), и эле-

менты b0 и b1 не связаны ни (b0, b1)-маршрутами, ни (b1, b0)-
маршрутами, то модель Mb0 содержит амальгаму взаимо-
реализуемости Mb0 ∗q Mb1 ;

г) если Ma1 , . . . ,Mas — конечная элементарная цепь такая,
что модель Maj+1 является R′′

ij
-расширением модели Maj , j =

1, . . . , s − 1, и max{i1, . . . , is−2} < is−1, то Mas содержит R′′
is−1

-
расширение модели Ma1 и наоборот.
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В результате указанных обогащений образуется теория Tk =
Tk+1 = . . . = Tk+l такая, что типы pk, . . . , pk+l взаимоподчиняют-
ся друг другу, модели Mpk

, . . . ,Mpk+l
попарно неизоморфны, а

число предельных моделей над типами pk, . . . , pk+l равно f(ν̃(k)).
Продолжая процесс, на шаге |X| − 1 получаем теорию T =

T|X|−1 и изоморфизм g : 〈X;≤〉 →̃ RK(T ) такой, что g(ν(0)) —
тип изоморфизма простой модели теории T , g(ν(m)) — тип изо-
морфизма модели Mpm , 1 ≤ m ≤ |X| − 1, и IL(g(ỹ)) = f(ỹ) для
любого ỹ ∈ X/∼.

Возможность реализации вышеуказанных свойств проверяет-
ся по схеме, аналогичной схеме построения теории с тремя счет-
ными моделями, приведенной в предыдущем параграфе с помо-
щью теоремы 2.5.1. ¤

§ 3.5. Теории с конечными предпорядками Руди-
на — Кейслера

В предыдущих параграфах раскрыт механизм построения
всех возможных теорий с конечным числом попарно неизоморф-
ных счетных моделей относительно предпорядков Рудина — Кей-
слера и функций распределения числа предельных моделей. В на-
стоящем параграфе будет доказано обобщение основного резуль-
тата параграфа 3.4, переносящее классификацию теорий с конеч-
ным числом счетных моделей на случай произвольной теории
с конечным предпорядком Рудина — Кейслера, имеющим не бо-
лее чем счетное или континуальное число предельных моделей
для каждого класса эквивалентности:

Теорема 3.5.1. Для любого конечного предупорядоченного
множества 〈X;≤〉 с наименьшим элементом x0 и наибольшим
классом x̃1 в упорядоченном фактор-множестве 〈X;≤〉/∼ по
отношению ∼ (где x ∼ y ⇔ x ≤ y и y ≤ x), а также для лю-
бой функции f : X/∼→ ω ∪ {ω, 2ω}, удовлетворяющей условиям
f(x̃0) = 0, f(x̃1) > 0 при |X| > 1, f(ỹ) > 0 при |ỹ| > 1, существу-
ет полная малая теория T и изоморфизм g : 〈X;≤〉 →̃ RK(T )
такой, что IL(g(ỹ)) = f(ỹ) для любого ỹ ∈ X/∼.

В дальнейшем в этом параграфе будем предполагать, что си-
стема RK(T ) конечна.

Как показано в параграфе 1.1, любое предупорядоченное мно-
жество RK(T ) содержит наименьший элемент, соответствующий
простой модели, а из конечности системы RK(T ) следует суще-
ствование наибольшего ∼RK-класса, соответствующего простым
моделям над реализациями властных типов.
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Повторяя доказательство предложения 1.1.7 и используя усло-
вие |RK(T )| < ω вместо условия I(T, ω) < ω, мы получаем сле-
дующее

Предложение 3.5.2. Если |RK(T )| < ω, то любая счетная
модель теории T является простой над реализацией некоторого
типа из S(T ) или предельна над некоторым типом из S(T ).

Заметим, что в силу теоремы Морли (см. М. Морли [158])
для любого класса M̃ ∈ RK(T )/∼RK число предельных моделей
IL(M̃) принадлежит множеству ω ∪ {ω, ω1, 2ω}.

Используя последнее замечание, аналогично теореме 1.1.13
мы получаем следующую теорему, которая может рассматри-
ваться как синтаксическая характеризация класса полных тео-
рий с конечными предпорядками Рудина — Кейслера.

Теорема 3.5.3. Любая малая теория T с конечным предпо-
рядком Рудина — Кейслера удовлетворяет следующим усло-
виям:

(a) система RK(T ) имеет наименьший элемент M0 (тип
изоморфизма простой модели) и IL(M̃0) = 0;

(б) система RK(T ) имеет наибольший ∼RK-класс M̃1 (класс
типов изоморфизма всех простых моделей над реализациями
властных типов) и из |RK(T )| > 1 следует IL(M̃1) ≥ 1;

(в) если |M̃| > 1, то IL(M̃) ≥ 1.
Более того, справедлива следующая декомпозиционная фор-

мула:

I(T, ω) = |RK(T )|+
|RK(T )/∼RK |−1∑

i=0

IL(M̃i),

где M̃0, . . . , ˜M|RK(T )/∼RK |−1 — все элементы ч.у.м. RK(T )/∼RK

и IL(M̃i) ∈ ω ∪ {ω, ω1, 2ω} для любого i.
Таким образом, подобно теориям с конечным числом счет-

ных моделей число и взаимосвязь счетных моделей теории с ко-
нечным предпорядком Рудина — Кейслера определяется следую-
щими двумя характеристиками: самим предпорядком Рудина —
Кейслера, а также функцией IL(·) распределения числа предель-
ных моделей, которая для любого ∼RK-класса может принимать
значение из множества ω ∪ {ω, ω1, 2ω}.
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Покажем, что все возможности, описанные в теореме 3.5.3
и удовлетворяющие условию

rang(IL(·)) ⊂ ω ∪ {ω, 2ω}
можно реализовать. Таким образом, будет установлена теорема
3.5.1, являющаяся обращением теоремы 3.5.3 в предположении
континуум-гипотезы.

Мы воспользуемся доказательством теоремы 3.4.1. Постро-
ение теории T 0 с заданным предпорядком подчинения 〈X;≤〉
шаг за шагом повторяет конструкцию аналогичной теории с ко-
нечным числом счетных моделей. Требуемое расширение T тео-
рии T 0, удовлетворяющее условиям IL(g(ỹ)) = f(ỹ) для любого
ỹ ∈ X/∼, будет построено по схеме, аналогичной схеме доказа-
тельства теоремы 3.4.1.

В силу конструкции теории T 0 достаточно рассмотреть ин-
дукционный шаг k для случая IL(g(ν̃(k))) = λ, λ ∈ (ω∪{ω, 2ω})\
{0}. Определим на структуре реализаций типа pk графовую
структуру с дугами, раскрашенными попарно несовместными
двухместными отношениями R′′

n, n ∈ ω, удовлетворяющую сле-
дующим условиям:

1) R′′
n(a, y) — главная формула и R′′

n(a, y) ` pk(y) для любого
a |= pk, n ∈ ω;

2) для любых a, b |= pk существует бесконечно много элемен-
тов c |= pk и бесконечно много элементов d, не реализующих
типы p1(x), . . . , p|X|−1(x), для которых

|= R′′
n(c, a) ∧R′′

n(c, b) ∧R′′
n(d, a) ∧R′′

n(d, b),

n ∈ ω; более того из |= R′′
n(c, a) и c |= pi следует, что a не полуи-

золирует c;

3) отношение R′
k

⋃ r⋃
i=1

R′′
i образует орграф, изоморфный

орграфу Γgen.
Пусть Ma и Mb — простые модели над реализациями a и b

типа pk, для которых |= R′′
n(a, b) и Mb ≺Ma. Тогда модель Ma

называется n-расширением модели Mb, n ∈ ω. Пусть w =
〈n1, . . . , nm〉 ∈ ωm — m-ка,Mai , i = 1, . . . ,m+1, — такие модели,
что Mai+1 является ni-расширением модели Mai , i = 1, . . . , m.
Тогда модель Mam+1 называется w-расширением модели Ma1 .
Элементарная цепь (Ms)s∈ω называется f -цепью (где f ∈ ωω),
если Ms+1 — f(s)-расширение модели Ms для любого s ∈ ω.
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Аналогично доказательству теоремы 3.4.1, расширяя теорию
предикатами Rq и R′

q, мы получаем теорию, в которой любая
предельная модель с типом изоморфизма из g(ν̃(k)) представима
в виде объединения f -цепи для некоторой последовательности
f ∈ ωω. Следовательно, число IL(g(ν̃(k))) равно числу попарно
неизоморфных объединений f -цепей. Введением дополнитель-
ных предикатов Rq и R′

q существование изоморфизма объедине-
ний f1- и f2-цепей сводится к существованию слов wm

1 , wm
2 ∈ ω<ω,

m ∈ ω, удовлетворяющих следующим условиям:
а) последовательность fi “подобна” счетной конкатенации

слов w0
i , w

1
i , . . . , w

m
i , . . ., i = 0, 1;

б) любое wm
0 -расширение является wm

1 -расширением и наобо-
рот, m ∈ ω.

Таким образом, проблема построения расширения теории
с условием IL(g(ν̃(k))) = λ сводится к проблеме нахождения
такой факторизации множества ωω отождествлениями слов wm

1
и wm

2 , чтобы результат факторизации содержал ровно λ классов.
Теперь определим формально и исследуем возможности факто-
ризации множества ωω.

Рассмотрим полугруппу S0 = 〈W ; ˆ〉, состоящую из всех непу-
стых слов алфавита ω и операции ˆ конкатенации. Если w1 и
w2 — слова из W , формула w1 ≈ w2 как обычно будет называть-
ся тождеством. Для данного множества I тождеств wj

1 ≈ wj
2,

j ∈ J , содержащего множество I0 всевозможных тождеств вида
w ≈ w, определим множество тождеств, выводимых из I. Тож-
дество w1 ≈ w2 называется выводимым из I, если существует
конечная последовательность тождеств w1

1 ≈ w1
2, . . . , w

t
1 ≈ wt

2
такая, что wt

1 = w1, wt
2 = w2 и любое тождество из этой после-

довательности принадлежит I или получается из предыдущих
тождеств применением одного из следующих правил вывода:

1)
w1 ≈ w2

w2 ≈ w1
, где w1, w2 ∈ W ;

2)
w1 ≈ w2; w2 ≈ w3

w1 ≈ w3
, где w1, w2, w3 ∈ W ;

3)
w1 ≈ w2; w′1 ≈ w′2

w1w′1 ≈ w2w′2
, где w1, w

′
1, w2, w

′
2 ∈ W ;

4)
w1w2w3 ≈ w1w

′
2w3

w2 ≈ w′2
, где w1, w2, w

′
2, w3 ∈ W .
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В дальнейшем будут рассматриваться множества тождеств
I ⊇ I0, замкнутые относительно выводимости. Любое множе-
ство тождеств I биективно полугруппе SI = 〈W ; ˆ 〉/I, которая
является результатом факторизации полугруппы S0 по сле-
дующему отношению конгруэнции ∼I :

w1 ∼I w2 ⇔ (w1 ≈ w2) ∈ I.

Пусть 〈L,≤〉 — пара, в которой L — множество всех полу-
групп SI , а SI1 ≤ SI2 равносильно I1 ⊆ I2. Очевидно, система

〈L;≤〉 является полной решеткой, где sup
{

SIj

∣∣∣∣ j ∈ J

}
= SI , I —

множество всех тождеств выводимых из
⋃

j∈J

Ij , inf
{

SIj

∣∣∣∣ j ∈ J

}
=

S ⋂
j∈J

Ij
. Полугруппа S0 является нулевым элементом в решетке

〈L;≤〉, а одноэлементная полугруппа, в которой все слова отож-
дествлены, — ее единичным элементом.

Определим факторизации множества ωω, соответствующие
множествам тождеств I. Две последовательности f0 и f1 из ωω

называются почти одинаковыми, если существуют такие числа
l0, l1 ∈ ω, что f0(n + l0) = f1(n + l1) для любых n ∈ ω. Последо-
вательности f0 и f1 называются сильно I-эквивалентными, ес-
ли fi почти одинакова со счетной конкатенацией слов wm

i ∈ W ,
m ∈ ω, i = 0, 1, где тождество wm

0 ≈ wm
1 принадлежит I, m ∈ ω.

Последовательности f и f ′ называются I-эквивалентными, ес-
ли существует последовательность f0, f1, . . . , fn ∈ ωω, в которой
f0 = f , fn = f ′, fi и fi+1 сильно I-эквивалентны для любого
i = 0, . . . , n− 1.

Очевидно, что после попарных отождествлений w1- и w2-
цепей для всех тождеств w1 ≈ w2 из I существование изоморфиз-
ма объединений f - и f ′-цепей становится равносильно I-эквива-
лентности f и f ′.

Для любого множества тождеств I обозначим через ωω/I
фактор-множество множества ωω по отношению I-эквивалент-
ности. Через T 0/I обозначим теорию, полученную из T 0 по-
парными отождествлениями w1- и w2-цепей для всех тождеств
w1 ≈ w2 из I. Очевидно, можно предполагать, что множества
ωω/I биективны теориям T 0/I.
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Обозначим через ILk(T 0/I) число IL(M̃) для класса M̃ ти-
пов изоморфизма моделей теории T 0/I, содержащего тип изо-
морфизма модели Mpk

.

Лемма 3.5.4. 1. Если I1 ⊆ I2, то ILk(T 0/I1) ≥ ILk(T 0/I2).
2. ILk(T 0/I0) = 2ω.
3. ILk(T 0/{w1 ≈ w2 | w1, w2 ∈ W}) = 1.

Д о к а з а т е л ь с т в о очевидно.
Следующая лемма неявно доказана в параграфе 3.4.

Лемма 3.5.5. Для любого n ∈ ω \ {0} существует такое
множество тождеств In, что ILk(T 0/In) = n.

Д о к а з а т е л ь с т в о. Зафиксируем число n ≥ 1 и рас-
смотрим множество In тождеств, выводимых из множества тож-
деств

n− 1 ≈ m,

m ≥ n, и
n1n2 . . . ns ≈ ns,

max{n1, n2, . . . , ns−1} < ns. Нетрудно заметить, что любая по-
следовательность из ωω In-эквивалентна некоторой константной
последовательности fr, fr(j) ≡ r, j ∈ ω, 0 ≤ r < n. Действи-
тельно, из выписанных тождеств вытекает, что любая последова-
тельность f In-эквивалентна последовательности fr, где r равно
наибольшему значению < n − 1 бесконечных константных под-
последовательностей f , если такие подпоследовательности суще-
ствуют, и r = n − 1, если таких подпоследовательностей нет.
Кроме того, очевидно, последовательности f0, . . . , fn−1 попарно
не In-эквивалентны. Таким образом, ILk(T 0/In) = n. ¤

Лемма 3.5.6. Существует такое множество тож-
деств Iω, что ILk(T 0/Iω) = ω.

Д о к а з а т е л ь с т в о. Обозначим через Iω множество тож-
деств, выводимых из тождеств

n1n2 . . . ns ≈ ns,

max{n1, n2, . . . , ns−1} < ns, и

n1n2 ≈ n1(n1 + 1)(n1 + 2) . . . (n2 − 1)n2,
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n1 < n2. Покажем, что ILk(T 0/Iω) = ω. Действительно, в силу
первой системы тождеств любая ограниченная последователь-
ность f ∈ ωω Iω-эквивалентна константной последовательности
fr ∈ ωω, fr(j) ≡ r, j ∈ ω, где r — наибольшее значение бесконеч-
ной константной подпоследовательности f . Кроме того, из пер-
вой и второй систем тождеств вытекает, что любая неограни-
ченная последовательность Iω-эквивалентна последовательности
fω ∈ ωω, где fω(j) = j, j ∈ ω. Таким образом, любая последова-
тельность f ∈ ωω Iω-эквивалентна некоторой последовательно-
сти fµ, µ ≤ ω. Очевидно, последовательности fµ попарно не Iω-
эквивалентны. Следовательно, ILk(T 0/Iω) = ω. ¤

Теорема 3.5.1 непосредственно вытекает из лемм 3.5.4 — 3.5.6.

Остается открытым вопрос о существовании такого множе-
ства Iω1 , что ILk(T 0/Iω1) = ω1. По-видимому положительный
ответ может представить альтернативный по отношению к кон-
струкции Р. Найта [139] подход для построения контрпримера к
гипотезе Воота об отсутствии теории T , для которой I(T, ω) = ω1.

§ 3.6. Предпорядки Рудина — Кейслера в малых
теориях

Следующая модификация теоремы 3.4.1 представляет описа-
ние предупорядоченных множеств RK(T ) малых теорий T .

Теорема 3.6.1. 1. Для любой малой теории T предупоря-
доченное множество RK(T ) не более чем счетно, направлено
вверх и имеет наименьший элемент.

2. Для любого не более чем счетного предупорядоченного на-
правленного вверх множества 〈X;≤〉, имеющего наименьший
элемент, существует малая теория T , для которой RK(T ) '
〈X;≤〉.

Д о к а з а т е л ь с т в о. 1. Соотношение |RK(T )| ≤ ω вы-
текает из малости теории T . Направленность вверх предупоря-
доченного множества RK(T ) = 〈PM;≤RK〉 следует из того, что
если M1 и M2 — типы изоморфизма из PM, соответствующие
моделям Ma1 и Ma2 , то типы tp(a1) и tp(a2) подчиняются типу
q = tp(a1ˆa2), а, значит, M1 ≤RK M и M2 ≤RK M, где M — тип
изоморфизма модели Mq. Наименьший элемент в RK(T ) пред-
ставляет собой тип изоморфизма простой модели.
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2. В силу теоремы 3.4.1 без ограничения общности можно
предполагать, что множество X счетно. Построение малой тео-
рии T с условием RK(T ) ' 〈X;≤〉 проводится аналогично по-
строению теорий для доказательства теоремы 3.4.1 с заменой
теории одноместных предикатов P1, . . . , P|X|−1 на теорию попар-
но непересекающихся одноместных предикатов Pi, i ∈ ω, каждый
из которых содержит бесконечное число элементов. ¤

§ 3.7. Теории с неплотными структурами властных
орграфов и теории с властными типами,
не имеющие властных орграфов

Опишем модификацию конструкции из параграфа 3.2, при-
водящую к построению властного орграфа Γ̂ = 〈X̂; Q̂〉, транзи-
тивное замыкание которого образует частичный порядок с бес-
конечным числом покрывающих элементов для любого элемента
из X̂.

Отношение Q̂ будет представляться в виде непересекающего-
ся объединения отношений Q0 и Q1 таких, что Q0(x, y) и Q1(x, y) —
главные формулы с условиями

` Qi(x, y) ↔ Q̂(x, y) ∧
(
∃z (Q̂(x, z) ∧ Q̂(y, z))

)1−i
∧

(
∃u (Q̂(x, u) ∧ Q̂(u, y))

)i
,

i = 0, 1. При этом множество Q0(a, Γ̂) будет множеством после-
дователей элемента a в TC(Γ̂).

Обозначим через K̂∗ класс всех c-графов A = 〈A, Q̂,W 〉,
Q̂ = Q0∪̇Q1 таких, что из |= Q0(a, b) следует отсутствие (c, b)-
маршрутов для любого элемента c ∈ Q̂(a,A)\{b}, а из |= Q1(a, b)
следует отсутствие (b, c)-маршрутов для любого элемента c ∈
Q̂(a,A) \ {b}. При этом если (a, b) ∈ Qi, то индекс i будет назы-
ваться цветом дуги (a, b).

Далее при рассмотрении c-графов из класса K̂0 мы будем
различать цвета дуг и использовать в орграфах и c-графах сиг-
натуру 〈Q0, Q1〉 вместо (или как дополнение к) Q̂.

Понятия c-вложения и c-изоморфизма очевидным образом
переносятся на класс c-графов сигнатуры 〈Q0, Q1〉 с сохранением
цветов дуг при действии отображений.
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Обозначим через K̂∗
0 подкласс класса K̂∗, порожденный из

нижеперечисленных c-графов 〈A,Q0, Q1,W 〉 операциями взятия
c-подграфов, c-изоморфных копий, свободных c-амальгам, опе-
рациями трассировки (позволяющими для любой выбранной па-
ры не связанных маршрутами вершин (a, b), где Col(a) ≤ Col(b),
добавлять к записям W информацию о кратчайших (a, b)-марш-
рутах произвольной длины m, превосходящей длины всех крат-
чайших маршрутов данного c-графа), а также операциями дет-
рассировки (позволяющими удалять указанную информацию):

а) Γα,β,γ,0 = 〈{0, 1, 2}, {(0, 1), (1, 2)}, {(0, 2)},W 〉, где W = ∅;
б) Γα,β,γ,1 = 〈{0, 1, 2}, {(0, 1)}, {(0, 2), (1, 2)},W 〉, где W = ∅;
в) Γα,β,γ,s = 〈{0, 1, 2}, {(0, 1)}, {(0, 2)},W 〉, где W = {(1, 2, s)},

2 ≤ s < ω, Col(0) = α, Col(1) = β, Col(2) = γ, α ≤ β ≤ γ,
γ ∈ ω ∪ {∞}.

Лемма 3.7.1. (̂ -амальгамационная лемма). Класс K̂∗
0 удо-

влетворяет -̂амальгамационному свойству (̂ -AP), т. е. для
любых c-вложений f0 : A →c B и g0 : A →c C, где A,B, C ∈ K̂∗

0,
существует c-граф D ∈ K̂∗

0 и c-вложения f1 : B →c D и g1 :
C →c D такие, что f0 ◦ f1 = g0 ◦ g1.

Д о к а з а т е л ь с т в о очевидно. ¤
Обозначим через K̂0 класс цветных бесконтурных орграфов,

у которых каждый конечный подграф образует c-граф из клас-
са K̂∗

0.
Теорема 3.7.2. Существует счетный цветной насыщен-

ный орграф M̂ ∈ K̂0, удовлетворяющий следующим условиям:
1) если f : A →c M̂ и g : A →c B — c-вложения и B ∈ K̂∗

0,
то существует c-вложение h : B →c M̂ такое, что f = g ◦ h;

2) если A и B — c-изоморфные c-подграфы орграфа M̂, то
tpM̂(A) = tpM̂(B);

3) раскраска обеднения M̂ ¹ Q̂ модели M̂ до графовой сигна-
туры Σ = {Q̂} несущественна и Q̂-упорядочена;

4) формула Q̂(x, y) эквивалентна в теории Th(M̂ ¹ Q̂)
дизъюнкции двух главных формул Q0(x, y) и Q1(x, y).

Д о к а з а т е л ь с т в о аналогично доказательству тео-
ремы 3.1.3. Конструкция насыщенной модели M̂ повторяет кон-
струкцию модели M из доказательства теоремы 3.1.3 c заменой
класса K∗

0 на класс K̂∗
0, а класса K0 — на класс K̂0. ¤
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Элементы из Q0(a,M̂) являются последователями элемента a

в орграфе TC(Γ̂), где Γ̂ = M̂|Q̂, поскольку в силу конструкции
не существует элемента b ∈ Q̂(a,M̂), для которого существует
(b, c)-маршрут с элементом c ∈ Q0(a,M̂) \ {b}. Таким образом,
в орграфе TC(Γ̂) частичный порядок не является плотным.

Аналогично следствиям 3.1.4–3.1.6 устанавливается, что от-
ношение SIp∞(x) несимметрично, орграф

〈
p∞(M̂);Rp∞

Q̂
(M̂)

〉
яв-

ляется властным, а теория Th(M̂) не проста.
Заметим, что построения, описанные в параграфе 3.2, при-

менимы к модели M̂ и также приводят к образованию не ω-
категоричной, не простой теории, у которой любой неглавный
тип является властным. Таким образом, справедлива следующая

Теорема 3.7.3. Существует генерическая теория T , удо-
влетворяющая следующим условиям:

1) |RK(T )| = 2;
2) структура реализаций некоторого властного типа p ∈

S(T ) содержит властный орграф Γ c неограниченными длина-
ми кратчайших маршрутов и бесконечным числом покрываю-
щих элементов над любым элементом для транзитивного за-
мыкания TC(Γ).

Приведем еще одну модификацию описанной выше конструк-
ции, позволяющую построить малую генерическую теорию, име-
ющую тип с локальным свойством попарного пересечения, но не
обладающий глобальным свойством попарного пересечения.

Пусть A = 〈A,Q, W 〉 — c-граф. Заменим графовую сигнатуру
введением последовательности попарно непересекающихся двух-
местных предикатов Qn, n ∈ ω, таких, что Q =

⋃̇
n∈ω

Qn, а записи

из W о существовании внешних маршрутов, связывающих эле-
менты из A, заменим записями о существовании этих маршрутов
с указанием цветов mi последовательных дуг (bi, bi+1) ∈ Qmi , со-
ставляющих эти маршруты. Кроме того, позволим в полученной
записи W ′ для любых двух элементов a, b ∈ A указывать фор-
мульную информацию вида

ϕk,m(a, b) ­ ∃x
(

k∧

i=0

¬Coli(x) ∧
(

m∨

i=0

Qi(x, a)

)
∧

(
m∨

i=0

Qi(x, b)

))
∧
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¬∃y



k∧

i=0

¬Coli(y) ∧



m−1∨

i=0

k∧

j=0

Qj
i (y, a)


 ∧




m−1∨

i=0

k∧

j=0

Qj
i (y, b)







так, чтобы совокупность формул над множеством A, соот-
ветствующих записям из W ′ была совместна. Полученную
систему A = 〈A,Qn,W ′〉n∈ω будем называть cv-графом.

Понятия c-вложения и c-изоморфизма как и выше переносят-
ся на класс cv-графов сигнатуры 〈Q0, Q1, . . . , Qn, . . .〉 с сохране-
нием цветов дуг при действии отображений, а также истин-
ности формул вида ϕk,m(a, b), имеющихся в записях.

cv-Граф A = 〈A,Qn,A, WA〉n∈ω называется cv-подграфом cv-
графа B = 〈B, Qn,B,WB〉n∈ω (обозначается A ⊆cv B), если A ⊆ B,
Qn,A = Qn,B ∩ A2, n ∈ ω, а WA состоит из всех записей, входя-
щих в WB, в которых участвуют пары элементов из A, а также
записей, индуцируемых cv-графом B, о существовании или от-
сутствии элементов x и y в соответствии с формулами ϕk,m(a, b).

Пусть A = 〈A,Qn,A,WA〉n∈ω, B = 〈B,Qn,B, WB〉n∈ω и C =
〈C, Qn,C , WC〉n∈ω — cv-графы, для которых A = B ∩ C, Qn,A =
Qn,B ∩ Qn,C , n ∈ ω, WA состоит из всех записей, входящих как
в WB, так и в WC , в которых участвуют пары элементов из A
и которые индуцируются cv-графами B и C. cv-Амальгамой cv-
графов B и C над A называется cv-граф 〈B ∪ C, QB ∪ QC , WB ∪
WC ∪ W 〉, где W состоит из всевозможных формул, описыва-
ющих для любых элементов b ∈ B \ A и c ∈ C \ A наличие
и цвета элементов d, для которых существуют (d, b)- и (d, c)-
маршруты (если их существование вытекает из отношений QB ∪
QC и WB ∪WC), и наличие элементов e всех конечных цветов m,
не превосходящих min{Col(b), Col(c)}, для которых выполняет-

ся |=
m∨

i=0
Qi(e, b) ∧

m∨
i=0

Qi(e, c), а также в W включается конечное

множество формул вида ϕm−1,m(b, c), m ≤ min{Col(b), Col(c)},
m ∈ ω, для всех остальных пар (b, c), где b ∈ B \A, c ∈ C \A.

Обозначим через Ǩ0 класс cv-графов, которые получаются
всевозможными описанными выше преобразованиями c-графов
из класса K0. Обозначим через Ǩ∗

0 подкласс класса Ǩ0, порож-
денный операциями взятия всевозможных cv-подграфов, cv-изо-
морфных копий и свободных cv-амальгам, а также операциями
трассировки и детрассировки из следующих cv-графов 〈A,Qn,
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W 〉n∈ω, где индекс ·n в записи (a, b)n указывает, что (a, b) ∈ Qn:

Γα,β,γ,n1,n2,n3,W = 〈{0, 1, 2}, {(0, 1)n1 , (1, 2)n2 , (0, 2)n3},W 〉,
где Col(0) = α, Col(1) = β, Col(2) = γ, α ≤ β ≤ γ,
γ ∈ ω ∪ {∞}, W состоит из непустого конечного множества
формул ϕm−1,m(0, 1), m ≤ min{Col(0), Col(1)}, m ∈ ω, а так-
же непустого конечного множества формул ϕm−1,m(0, 2), m ≤
min{Col(0), Col(2)}, m ∈ ω.

Лемма 3.7.4. (̌ -амальгамационная лемма). Класс Ǩ∗
0 удо-

влетворяет -̌амальгамационному свойству (̌ -AP), т. е. для
любых cv-вложений f0 : A →cv B и g0 : A →cv C, где A,B, C ∈
Ǩ∗

0, существует cv-граф D ∈ Ǩ∗
0 и cv-вложения f1 : B →cv D

и g1 : C →cv D такие, что f0 ◦ f1 = g0 ◦ g1.
Д о к а з а т е л ь с т в о очевидно. ¤
Обозначим через Ǩ класс цветных бесконтурных орграфов,

у которых каждый конечный подграф образует cv-граф из клас-
са Ǩ∗

0.
Теорема 3.7.5. Существует счетный цветной насыщен-

ный орграф M̌ ∈ Ǩ, удовлетворяющий следующим условиям:
1) если f : A →cv M̌ и g : A →cv B — cv-вложения и B ∈ Ǩ∗

0,
то существует cv-вложение h : B →cv M̌ такое, что f = g ◦h;

2) если A и B — cv-изоморфные cv-подграфы орграфа M̌,
то tpM̌(A) = tpM̌(B);

3) раскраска обеднения M̌ ¹ Q̂ модели M̌ до графовой сигна-
туры Σ = 〈Q0, Q1, . . . , Qn, . . .〉 несущественна и Qn-упорядочена
для каждого n ∈ ω;

4) тип p∞(x) обладает (LPIP), но не имеет (GPIP).
Д о к а з а т е л ь с т в о аналогично доказательству тео-

ремы 3.1.3. Конструкция насыщенной модели M̂ повторяет кон-
струкцию модели M из доказательства теоремы 3.1.3 c заменой
класса K∗

0 на класс Ǩ∗
0, а класса K — на класс Ǩ. Свойство

(LPIP) для типа p∞(x) вытекает из того, что в силу генери-
ческой конструкции для любых двух одноцветных элементов a
и b цвета, большего n, найдется элемент c цвета n такой, что

|=
n∨

i=0
Qi(c, a) ∧

n∨
i=0

Qi(c, b). Отсутствие (GPIP) следует из того,

что по теореме компактности для любого n ∈ ω найдутся реали-
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зации a и b типа p∞, не имеющие реализаций c типа p∞ таких,

что (c, a), (c, b) ∈ ∪
{

n⋃
i=0

Qj
i | j ∈ ω

}
. ¤

В силу конструкции в модели M̌ для любых двух реализа-
ций a и b типа p∞(x) найдутся номера m,n ∈ ω и реализация c
типа p∞ такие, что |= Qm(c, a) ∧ Qn(c, b). Кроме того для лю-
бых элементов d1 и d2 и любого цвета α ≥ max{Col(d1),Col(d2)}
найдется элемент e цвета α, для которого |= Q0(d1, e)∧Q0(d2, e).
Поэтому очевидная модификация конструкции из параграфа 3.2,
примененная к генерической модели M̌, устанавливает следую-
щую теорему.

Теорема 3.7.6. Существует генерическая теория T , удо-
влетворяющая следующим условиям:

1) |RK(T )| = 2;
2) некоторый властный тип p ∈ S(T ) имеет (LPIP), но не

имеет (GPIP).
Построениями, аналогичными построениям, проведенным

в параграфах 3.3–3.6, генерические модели M̂ и M̌ расширя-
ются до моделей, теории которых имеют заданный предпорядок
подчинения и заданную функцию распределения числа предель-
ных моделей.



Г л а в а 4

СТАБИЛЬНЫЕ ГЕНЕРИЧЕСКИЕ
ЭРЕНФОЙХТОВЫ ТЕОРИИ (РЕШЕНИЕ
ПРОБЛЕМЫ ЛАХЛАНА)

§ 4.1. Малые стабильные генерические графы
с бесконечным весом. Двудольные орграфы

Б. Хервиг [113] описал генерическую конструкцию, модифи-
цировавшую конструкцию Хрушовского [121] и позволившую по-
строить малую стабильную теорию графа с раскрашенными реб-
рами, у которой имеется единственный 1-тип и его собственный
вес бесконечен. Тем самым была построена реализация одного
из существенных условий, которыми обладают все стабильные
эренфойхтовы теории.

В этом параграфе на основе конструкции Хервига [113] мы
описываем генерическую конструкцию, приводящую к построе-
нию семейства малых стабильных двудольных безреберных ор-
графов с раскрашенными дугами таких, что все 1-типы имеют
бесконечный вес. Тем самым решается вопрос о существовании
малого стабильного бесконтурного орграфа с раскрашенными
дугами, у которого имеются типы с бесконечным весом.

1. Определения и свойства. Сигнатура Σbp генерическо-
го двудольного графа Γbp будет состоять из бинарных символов
Ip, p ∈ ω, а также из одноместных символов J0 и J1. Отноше-
ния, соответствующие символам J0 и J1, не будут иметь общих
элементов и образуют разбиение носителя на две доли. Отно-

132



шения, соответствующие символам Ip будут иррефлексивными,
антисимметричными и попарно непересекающимися, т. е. каж-
дая пара вершин (a, b) будет принадлежать не более, чем одно-
му отношению Ip. При этом, если (a, b) ∈ Ip, то a ∈ J0, b ∈ J1.
В дальнейшем в этом параграфе под графами будут пониматься
двудольные орграфы сигнатуры Σbp, удовлетворяющие указан-
ным выше условиям. При этом, структура, состоящая из пусто-
го множества и пустых отношений тоже будет считаться графом,
обозначаемым через∅. Класс всех рассматриваемых графов обо-
значим через Γbp.

Зафиксируем положительное вещественное число β. Обозна-
чим через ln

mn
его наилучшую рациональную аппроксимацию

с условиями ln
mn

≤ β и mn ≤ n. Индексом числа β называется
значение Ind(β) =

∑
i>0

(β − li
mi

). В работе Б. Хервига [113] заме-

чено, что множество {β ∈ R+ | Ind(β) > N} плотно и открыто
для любого N ∈ ω. Поэтому множество {β | Ind(β) = ∞} плотно
в R+. Кроме того, если Ind(β) = ∞ и q ∈ Q, то Ind(βq) = ∞.

Выберем положительное вещественное число α1 < 1
2 , где

Ind( 1
α1

) = ∞. Ниже мы определим последовательность (αk)k∈ω\{0}
весов Ik-дуг, где αk+1 = αk

Nk
, а Nk — достаточно большие нату-

ральное числа.
Определим предранговую функцию y, которая каждому ко-

нечному графу A ставит в соответствие некоторое вещественное
число по правилу

y(A) = |A| −
∞∑

k=1

αk · ek(A),

где ek(A) — число Ik-дуг в графе A.
Заметим, что сумма в определении предранговой функции

всегда конечна в силу конечности графов A.
p-Аппроксимацией предранговой функции y называется

функция yp, которая каждому конечному графу A ставит в со-
ответствие вещественное число по правилу

yp(A) = |A| −
p∑

k=1

αk · ek(A).

133



Для каждого графа A рассмотрим его представление в виде
точки s1

A = (|A|; y1(A)) в решетке1

L1 = {(n; n− α1 ·m) | n,m ∈ ω}.
Определим монотонно возрастающую неограниченную последо-
вательность (b1

n)n≥1: b1
1 ­ 1, b1

n+1 ­ b1
n + (1− α1 · ln

mn
), где ln

mn
—

наилучшая рациональная аппроксимация числа 1
α1
, удовлетво-

ряющая неравенству mn ≤ n. Неограниченность последователь-
ности вытекает из условия Ind( 1

α1
) = ∞.

Для графа A будем писать A ∈ Kbp
1 тогда и только тогда, ко-

гда A конечен и y1(A′) ≥ b1
n для любого непустого графа A′ ⊆ A,

где n = |A′|. Положим k1 ­ 1 и, тем самым, завершим опреде-
ление шага 1.

Пусть на шаге p уже определено число αp, решетка Lp воз-
можных yp-значений, а также неограниченно возрастающая по-
следовательность (bp

n)n≥kp . Выберем натуральное число kp+1 >

kp с условием bp
kp+1

> p + 2 и достаточно малое вещественное
число εp+1 > 0 (εp+1 < εp при p > 1) такое, что для любых
(p1, y1), (p2, y2) ∈ Lp с условиями p1, p2 ≤ kp+1 и y1 6= y2 имеет
место |y1− y2| > εp+1. Выберем теперь число αp+1 = αp

Np
(Np ∈ ω,

Np > 2) так, чтобы выполнялось неравенство αp+1 · kp+1(kp+1−1)
2 <

εp+1. Решетка

Lp+1 ­ {(n; n− αp+1 ·m) | n,m ∈ ω}
утончает решетку Lp.

Построение последовательности (bp+1
n )n≥kp+1 проводится в со-

ответствии со следующими соотношениями: bp+1
kp+1

= bp
kp+1

−2εp+1,

bp+1
n+1 = bp+1

n + (1 − αp+1 · ln
mn

), где ln
mn

— наилучшая рациональ-
ная аппроксимация числа 1

αp+1
, удовлетворяющая неравенству

mn ≤ n. Из условия Ind( 1
αp+1

) = ∞ получаем неограниченность

монотонно возрастающей последовательности (bp+1
n )n≥kp+1 . При

этом, для наименьшего элемента bp+1
kp+1

этой последовательности

1Следуя [113], здесь и далее под решеткой понимается некоторое дискрет-
ное множество точек на координатной плоскости.
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имеет место неравенство

bp+1
kp+1

> p + 1 + ε2, (4.1)

поскольку ε2 < 1
3 .

Лемма 4.1.1. Для любого положительного числа p ∈ ω и
любых конечных графов A и B, где A — собственный подграф
графа B, |B| = n < kp+1, справедливы следующие утверждения.

1. Выполняется yp(B)− y(B) < εp+1.
2. Выполняется yp(A) < yp(B) тогда и только тогда, ко-

гда y(A) < y(B), и выполняется yp(A) < yp(B) тогда и только
тогда, когда yq(A) < yq(B) для любого q ≥ p.

3. Наименьший возможный положительный наклон2
sl((p1, y1), (p2, y2)) между точками (p1, y1) и (p2, y2) (p1 < p2 ≤ n,
n ≥ kp) в решетке Lp совпадает с наклоном sl((n, bp

n),
(n + 1, bp

n+1)) между точками (n, bp
n) и (n + 1, bp

n+1).
4. Если q < p и m ≥ kp, то bp

m ≤ bq
m − 2εq+1.

Д о к а з а т е л ь с т в о. 1. Поскольку при подсчете значе-
ний ek(B) используются лишь неупорядоченные пары различных
элементов из B, каждая такая пара участвует в подсчете не бо-
лее одного значения ek(B), а число таких пар не превосходит
kp+1(kp+1−1)

2 , то yp(B) может отличаться от y(B) менее, чем на
αp+1 · kp+1(kp+1−1)

2 < εp+1.
2. Поскольку y(A) = yq(A) и y(B) = yq(B), начиная с некото-

рого q, достаточно установить эквивалентности yp(A) < yp(B) ⇔
yq(A) < yq(B) для любого q ≥ p. Выберем произвольно q ≥ p
и предположим, что yp(A) < yp(B). Тогда справедливо yp(A) <
yp(B) − εp+1 по определению числа εp+1. В силу утверждения 1
имеем

yq(A) ≤ yp(A) < yp(B)− εp+1 < y(B) ≤ yq(B).

Таким образом, yq(A) < yq(B).
Для доказательства обратной импликации предположим, что

yp(A) ≥ yp(B) и без ограничения общности будем считать, что
A 6= B. Покажем, что тогда yp(A) > yp(B). Действительно, по
условию положительная часть |A| значения yp(A) меньше поло-
жительной части |B| значения yp(B). Так как значения yp(A)

2т.е тангенс угла наклона отрезка, соединяющего точки.
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и yp(B) имеют вид |A| −MA · αp и |B| −MB · αp соответственно,
из иррациональности числа αp получаем yp(A) 6= yp(B).

Теперь неравенство yq(A) > yq(B) выводится из следующей
цепочки неравенств:

yq(A) ≥ y(A) > yp(A)− εp+1 > yp(B) ≥ yq(B).

3. Минимальный возможный положительный наклон ра-

вен min
{

p1−αp·m1

p1

∣∣∣∣ p1

m1
> αp, p1 ≤ n

}
, что в свою очередь равно

1 − αp · ln
mn

, где ln
mn

— наилучшая рациональная аппроксимация
числа 1

αp
с условием mn ≤ n.

4. Достаточно доказать, что bq+1
m ≤ bq

m − 2εq+1. Это устанав-
ливается индукцией по m, используя утверждение 3 и тот факт,
что Lq+1 является утончением Lq. ¤
2. Генерический класс и генерическая теория. Для ко-
нечного графа A будем писать A ∈ Kbp

p+1 тогда и только тогда,
когда A ∈ Kbp

p и yp(A′) ≥ bp
n для любого графа A′ ⊆ A, где

n = |A′|, kp ≤ n < kp+1.

Положим Kbp
0 ­

∞⋂
p=1

Kbp
p . Обозначим через Kbp класс всех

графов, у которых каждый конечный подграф принадлежит клас-
су Kbp

0 .
Пусть A — подграф графа M, принадлежащего классу Kbp.

Будем говорить, что A — самодостаточный подграф графа M
и писать A 6 M, если y(A) ≤ y(B) для любого конечного гра-
фа B, где A ⊆ B ⊆ M. Если A 6 M и M — конечный граф, то
A называется сильным подграфом графа M.

Нам предстоит показать, что класс Tbp
0 всех бескванторных

типов, соответствующих графам из класса Kbp
0 , c отношением 6′

(где Φ(A) 6′ Ψ(B) ⇔ A 6 B) является самодостаточным генери-
ческим классом, обладающим (после добавления к типам необ-
ходимых формул, описывающих самодостаточные замыкания)
свойством однородного t-амальгамирования. А из этого, соглас-
но теореме 2.5.1, будет выводиться ω-насыщенность (Tbp

0 ; 6′)-
генерической модели.

Начнем со следующего замечания.
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Замечание 4.1.2. 1. Из условий A ∈ Kbp
0 и kp ≤ |A| = n <

kp+1 не следует y(A) ≥ bp
n. Вместе с тем, значение y(A) не

может быть намного меньше bp
n: поскольку yp(A)−y(A) < εp+1,

имеем y(A) > bp
n − εp+1.

Кроме того, с учетом неравенства (4.1) для графов A ∈ Kbp
0

мощности |A| ≥ max{2, kp} справедливо неравенство y(A) > p.
2. Пусть A — граф из класса Kbp

0 , |A| = p, M — граф из
класса Kbp, A ⊆ M. Тогда A 6 M в том и только в том
случае, когда yp(A) ≤ yp(B) для всех конечных графов B, где
A ⊆ B ⊆M.

Действительно, если |B| < kp+1, то yp(A) ≤ yp(B) равносиль-
но y(A) ≤ y(B) в силу леммы 4.1.1, п. 2. Если же |B| ≥ kp, то

yp(B) ≥ y(B) > p ≥ yp(A).

Более того, для проверки самодостаточности графа A в гра-
феM достаточно выбрать число nA = kp и проверить соотноше-
ния yp(A) ≤ yp(B) лишь для графов B, A ⊆ B ⊆ M, с условием
|B| < nA.

Таким образом, условие A 6 M формульно определимо с по-
мощью формулы, описывающей отсутствие n < nA новых эле-
ментов из M \A таких, что n < α1 · e1 + . . . + αp · ep, где p = |A|,
es — число новых Is-дуг.

Непосредственно из определения вытекает
Лемма 4.1.3. 1. Если A 6 B, то A ⊆ B.
2. Если A 6 C, B ∈ Kbp

0 и A ⊆ B ⊆ C, то A 6 B.
3. Пустой граф ∅ является наименьшим элементом

системы (Kbp
0 ; 6).

Лемма 4.1.4. Если A,B, C ∈ Kbp
0 , A 6 B и C ⊆ B, то

A ∩ C 6 C.
Д о к а з а т е л ь с т в о. Предположим противное. Тогда су-

ществуют некоторые n новых элементов из C \ A, для которых
n < α1 · e1 + . . . αp · ep, где es — число новых Is-дуг. Поскольку
все новые элементы лежат в B \A, они будут нарушать условие
A 6 B. ¤

Лемма 4.1.5. Отношение 6 является частичным поряд-
ком на классе Kbp

0 .
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Д о к а з а т е л ь с т в о. Рефлексивность и антисимметрич-
ность отношения 6 очевидны.

Покажем, что отношение 6 транзитивно. Предположим про-
тивное и рассмотрим конечные графы A,B, C ∈ Kbp

0 , для ко-
торых A 6 B, B 6 C, но A 66 C. Обозначим через p мощ-
ность графа A. Выберем граф A′, A ⊆ A′ ⊆ C, с наимень-
шим возможным значением yp(A′). Это наименьшее значение до-
стижимо графом мощности, меньшей nA, поскольку множество
{yp(D) | A ⊆ D ⊆ C, yp(D) ≤ yp(A)} является подмножеством
конечного множества {n− αp ·m | n < nA,m < nA

αp
}.

Докажем, что A′ — минимальный сильный подграф графа C,
содержащий A. Действительно, A′ 6 C, поскольку для любого
графа D, A′ ⊆ D ⊆ C, если |D| < kp+1, то y(D) ≥ y(A′) в силу
yp(D) ≥ yp(A′) на основании леммы 4.1.1, п. 2, а если |D| ≥ kp+1,
то y(D) > y(A) ≥ y(A′). Кроме того, любой граф D с условиями
A ⊆ D  A′ не является сильным подграфом C, поскольку в силу
минимальности yp(A′) выполняется yp(D) ≥ yp(A′), а из |A′| 6=
|D| по лемме 4.1.1, п. 2 получаем y(D) > y(A′).

Из минимальности A′ и наличия собственного сильного под-
графа B графа C следует, что A′  C. Теперь из |A′| 6= |C| и ир-
рациональности чисел αs выводим yp(A′) 6= yp(C) и на основании
леммы 4.1.1, п.2 получаем y(A′) < y(C). В силу леммы 4.1.4 име-
ем B ∩ A′ 6 A′. Поэтому B ∩ A′ = A′ и A′ ⊆ B. Последнее
соотношение противоречит A 6 B. ¤

Пусть A, B = 〈B; Ip,B, J0,B, J1,B〉 и C = 〈C; Ip,C , J0,C , J1,C〉 —
графы, A = B ∩ C. Свободной амальгамой графов B и C над A
(обозначаемой через B ∗A C) называется система 〈B ∪ C; Ip,B ∪
Ip,C , J0,B ∪ J0,C , J1,B ∪ J1,B〉.

Заметим, что при построении свободной амальгамы начала
(соответственно концы) дуг могут соединяться только с нача-
лами (концами) дуг. Поэтому система B ∗A C является графом
(двудольным графом с иррефлексивными и антисимметричными
попарно непересекающимися отношениями Ip и одноместными
отношениями J0 и J1, не имеющими общих элементов и образу-
ющими разбиение носителя на две доли так, что если (a, b) ∈ Ip,
то a ∈ J0 и b ∈ J1), содержащим A, B и C в качестве подграфов.

Вложение f графа A в граф B (f : A → B) называется силь-
ным, если f(A) 6 B.
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Лемма 4.1.6. (амальгамационная лемма). Класс Kbp
0 удо-

влетворяет амальгамационному свойству (AP), т. е. для лю-
бых сильных вложений f0 : A → B и g0 : A → C, где A,B, C ∈
Kbp

0 , существует граф D ∈ Kbp
0 и сильные вложения f1 : B → D

и g1 : C → D такие, что f0 ◦ f1 = g0 ◦ g1.
Д о к а з а т е л ь с т в о. Без ограничения общности можно

считать, что A 6 B, A 6 C и A = B ∩ C. Покажем, что граф
D ­ B∗AC является искомым. Для этого, в силу симметричности
определения свободной амальгамы, достаточно установить B 6
D и D ∈ Kbp

0 .
Предположим, что B 66 D. Тогда существуют некоторые n

новых элементов из D \ B, для которых n < α1 · e1 + . . . αp · ep,
где p = |B|, а es — число новых Is-дуг. Поскольку все новые
элементы лежат в C \A, они будут нарушать условие A 6 C.

Поскольку каждый подграф графа D имеет вид B0∗A0 C0, где
A0 6 B0 и A0 6 C0, для проверки D ∈ Kbp

0 достаточно убедиться,
что yp(D) ≥ bp

n, где n = |D|, kp ≤ n < kp+1. Предположим, что
|B| ≤ |C| = m, kq ≤ m < kq+1 и A ( B. Из леммы 4.1.1, п. 3 и
условия A 6 B вытекает

sl((|A|, yq(A)), (|B|, yq(B))) ≥ sl((l, bq
l ), (l + 1, bq

l+1))

для любого l ≥ m. Тогда из равенства

sl((|C|, yq(C)), (|D|, yq(D))) = sl((|A|, yq(A)), (|B|, yq(B)))

получаем

sl((|C|, yq(C)), (|D|, yq(D))) ≥ sl((m, bq
m), (|D|, bq

|D|)). (4.2)

Из принадлежности графа C классу Kbp
0 следует, что точка

(|C|, yq(C)) находится выше точки (m, bq
m). Тогда на основании

неравенства (4.2) заключаем, что точка (|D|, yq(D)) находится
выше точки (|D|, bq

|D|), т. е. yq(D) ≥ bq
|D|.

Если p = q, то требуемое неравенство yp(D) ≥ bp
n установлено.

В противном случае, т. е. если q < p, yp(D) будет отличаться от
yq(D) меньше, чем на αq+1 · kq+1 · (kq+1 − 1) < 2εq+1, поскольку
D содержит менее kq+1 · (kq+1 − 1) дуг. В силу леммы 4.1.1, п. 4
заключаем, что yp(D) ≥ bp

n. ¤
На основании лемм 4.1.3–4.1.6 получаем
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Следствие 4.1.7. Класс (Tbp
0 ; 6′) самодостаточен.

Обозначим (Tbp
0 ;6′)-генерическую теорию через T bp.

Покажем, что после добавления к каждому бесквантор-
ному типу Φ(A) ∈ Tbp

0 некоторой формулы χΦ(A), для которой
(T bp, A) ` χΦ(A), получается самодостаточный класс (T0; 6′′),
обладающий свойством однородного t-амальгамирования.

Действительно, на основании замечания 4.1.2 для любого гра-
фа A ∈ Kbp

0 мощности p и любого графа M |= T bp, A ⊆ M,
имеет место следующее соотношение:

A 6 M⇔ yp(A) ≤ yp(B) для любого графа B
с условиями A ⊆ B ⊆M и |B| ≤ kp.

Поскольку мощности графов B ограничены в зависимости
лишь от мощности графа A, а проверка условия yp(A) ≤ yp(B)
предполагает лишь подсчет связей по отношениям I1, . . . , Ip, усло-
вие самодостаточности A 6 M выразимо некоторой универсаль-
ной формулой χA(X) сигнатуры {I1, . . . , Ip}, где множество пе-
ременных X биективно с множеством A.

Пусть A и B — графы из класса Kbp
0 , M — генерическая мо-

дель теории T bp, A 6 B 6 M. Обозначим через ψA,s(X) (соот-
ветственно ψB,s(X, Y )) бескванторную формулу, описывающую
бескванторный {I1, . . . , Is, J0, J1}-тип графа A (B), где X и Y —
непересекающиеся множества переменных, биективные с множе-
ствами A и B \A. Тогда для любого s ≥ |B| в моделиM истинна
следующая формула:

∀X ((χA(X) ∧ ψA,s(X)) → ∃Y (χB(X, Y ) ∧ ψB,s(X, Y ))) .

Из последнего соотношения вытекает свойство однородного t-
амальгамирования для класса (T0; 6′′), который получается из
класса (Tbp

0 ; 6′) добавлением к типам формул, устанавливающих
мощностные границы и {I1, . . . , Ip, J0, J1}-структуры самодоста-
точных замыканий, а также формул χA(A) к типам самодоста-
точных множеств A.

Добавление указанных выше формул обеспечивает наличие
конечных замыканий у любых конечных множеств моделей тео-
рии T bp.

На основании теоремы 2.5.1 справедлива следующая
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Теорема 4.1.8. (Tbp
0 ;6′)-Генерическая модель M насыще-

на. При этом любое конечное множество A ⊆ M расширяется
до своего самодостаточного замыкания A ⊆ M , и тип tpX(A)
выводится из множества {χA(X)} ∪ {ψA,s(X) | s ∈ ω \ {0}}.

Пусть N — ω-насыщенная модель теории T bp.

Предложение 4.1.9. Для любого конечного множества A
из модели N справедливо соотношение acl(A) = A.

Д о к а з а т е л ь с т в о. Включение A ⊆ acl(A) следует из
единственности множества A в модели N . Возьмем теперь про-
извольный элемент b ∈ N \ A и положим B ­ A ∪ {b}. В силу
конструкции генерической модели существует бесконечное число
изоморфных попарно непересекающихся копий множества B \A
над множеством A, т. е. b 6∈ acl(A). ¤

3. Стабильность генерической теории. Покажем, что ге-
нерическая теория T bp стабильна. Пусть N — некоторая доста-
точно насыщенная модель теории T bp. Ранговой функцией в мо-
дели N называется функция

rN : {A | A — конечный подграф N} → R+,

определяемая равенством rN (A) = inf{y(B) | A ⊆ B ⊆fin N}
(здесь и далее запись B ⊆fin N означает, что B — конечная под-
структура структуры N , а запись B ⊆fin N — B является конеч-
ным подмножеством N).

Заметим, что в силу самодостаточности класса (Tbp
0 ; 6′) ин-

фимум в указанном выше равенстве всегда достижим и совпа-
дает со значением y(A): rN (A) = y(A).

В дальнейшем модель N будет зафиксирована, функция rN
будет для краткости обозначаться через r, а графы A будут за-
меняться их носителями в модели N . При этом все рассматрива-
емые множества будут считаться подмножеством множества N .

Относительная предранговая функция y(A/B) графа A над
графом B задается соотношением

y(A/B) = y(A ∪B)− y(B),
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а относительная ранговая функция r(A/B) графа A над гра-
фом B — соотношением

r(A/B) = r(A ∪B)− r(B).

Установим необходимые в дальнейшем свойства относитель-
ной ранговой функции.

Очевидно, r(A/B) ≥ 0.

Лемма 4.1.10. Для любых конечных множеств B и C спра-
ведливо неравенство

y(B) + y(C) ≥ y(B ∪ C) + y(B ∩ C).

Неравенство превращается в равенство в том и только в том
случае, когда B ∪ C = B ∗B∩C C.

Д о к а з а т е л ь с т в о. По определению значение

y(B) + y(C)− y(B ∪ C)− y(B ∩ C)

равно
∞∑

k=1

αk · ek, где ek — число Ik-дуг, связывающих элементы

из B \C c элементами из C \B. Таким образом, требуемое нера-
венство имеет место, и оно превращается в равенство в точности
при отсутствии указанных Ik-дуг, т. е. когда граф с носителем
B ∪ C является свободной амальгамой B ∗B∩C C. ¤

Лемма 4.1.11. Если B1 ⊆ B2, то r(A/B1) ≥ r(A/B2).

Д о к а з а т е л ь с т в о. Положим C ­ A ∪B1, D ­ B1,
E ­ B2. Из леммы 4.1.10 и соотношений D ⊆ C, D ⊆ E и
D ≤ C ∩ E следует

y(C) + y(E) ≥ y(C ∪ E) + y(C ∩ E) ≥ y(C ∪ E) + y(D).

Тогда y(C)− y(D) ≥ y(C ∪ E)− y(E). Отсюда получаем

r(A/B1) = y(C)− y(D) ≥ y(C ∪ E)− y(E) ≥ y(C ∪ E)− y(E) =

r(A ∪B2)− r(B2) = r(A/B2). ¤
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Если A — конечное множество, X — некоторое (не обязатель-
но конечное) множество, то

r(A/X) ­ inf{r(A/B) | B ⊆fin X}.

Лемма 4.1.12. Пусть A1 и A2 — конечные множества, X —
некоторое множество, для которого A1 \ X = A2 \ X. Тогда
r(A1/X) = r(A2/X).

Д о к а з а т е л ь с т в о. Предположим противное и без огра-
ничения общности будем считать, что r(A1/X) = r(A2/X) + ε
для некоторого ε > 0. Выберем конечное множество B2 ⊆ X та-
кое, что r(A2/B2) < r(A2/X) + ε. Обозначим через C множество
(A1 ∩X) ∪ (A2 ∩X) ∪B2. Тогда

r(A1/X) ≤ r(A1/C) = r(A2/C) ≤ r(A2/B2) < r(A2/X) + ε.

Получаем неравенство r(A1/X) < r(A2/X) + ε, которое проти-
воречит выбору ε. ¤

Множество X ⊆ N называется замкнутым (в модели N )
(обозначается X 6 N), если для любого конечного множества
A ⊆ X выполняется A ⊆ X. Последнее условие равносильно
отсутствию в N \X каких-либо n новых элементов, для которых

n <
∞∑

k=1

αk · ek, где ek — число новых Ik-дуг.

Лемма 4.1.13. Пусть X и Y — множества из модели N .
Тогда справедливы следующие утверждения:

1) если X 6 N и Y 6 N , то X ∩ Y 6 N ;
2) существует наименьшее замкнутое множество X ⊇ X;

при этом выполняются соотношения X =
⋃{A | A — конечное

подмножество множества X} и X = acl(X);
3) если X ⊂ Y , то X ⊆ Y .
Множество X называется внутренним замыканием множе-

ства X (в модели N ).
Д о к а з а т е л ь с т в о. 1. Предположим, что X 6 N и

Y 6 N . Пусть A — конечное подмножество множества X ∩ Y .
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Так как A ⊂ X и A ⊂ Y , а X и Y — замкнутые множества, то
A ⊆ X и A ⊆ Y . Следовательно, A ⊆ X ∩ Y . Таким образом,
X ∩ Y — замкнутое множество.

2. Обозначим множество
⋃{A | A — конечное подмножество

множества X} через Z. Очевидно, любое замкнутое надмноже-
ство множества X содержит множество Z и X ⊆ Z. С другой
стороны, если A — конечное подмножество Z, то существует ко-
нечное множество B ⊆ X такое, что A ⊆ B. Тогда A ⊆ B ⊆ Z.
Таким образом, Z — наименьшее замкнутое множество, содер-
жащее множество X. Теперь равенство X = acl(X) вытекает из
предложения 4.1.9.

3. Достаточно заметить, что для любых конечных графов A
и B если A ⊆ B, то A ⊆ B. Действительно, A ⊆ A ∩ B 6 N .
Следовательно, A ⊆ A ∩B и A ⊆ B. ¤

Аналогично определению 3.30 из работы Дж. Болдуина,
Н. Ши [72] будем говорить, что конечные множества A и B неза-
висимы над Z и писать A ↓r

Z B, если r(A/Z) = r(A/(Z ∪ B))
и A ∪ Z ∩B ∪ Z ⊆ Z.

Будем говорить, что множества X и Y независимы над Z
и писать X ↓r

Z Y , если A ↓r
Z B для любых конечных множеств

A ⊆ X и B ⊆ Y .
Аналогом леммы 3.31 из работы Дж. Болдуина, Н. Ши [72]

является

Лемма 4.1.14. Если X и Y — замкнутые множества, Z =
X ∩ Y и X ↓r

Z Y , то X ∪ Y — замкнутое множество.

Д о к а з а т е л ь с т в о. Заметим сначала, что по лем-
ме 4.1.13, п. 1 множество Z замкнуто.

Предположим теперь, что множество X ∪Y не замкнуто. То-
гда существуют конечные множества A ⊆ X, B ⊆ Y и C такие,
что (A∪B, C) — минимальная пара и C не содержится в A∪B.
Положим ε ­ y(A∪B)−y(C). По выбору множеств A, B и C для
любых конечных множеств A′ и B′, удовлетворяющих условиям
A ⊆ A′ ⊆ X, B ⊆ B′ ⊆ Y , выполняется y(C/(A′ ∪B′)) ≤ −ε. То-
гда r(A′∪B′∪C) ≤ y(A′∪B′∪C) ≤ y(A′∪B′)−ε. Для получения
противоречия мы выберем (используя независимость множеств
X и Y над Z) пару (A1, B1) такую, что A ⊆ A1 ⊆ X, B ⊆ B1 ⊆ Y
и r(A1 ∪B1 ∪ C) > y(A1 ∪B1)− ε.
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В силу X ↓r
Z Y имеем r(A/Z) = r(A/(Z ∪ B)). Выберем ко-

нечное множество Z0 ⊆ Z, для которого r(A/Z0) < r(A/Z) + ε
2 .

Положим A0 = A∪Z0, B0 = B ∪Z0 и D0 = A0 ∩B0. В силу лем-
мы 4.1.12 имеем r(A/Z) = r(A0/Z). Более того, из A ∪ Z0 = A0

получаем r(A/Z0) = r(A0/Z0) ≥ r(A0/D0). Поэтому r(A0/D0) <
r(A0/Z) + ε

2 .
Положим D1 ­ D0, A1 ­ A0, B1 ­ B0. Очевидно, y(A1/D1) =

r(A1/D1) и |y(A1/D1)−r(A0/Z0)| < ε
2 . Кроме того, D1 ⊆ A1∩B1.

Покажем, что A1 и B1 — требуемые множества. Поскольку
r(A1 ∪ B1 ∪ C) ≥ r(A0 ∪ B0), достаточно установить, что r(A0 ∪
B0) > y(A1 ∪B1)− ε. Имеем

r(A0 ∪B0) = r(A0/B0) + r(B0) ≥ r(A0/B0 ∪ Z) + r(B0) =

r(A0/Z) + r(B0) > r(A0/Z0)− ε

2
+ r(B0) >

(
y(A1/D1)− ε

2

)
− ε

2
+ y(B1) = y(A1/D1) + y(B1)− ε.

В силу самодостаточности множества D1 имеем
y((A1 ∩B1)/D1) ≥ 0. Тогда

y(A1/D1) + y(B1)− ε =

y(A1/(A1 ∩B1)) + y((A1 ∩B1)/D1) + y(B1)− ε ≥
y(A1/(A1 ∩B1) + y(B1)− ε ≥ y(A1 ∪B1)− ε.

Сопоставляя начало и конец цепочки неравенств, получаем

r(A0 ∪B0) > y(A1 ∪B1)− ε. ¤

Следующее определение естественным образом обобщает вве-
денное выше понятие свободной амальгамы графов. Множе-
ство U (в модели N ) называется свободной амальгамой мно-
жеств X и Y над множеством Z и обозначается X ∗Z Y , если
X∪Y = U , X∩Y = Z и нет дуг, связывающих элементы из X \Y
с элементами из Y \X.

Лемма 4.1.15. Если X — самодостаточное множество,
Y — замкнутое множество и Z = X ∪ Z ∩ Y , то X ↓r

Z Y то-
гда и только тогда, когда X ∪ Z ∪Y — замкнутое множество,
совпадающее со свободной амальгамой X ∪ Z ∗Z Y .
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Д о к а з а т е л ь с т в о. Обозначим множество X ∪ Z че-
рез X ′. Предположим, что X ↓r

Z Y . Замкнутость множества
X ′ ∪ Y установлена в лемме 4.1.14. Покажем, что X ′ ∪ Y =
X ′ ∗Z Y . Предположим, что X ′ ∪ Y 6= X ′ ∗Z Y , т. е. существу-
ет Ip-дуга, связывающая элемент x ∈ X ′ \ Z с элементом y ∈
Y \ Z. Выберем конечное множество Z0 ⊆ Z, для которого x ∈
X ∪ Z0. Тогда для любого конечного самодостаточного множе-
ства Y0 ⊇ Z0 ∪ {y} справедливо r(X/Z ∩ Y0) ≥ r(X/Y0) + αp и,
значит, r(X/Z) ≥ r(X/Y ) + αp. Последнее противоречит равен-
ству r(X/Z) = r(X/Y ), вытекающему из X ↓r

Z Y .
Предположим теперь, что X ′ ∪ Y — замкнутое множество,

совпадающее со свободной амальгамой X ∪ Z ∗Z Y . Покажем,
что X ↓r

Z Y . Достаточно установить, что

inf{r(X/A) | A ⊆fin Z} ≤ inf{r(X/B) | B ⊆fin Y }.
Выберем произвольное конечное множество B ⊆ Y . Обозначим
через C самодостаточное множество B ∪X, которое по условию
содержится в X ′ ∪ Y . Поскольку C = (C ∩ X ′) ∗C∩Z (C ∩ Y )
и множество C = (C ∩ X ′) ∪ (C ∩ Y ) самодостаточно, множе-
ство X ∪ (C ∩ Z) ∪ (C ∩ Y ) также самодостаточно и совпадает
с X ∪ (C ∩ Z) ∗C∩Z C ∩ Y . Поскольку B ⊆ C ∩ Y , r(X/B) ≥
r(X/C ∩ Y ). Осталось заметить, что r(X/C ∩ Z) = r(X/C ∩ Y ).
Действительно, обозначив множество X ∪ (C ∩ Z) через X ′′, по-
лучаем

r(X/C ∩ Z) = y(X ′′)− y(C ∩ Z) ≥ y(X ′′)− y(X ′′ ∩ (C ∩ Y )) ≥
y(X ′′ ∪ (C ∩ Y ))− y(C ∩ Y ) ≥ r(X ′′/C ∩ Y ) = r(X/C ∩ Y ).

Первое неравенство является равенством, поскольку C ∩ Z =
X ′′∩ (C ∩Y ). Второе неравенство является равенством по лемме
4.1.10, так как X ′′∪(C∩Y ) = X ′′∗C∩Z (C∩Y ). Третье неравенство
также является равенством, поскольку множество X ′′ ∪ (C ∩ Y )
самодостаточно. ¤

Непосредственно из леммы 4.1.15 вытекает
Следствие 4.1.16. Если X — самодостаточное множество,

Y — замкнутое множество, Z = X ∪ Z ∩ Y и X ↓r
Z Y , то тип

tp(X/Y ) однозначно определяется типом tp(X/Z), описанием
замкнутости множества X ∪ Z ∪ Y и бескванторным типом,
описывающим совпадение X ∪ Z ∪ Y со свободной амальгамой
X ∗Z Y .
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Лемма 4.1.17. Если X — замкнутое множество, a — эле-
мент модели N , не принадлежащий X, то существует не бо-
лее чем счетное замкнутое подмножество X ′ ⊆ X такое, что
{a} ↓r

X′ X.
Д о к а з а т е л ь с т в о аналогично доказательству леммы

3.32 из работы Дж. Болдуина, Н. Ши [72]. Выберем последова-
тельность Xn, n ∈ ω, конечных подмножеств множества X таких,
что Xn−1 ⊆ Xn и r({a}/Xn) − r({a}/X) < 1

n , n ∈ ω \ {0}. Поло-
жим U ­

⋃
n∈ω

Xn и X ′ ­ X ∩{a} ∪ U . Множество X ′ замкнуто и

не более чем счетно в силу леммы 4.1.13. Применяя лемму 4.1.11,
получаем r({a}/X ′) = r({a}/X) = r({a}/(X ′ ∪X)). Кроме того
({a} ∪X ′) ∩X = X ′. Следовательно, {a} ↓r

X′ X. ¤
Напомним понятие веса (см. С. Шелах [26]). Пусть p — тип

теории T , λ — некоторый кардинал. Вес w(p) типа p больше либо
равен λ, если существует неответвляющееся расширение tp(a/A)
типа p и независимая над A последовательность (ai)i∈λ такая,
что каждый элемент ai зависим с a над A. Полагается w(p) ­ λ,
если w(p) ≥ λ, но w(p) � λ+.

Теорема 4.1.18. 1. Теория T bp стабильна, мала и имеет
ровно два 1-типа (элементов цвета J0 и элементов цвета J1).

2. Любой 1-тип теории T bp имеет бесконечный вес: для лю-
бого элемента a цвета Ji, i = 0, 1, существует бесконечное мно-
жество независимых элементов bn, n ∈ ω, цвета J1−i, завися-
щих от элемента a.

Д о к а з а т е л ь с т в о. 1. Малость теории T bp вытекает
из теоремы 4.1.8. Для доказательства стабильности теории T bp

найдем оценку числа 1-типов из S(N), где N — некоторая мо-
дель теории T bp. Рассмотрим произвольный элемент a. По лем-
ме 4.1.17 существует не более чем счетное замкнутое множество
X ⊆ N такое, что {a} ∪X ∩ N = X и {a} ↓r

X N . По след-
ствию 4.1.16 тип tp(a/N) определяется типом tp(a/X), описани-
ем замкнутости множества {a} ∪X ∪N и бескванторным типом,
описывающим совпадение {a} ∪X ∪N со свободной амальгамой
{a} ∪X ∗X N . Таким образом, для подсчета числа типов из S(N)
достаточно посчитать число типов из S(X) и число выборов счет-
ных множеств X из N . Тогда

|S(N)| ≤ 2ω · |N |ω = |N |ω.

Следовательно, теория T bp стабильна.
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По построению каждое одноэлементное множество {a} само-
достаточно. По теореме 4.1.8 это означает, что существуют ровно
два 1-типа теории T bp: один из этих типов содержит формулу
J0(x), а другой — J1(x).

2. Пусть A — граф с носителем {a}, Ap = {a, bp} — носи-
тель двухэлементного графа Ap, содержащего Ip-дугу между a
и bp. Положим B1 ­ A1, Bp+1 ­ Bp ∗A Ap+1, B ­

⋃
p∈ω\{0}

Bp. По

построению граф B является замкнутым подграфом некоторой
генерической моделиM теории T bp. Поскольку α1 + . . .+αp+1 <
1 и {b1, . . . , bp+1} 6 {a, b1, . . . , bp+1} 6 B 6 M , справедливо
{bp+1} ↓r

∅ {b1, . . . , bp}. Таким образом, (bp)p∈ω\{0} — бесконечная
независимая последовательность элементов одного и того же ти-
па, где каждый элемент bp зависим с элементом a. ¤

ПустьM— некоторая модель, ϕ(x), ψ(x, y) — некоторые фор-
мулы теории Th(M), X — множество в модели M, определимое
формулой ϕ(x): X = ϕ(M). Будем говорить, что множество X
обладает свойством попарного ψ-пересечения, если

M |= ∀x, y (ϕ(x) ∧ ϕ(y) → ∃z (ψ(z, x) ∧ ψ(z, y))).

Поскольку αp < 1
2 для любого натурального числа p ≥ 1,

любые два элемента a и b цвета J0 связаны через некоторый
элемент c цвета J1 так, что aIpc и bIpc. Точно так же, любые
два элемента a и b цвета J1 связаны через некоторый элемент
c цвета J1 так, что cIpa и cIpb. При этом, в каждом из случа-
ев указанных элементов c существует бесконечно много. Таким
образом, справедливо следующее

Предложение 4.1.19. Для любого натурального числа
p ≥ 1 множество элементов цвета Ji обладает свойством по-
парного I

(−1)1−i

p -пересечения, i = 0, 1.
В следующих двух утверждениях проясняется структура про-

стых моделей MA над конечными множествами A.
Лемма 4.1.20. Если A и B — самодостаточные множе-

ства в модели N и A 6 B, то тип tp(B/A) изолирован тогда
и только тогда, когда B — полный двудольный граф над A, т. е.
любые два J-разноцветных элемента a ∈ B и b ∈ B \A связаны
некоторой Ip-дугой.
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Д о к а з а т е л ь с т в о. Пусть Y — множество переменных,
биективное с множеством B \ A. Если B — полный двудольный
граф над A, то по теореме 4.1.8 тип tp((B \ A)/A) изолируется
формулой χB(A ∪ Y ) ∧ ψB,s(A ∪ Y ), где s — число, большее всех
номеров цветов дуг из B. Если же B не является полным двудоль-
ным графом над A, то по теореме 4.1.8 тип tp((B \A)/A) изоли-
руется множеством формул {χB(A ∪ Y )} ∪ {ψB,s(A ∪ Y ) | s ∈ ω},
но не изолируется никакой конечной частью этого множества. ¤

Из леммы 4.1.20 вытекает

Следствие 4.1.21. Пусть A — самодостаточное множе-
ство в модели N . Модель MA является полным двудольным
графом над A. Множество типов изоморфизма простых мо-
делей над конечными множествами совпадает с множеством
типов изоморфизма моделей MA, где A — самодостаточные
множества такие, что MA — полные двудольные графы над A.

§ 4.2. Малые стабильные генерические графы с бес-
конечным весом. Безразвилочные орграфы

В этом параграфе мы определяем понятие безразвилочного
орграфа и на основе конструкции из параграфа 4.1 описываем
генерическую конструкцию, приводящую к построению семей-
ства малых стабильных безразвилочных орграфов таких, что
все 1-типы непромежуточных элементов имеют бесконечный вес.
Тем самым решается вопрос о существовании малой стабильной
теории конечной (графовой) сигнатуры и имеющей типы с бес-
конечным весом.

1. Определения и свойства. Пусть A = 〈A,Q, W 〉 — c-
граф. Вершина a ∈ A называется верхней (нижней) развилкой в
c-графе A, если найдутся вершины b, c, d ∈ A, c 6= d, такие, что
выполняются следующие условия:

а) (b, a) ∈ Q или (b, a, n) ∈ W (соответственно (a, b) ∈ Q или
(a, b, n) ∈ W ) для некоторого n;

б) (a, c) ∈ Q или (a, c, n) ∈ W (соответственно (c, a) ∈ Q или
(c, a, n) ∈ W ) для некоторого n;

в) (a, d) ∈ Q или (a, d, n) ∈ W (соответственно (d, a) ∈ Q или
(d, a, n) ∈ W ) для некоторого n.
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Верхние (нижние) развилки часто будут называться просто
развилками.

c-Граф или бесконтурный граф, не имеющий развилок, назы-
вается безразвилочным. Класс всех безразвилочных графов обо-
значим через Γnf .

Обозначим через Γbp
c класс всех графов сигнатуры {Q}, кото-

рые получаются из графов класса Γbp заменой всех Ip-дуг (a, b)
на некоторое количество (a, b)-Q-маршрутов, имеющих длины,
не меньшие p, включая кратчайший маршрут длины p, в кото-
рых каждая промежуточная вершина имеет степень 2. Очевид-
но, что каждый граф из класса Γbp

c является безразвилочным.
Кроме того, безразвилочными являются бесконтурные графы,
в которых каждая вершина имеет степень, не превосходящую 2.
Обозначим класс всех таких графов через Γ≤2.

Очевидно, что любой граф из класса Γ≤2 состоит из некото-
рого числа компонент связности K, каждая из которых является
конечным или бесконечным маршрутом с начальным элементом
или без него, а также с заключительным элементом или без него.
Начальные элементы как и раньше будем отмечать цветом J0,
а заключительные элементы — цветом J1. Класс Γ≤2 замкнут
относительно операции присоединения к графам изолированных
вершин, т. е. вершин степени 0. При этом, будем считать, что
изолированные вершины образуют множество, не пересекающе-
еся с J0 ∪ J1.

Пусть Γi = 〈Xi, Qi〉, i ∈ I, — графы с единственным общим
элементом a цвета Jj , j ∈ {0, 1}. Граф 〈⋃

i∈I

(Xi),
⋃
i∈I

(Qi)〉 назы-

вается свободной амальгамой графов Γi, i ∈ I, над вершиной a
и обозначается через ∗i∈IΓi.

Обозначим через Γnf
0 замыкание класса Γbp

c ∪Γ≤2 относитель-
но взятия дизъюнктных объединений, а также относительно взя-
тия свободных амальгам над вершинами.

Нетрудно заметить, что любой граф из класса Γnf являет-
ся безразвилочным. Кроме того, любой безразвилочный граф
можно представить в виде дизъюнктного объединения амаль-
гам над вершинами графов из класса Γbp

c ∪Γ≤2. Таким образом,
Γnf = Γnf

0 .

Обозначив операцию взятия амальгам над вершинами че-
рез A, а операцию взятия дизъюнктных объединений — через D,
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получаем следующую формулу:

Γnf = D(A(Γbp
c ∪ Γ≤2)).

В дальнейшем мы будем рассматривать безразвилочные гра-
фы и их c-подграфы A = 〈A,Q,W 〉, в которых функции Col
одноцветны: ρCol = {0}, и каждая вершина является начальной
(имеет цвет J0), заключительной (имеет цвет J1) или промежу-
точной (имеет степень 2 в некотором расширении A и цвет, от-
личный от J0 и J1). При этом, с каждой вершиной a ∈ A, не
принадлежащей J0∪J1, в записи W будет указана согласованная
информация о длине кратчайшего (b, a)-Q-маршрута, где b ∈ J0

(если такая вершина b в c-графе или в некотором его расши-
рении существует), а также информация о длине кратчайшего
(a, c)-Q-маршрута, где c ∈ J1 (если такая вершина c в c-графе
или в некотором его расширении существует). При самостоятель-
ном рассмотрении c-подграфы будут, как обычно, называться c-
графами.

Пусть A = 〈A,Q, W 〉 — c-граф. Обозначим через e1(A) число
|Q|, через ek(A), k ∈ ω \ {0, 1}, — число пар (a, b) вершин из A,
для которых (a, b, k) ∈ W .

Определим предранговую функцию y, которая каждому c-гра-
фу A ставит в соответствие некоторое вещественное число по
правилу

y(A) = |A| −
∞∑

k=1

αk · ek(A),

где αk — числа, определенные в параграфе 4.1. Заметим, что
сумма в определении предранговой функции всегда конечна в
силу конечности c-графов A.

p-Аппроксимацией предранговой функции y называется
функция yp, которая каждому c-графу A ставит в соответствие
вещественное число по правилу

yp(A) = |A| −
p∑

k=1

αk · ek(A).

Для c-графа A будем писать A ∈ Knf
1 тогда и только тогда,

когда y1(A′) ≥ b1
n для любого непустого c-графа A′ ⊆c A, где

n = |A′|.
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Лемма 4.2.1. Для любого положительного числа p ∈ ω
и любых c-графов A и B, где A — собственный c-подграф c-
графа B, |B| = n < kp+1, справедливы следующие утверждения.

1. Выполняется yp(B)− y(B) < εp+1.
2. Выполняется yp(A) < yp(B) тогда и только тогда, ко-

гда y(A) < y(B), и выполняется yp(A) < yp(B) тогда и только
тогда, когда yq(A) < yq(B) для любого q ≥ p.

Д о к а з а т е л ь с т в о слово в слово повторяет доказатель-
ство леммы 4.1.1. ¤

2. Генерический класс и генерическая теория. Для c-
графа A будем писать A ∈ Knf

p+1 тогда и только тогда, когда A
не содержит вершин, к которым запрещено присоединять дуги,
A ∈ Knf

p и yp(A′) ≥ bp
n для любого c-графа A′ ⊆c A, где n = |A′|,

kp ≤ n < kp+1.

Положим Knf
0 ­

∞⋂
p=1

Knf
p . Обозначим через Knf класс всех

(безразвилочных) графов, у которых каждый c-подграф принад-
лежит классу Knf

0 .
Пусть A — c-подграф графа (c-подграфа) M (графа), при-

надлежащего классу Knf . Будем говорить, что A — самодоста-
точный c-подграф графа (соответственно c-графа) M и писать
A 6c M, если y(A) ≤ y(B) для любого c-графа B, где A ⊆c

B ⊆c M. Если A 6c M иM — c-граф, то A называется сильным
c-подграфом c-графа M.

Заметим, что для любого c-графа A = 〈A,Q,W 〉 ∈ Knf
0 и лю-

бой промежуточной вершины a ∈ A множество всех элементов,
образующих Q-маршрут Sa, включающий вершину a, содержит-
ся в определимом замыкании множества {a}: Sa ⊆ dcl{a}. Это
означает, что любое расширение множества {a} до максималь-
ного Q-маршрута Sa определяется однозначно. Множество

A ∪ ∪{Sa | a — промежуточная вершина из A}
будем называть маршрутным замыканием множества A (внутри
данного графа, содержащего A в качестве c-подграфа) и обозна-
чать через ccl(A).

Очевидно, что множество ccl(A)∩(J0∪J1) конечно для любого
c-графа A.
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В дальнейшем будем считать, что к записи W присоединена
информация о взаимосвязи элементов из ccl(A) с помощью лишь
внешних кратчайших Q-маршрутов. Таким образом, запись W
обогащенного c-графа A = 〈A,Q, W 〉 будет содержать структур-
ное описание множества ccl(A) (возможно включающее беско-
нечную информацию о маршрутах бесконечной длины, у кото-
рых все промежуточные вершины имеют степень 2), а также ко-
нечную информацию о длинах внешних (относительно ccl(A))
кратчайших Q-маршрутов, связывающих элементы из ccl(A)∩J0

с элементами из ccl(A) ∩ J1 лишь с помощью внешних кратчай-
ших Q-маршрутов.

Нам предстоит показать, что класс T всех типов, соответ-
ствующих обогащенным c-графам из класса Knf

0 , c отношени-
ем 6′

c (где Φ(A) 6′
c Ψ(B) ⇔ A 6c B) содержит самодостаточ-

ный генерический подкласс Tnf
0 , доминирующий T и обладаю-

щий (после добавления к типам необходимых формул, описы-
вающих самодостаточные замыкания) свойством однородного
t-амальгамирования. Это повлечет ω-насыщенность (Tnf

0 ; 6′
c)-

генерической модели, реализующей все типы Φ(X), соответству-
ющие типам Φ(A) из T.

Замечание 4.2.2. 1. Из условий A ∈ Knf
0 и kp ≤ |A| = n <

kp+1 не следует y(A) ≥ bp
n. Вместе с тем, значение y(A) не

может быть намного меньше bp
n: поскольку yp(A)−y(A) < εp+1,

имеем y(A) > bp
n − εp+1.

Кроме того, с учетом неравенства (4.1) для графов A ∈ Knf
0

мощности |A| ≥ max{2, kp} справедливо неравенство y(A) > p.
2. Пусть A — c-граф из класса Knf

0 , |A| = p, M — граф из
класса Knf , A ⊆c M. Тогда A 6c M в том и только в том слу-
чае, когда yp(A) ≤ yp(B) для всех c-графов B, где A ⊆c B ⊆c M.

Действительно, если |B| < kp+1, то yp(A) ≤ yp(B) равносиль-
но y(A) ≤ y(B) в силу леммы 4.2.1, п. 2, а если |B| ≥ kp, то

yp(B) ≥ y(B) > p ≥ yp(A).

Более того, для проверки самодостаточности c-графаA в гра-
феM достаточно выбрать число nA = kp и проверить соотноше-
ния yp(A) ≤ yp(B) лишь для c-графов B, A ⊆c B ⊆c M, с усло-
вием |B| < nA.
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Таким образом, условиеA 6c Mформульно определимо с по-
мощью формулы, описывающей отсутствие n < nA новых эле-
ментов из M \A таких, что

n < α1 · e1 + α2 · (e2 − e′2) + . . . + αp · (ep − e′p),

где p = |A|, e1 — число новых дуг, es — число новых пар вер-
шин (a, b), связанных лишь внешними кратчайшими маршрута-
ми длины s, e′s — число пар вершин (a, b), которые перестают
быть связанными в расширенном c-графе лишь внешними крат-
чайшими маршрутами длины s.

При этом, каждая тройка (a, b, s), участвующая в подсчете e′s,
превращается в некоторую последовательность троек (a0, a1, s1),
. . . , (ak−1, ak, sk) таких, что a0 = a, ak = b, элементы a1, . . . , ak−1

имеют степень 2, элементы ai−1 и ai связаны в расширенном
c-графе дугой (при si = 1) или единственным внешним кратчай-
шим маршрутом длины si (при si > 1), s1 + . . . + sk = s. Зна-
чит, при расширении c-графа удаление каждой тройки (a, b, s),
участвующей в подсчете значения y(·), приводит при новом под-
счете y(·) к замене значения −αs на положительное (в силу нера-
венств αi < 1

2 , i ≥ 1) значение (k − 1) − αs1 − . . . − αsk
. Таким

образом, уменьшение значения y(·) может произойти лишь за
счет добавления к c-графу вершин цвета J0 или J1, и условие
A 6c M формульно определимо с помощью формулы, описыва-
ющей отсутствие n < nA новых элементов из M \ A таких, что
n < α1 · e1 + . . . + αp · ep, где p = |A|, es — число новых пар
вершин (a, b), связанных лишь внешними кратчайшими марш-
рутами длины s.

Непосредственно из определения вытекает
Лемма 4.2.3. 1. Если A 6c B, то A ⊆c B.
2. Если A 6c C, B ∈ Knf

0 и A ⊆c B ⊆c C, то A 6c B.
3. Пустой граф ∅ является наименьшим элементом

системы (Knf
0 ; 6c).

Лемма 4.2.4. Если A,B, C ∈ Knf
0 , A 6c B и C ⊆c B, то

A ∩ C 6c C.
Д о к а з а т е л ь с т в о. Предположим противное. Тогда су-

ществуют некоторые n новых элементов из C \ A, для которых
выполняется неравенство n < α1 ·e1+. . .+αp ·ep, где p = |A|, es —
число новых пар вершин (a, b), связанных лишь внешними крат-
чайшими маршрутами длины s. Поскольку все новые элементы
лежат в B \A, они будут нарушать условие A 6c B. ¤

154



Лемма 4.2.5. Отношение 6c является частичным поряд-
ком на классе Knf

0 .
Д о к а з а т е л ь с т в о получается из доказательства

леммы 4.1.5 заменой графов класса Kbp
0 на c-графы класса Knf

0 ,
а отношений ⊆ и 6 на отношения ⊆c и 6c соответственно. ¤

c-Граф A называется J-замкнутым, если A с каждой проме-
жуточной вершиной a содержат начальную вершину (если эта
вершина существует) и заключительную вершину (если эта вер-
шина существует) маршрута Sa.

Пусть A, B = 〈B, QB,WB〉 и C = 〈C, QC ,WC〉 — обогащенные
J-замкнутые c-графы, A = B∩C, ccl(A) = ccl(B)∩ccl(C) (послед-
нее равенство означает, что с каждым общим Q-маршрутом S
длины ≥ 2, описанным одновременно в B и в C, множество A
содержит некоторую общую для B и для C промежуточную вер-
шину из S). Свободной c-амальгамой c-графов B и C над A (обо-
значаемой через B ∗A C) называется c-граф 〈B ∪ C, QB ∪ QC ∪
Q,WB ∪ WC ∪ W 〉, где Q (соответственно W ) — множество дуг
(записей о внешних над B∪C кратчайших маршрутах) с концами
из B ∪ C, описанных в графе с носителем ccl(A) .

По определению любая свободная c-амальгама является J-
замкнутой. Кроме того, записи о маршрутных замыканиях га-
рантируют безразвилочность c-графа B ∗A C.

c-Вложение f c-графа A в c-граф B (f : A →c B) называется
сильным, если f(A) 6c B.

Лемма 4.2.6. (амальгамационная лемма). Класс Knf
0 удо-

влетворяет c-амальгамационному свойству c-(AP), т. е. для
любых сильных c-вложений f0 : A →c B и g0 : A →c C та-
ких, что A,B, C ∈ Knf

0 — J-замкнутые c-графы, существует
J-замкнутый c-граф D ∈ Knf

0 и сильные c-вложения f1 : B →c D
и g1 : C →c D, для которых f0 ◦ f1 = g0 ◦ g1.

Д о к а з а т е л ь с т в о. Без ограничения общности можно
считать, что A 6c B, A 6c C, A = B∩C и ccl(A) = ccl(B)∩ccl(C).
Покажем, что c-граф D ­ B ∗A C является искомым. Для это-
го, в силу симметричности определения свободной c-амальгамы,
достаточно установить B 6c D и D ∈ Knf

0 .
Предположим, что B 66c D. Тогда существуют некоторые n

новых элементов из D \ B, для которых выполняется неравен-
ство n < α1 · e1 + . . . + αp · ep, где p = |B|, es — число новых пар
вершин (a, b), связанных лишь внешними кратчайшими марш-
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рутами длины s. Поскольку все новые элементы лежат в C \ A,
они будут нарушать условие A 6c C.

Так как каждая промежуточная вершина имеет степень 2,
а все числа αp меньше 1

2 , принадлежность c-графа классу Knf
0

сохраняется после добавления к нему любого конечного коли-
чества промежуточных вершин. Поэтому достаточно установить
принадлежность c-графа D классу Knf

0 для случая, когда D не
содержит промежуточных вершин. В этом случае каждый J-
замкнутый c-подграф c-графа D имеет вид B0∗A0C0, гдеA0 6c B0

и A0 6c C0. Поэтому для проверки D ∈ Knf
0 достаточно убедить-

ся, что yp(D) ≥ bp
n, где n = |D|, kp ≤ n < kp+1.

Предположим, что |B| ≤ |C| = m, kq ≤ m < kq+1 и A ( B.
Из леммы 4.1.1, п. 3 и условия A 6c B вытекает

sl((|A|, yq(A)), (|B|, yq(B))) ≥ sl((l, bq
l ), (l + 1, bq

l+1))

для любого l ≥ m. Тогда из равенства

sl((|C|, yq(C)), (|D|, yq(D))) = sl((|A|, yq(A)), (|B|, yq(B)))

получаем

sl((|C|, yq(C)), (|D|, yq(D))) ≥ sl((m, bq
m), (|D|, bq

|D|)). (4.3)

Из принадлежности c-графа C классу Knf
0 следует, что точка

(|C|, yq(C)) находится выше точки (m, bq
m). Тогда на основании

неравенства (4.3) заключаем, что точка (|D|, yq(D)) находится
выше точки (|D|, bq

|D|), т. е. yq(D) ≥ bq
|D|.

Если p = q, то требуемое неравенство yp(D) ≥ bp
n установлено.

В противном случае, т. е. если q < p, yp(D) будет отличаться от
yq(D) меньше, чем на αq+1 · kq+1 · (kq+1 − 1) < 2εq+1, поскольку
D содержит в сумме менее kq+1 · (kq+1 − 1) дуг и записей о Q-
маршрутах. В силу леммы 4.1.1, п. 4 заключаем, что yp(D) ≥
bp
n. ¤

Обозначим через Tnf
0 класс всех типов из класса T, соот-

ветствующих J-замкнутым c-графам, через 6′′
c отношение само-

достаточности на классе Tnf
0 , индуцированное отношением 6′

c.
На основании лемм 4.2.3–4.2.6 справедливо

Следствие 4.2.7. Класс (Tnf
0 ; 6′′

c ) самодостаточен.
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Обозначим (Tnf
0 ; 6′′

c )-генерическую теорию через T nf .
Покажем, что после добавления к каждому самодостаточно-

му типу Φ(A) ∈ Tnf
0 некоторой формулы χΦ(A), для которой

(T nf , A) ` χΦ(A), получается самодостаточный класс (T0; 6′′′
c ),

обладающий свойством однородного t-амальгамирования.
Действительно, каждая промежуточная вершина порожда-

ет не более двух вершин из J0 ∪ J1 так, что J-замыкание p-
элементного c-графа содержит не более 3p элементов. Тогда
на основании замечания 4.2.2 для любого c-графа A ∈ Knf

0 мощ-
ности p и любого графа M |= T nf , A ⊆c M, имеет место следу-
ющее соотношение:

A 6c M⇔ y3p(A) ≤ y3p(B) для любого c-графа B
с условиями A ⊆c B ⊆c M и |B| ≤ k3p.

Поскольку мощности c-графов B ограничены в зависимости лишь
от мощности c-графа A, а проверка условия y3p(A) ≤ y3p(B)
предполагает лишь подсчет связей по отношениям Q1, . . . , Q3p,
условие самодостаточности A 6c M выразимо некоторой фор-
мулой χA(X) графовой сигнатуры {Q}, где множество перемен-
ных X биективно с множеством A.

Пусть A и B — c-графы из класса Knf
0 ,M — генерическая мо-

дель теории T nf , A 6c B 6c M. Обозначим через ψA,s(X) (соот-
ветственно ψB,s(X,Y )) формулу, описывающую {Q1, . . . , Qs, J0,
J1}-тип графа A (B), где X и Y — непересекающиеся множества
переменных, биективные с множествами A и B \ A. Тогда для
любого s ≥ |B| в модели M истинна следующая формула:

∀X ((χA(X) ∧ ψA,s(X)) → ∃Y (χB(X, Y ) ∧ ψB,s(X, Y ))) .

Из последнего соотношения вытекает свойство однородного t-
амальгамирования для класса (T0; 6), который получается из
класса (Tnf

0 ;6′′′
c ) добавлением к типам формул, устанавливаю-

щих мощностные границы и {Q1, . . . , Q3p, J0, J1}-структуры са-
модостаточных замыканий, а также формул χA(A) к типам са-
модостаточных множеств A.

Добавление указанных выше формул обеспечивает наличие
конечных замыканий у любых конечных множеств моделей тео-
рии T nf .
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В дальнейшем для любого конечного множества A в моде-
ли N теории T nf через A будем обозначать самодостаточное за-
мыкание J-замыкания множества A и называть J-самодоста-
точным замыканием множества A, а при самостоятельном рас-
смотрении множества A будут называться J-самодостаточными
множествами.

На основании теоремы 2.5.1 справедлива следующая
Теорема 4.2.8. (Tnf

0 ; 6′′′
c )-Генерическая модель M насыще-

на. При этом любое конечное множество A ⊆ M расширяется
до своего J-самодостаточного замыкания A ⊆ M , и тип tpX(A)
выводится из множества {χA(X)} ∪ {ψA,s(X) | s ∈ ω \ {0}}.

Пусть N — ω-насыщенная модель теории T nf .
Предложение 4.2.9. Для любого конечного множества A

из модели N справедливо соотношение acl(A) =
⋃{B | B ⊆fin

ccl(A)}. При этом множества A \ A и acl(A) \ ccl(A) не содер-
жат промежуточных элементов.

Д о к а з а т е л ь с т в о. Отсутствие промежуточных элемен-
тов в A \ A вытекает из того, что после удаления из конечного
множества B любого промежуточного элемента a значение y(·)
уменьшается не менее чем на некоторую положительную вели-
чину 1 − αs1 − αs2 + αs, где s1 и s2 — длины внешних над B
кратчайших маршрутов, связывающих a с оставшимися элемен-
тами b и c, s = s1+s2 — длина внешнего над B\{a} кратчайшего
маршрута, соединяющего b и c.

Обозначим множество
⋃{B | B ⊆fin ccl(A)} через X. Вклю-

чение X ⊆ acl(A) следует из однозначности определения марш-
рута Sa для любой промежуточной вершины a ∈ A, а также
из единственности в модели N множеств B, где B ⊆fin ccl(A).
Возьмем теперь произвольный элемент b ∈ N \ X и положим
C ­ A ∪ {b}. Поскольку множество C\(A∪{b}) не содержит про-
межуточных элементов, в силу конструкции генерической моде-
ли существует бесконечное число c-изоморфных попарно непе-
ресекающихся копий множества C \ X над множеством X, т. е.
b 6∈ acl(A). Таким образом, acl(A) ⊆ X.

Теперь отсутствие промежуточных элементов в acl(A)\ccl(A)
вытекает из равенства acl(A) = X и из отсутствия промежуточ-
ных элементов в множествах B \B. ¤
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3. Стабильность генерической теории. Покажем, что ге-
нерическая теория T nf стабильна. Пусть N — некоторая доста-
точно насыщенная модель теории T nf . Ранговой функцией в мо-
дели N называется функция

rN : {A | A — c-подграф N} → R+,

определяемая равенством rN (A) = inf{y(B) | A ⊆c B ⊆c N}.
Заметим, что в силу самодостаточности класса (Tnf

0 ;6′′
c ) ин-

фимум в указанном выше равенстве всегда достижим и совпа-
дает со значением y(A): rN (A) = y(A).

В дальнейшем модель N будет зафиксирована, функция rN
будет для краткости обозначаться через r, а c-графы A будут за-
меняться их носителями в модели N . При этом все рассматрива-
емые множества будут считаться подмножеством множества N .

Относительная предранговая функция y(A/B) c-графа A над
c-графом B задается соотношением

y(A/B) = y(A ∪B)− y(B),

а относительная ранговая функция r(A/B) c-графа A над c-
графом B — соотношением

r(A/B) = r(A ∪B)− r(B).

Установим необходимые в дальнейшем свойства относитель-
ной ранговой функции.

Очевидно, r(A/B) ≥ 0.

Лемма 4.2.10. Для любых конечных множеств B и C спра-
ведливо неравенство

y(B) + y(C) ≥ y(B ∪ C) + y(B ∩ C).

Неравенство превращается в равенство в том и только в том
случае, когда не существует элементов b ∈ B \ C и c ∈ C\ B,
связанных внешними кратчайшими маршрутами над B ∪ C,
и ни один из внешних кратчайших маршрутов над B ∩C не со-
держит промежуточных вершин из B ∪ C.
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Д о к а з а т е л ь с т в о. По условию значение

V ­ y(B) + y(C)− y(B ∪ C)− y(B ∩ C)

равно

∞∑

k=1

αk · (ek(B ∩ C) + ek(B ∪ C)− ek(B)− ek(C)).

Все слагаемые последнего выражения и, значит, само выражение
равны нулю, если не существует элементов b ∈ B \C и c ∈ C \B,
связанных внешними кратчайшими маршрутами над B∪C, и ни
один из внешних кратчайших маршрутов над B∩C не содержит
промежуточных вершин из B ∪ C.

Если существуют элементы b ∈ B \ C и c ∈ C \B, связанные
внешними кратчайшими маршрутами над B ∪ C и ни один из
внешних кратчайших маршрутов над B∩C, над B или над C не
содержит промежуточных вершин из B ∪ C, то положительное

значение V равно
∞∑

k=1

αk · ek, где e1 — число Q-дуг, ek, k > 1, —

число пар (b, c) ∈ (B \ C) × (C \ B) элементов, связанных лишь
внешними над B ∪ C кратчайшими Q-маршрутами длины k.

Предположим, что некоторый из внешних кратчайших марш-
рутов над B ∩ C, над B или над C содержит промежуточные
вершины из B ∪C. Рассмотрим все внешние кратчайшие марш-
руты над B∩C, над B и над C, длины которых не меняются при
переходе к B∪C. Заметим, что при подсчете значения V количе-
ственное значение для каждого из этих маршрутов равно нулю, а
для пар (b, c) ∈ (B\C)×(C\B) элементов, связанных дугами или
лишь внешними над B ∪C кратчайшими маршрутами длины k,
не являющимися собственными подмаршрутами внешних крат-
чайших маршрутов над B∩C, над B или над C, в выражении V

возникает неотрицательное значение
∞∑

k=1

αk ·ek, где e1 — число Q-

дуг, ek, k > 1, — число пар (b, c) ∈ (B\C)×(C\B) элементов, свя-
занных лишь внешними над B∪C кратчайшими Q-маршрутами
длины k. Поэтому достаточно установить, что положительные
величины образуют элементы выражения V , относящиеся к каж-
дому внешнему кратчайшему маршруту над B ∩ C, над B или
над C, содержащему промежуточные вершины из B ∪ C.
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Пусть (a1, a2) ∈ B2 ∪ C2 — пара вершин, связанных над
B ∩ C, над B или над C лишь внешними кратчайшими (a1, a2)-
маршрутами длины s; a′0, . . . , a

′
n, n ≥ 2, — все элементы из B∪C,

которые являются промежуточными вершинами или концами
(a1, a2)-маршрутов. Рассмотрим произвольную пару (a′i, a

′
j) эле-

ментов, связанных (единственным) внешним кратчайшим (a′i, a
′
j)-

маршрутом Si над B∪C и предположим, что его длина равна si.
В силу выбора вершин имеем si < s.

Рассмотрим случай, когда существуют пары (b1, b2) ∈ B2

и (c1, c2) ∈ C2 вершин, связанных лишь внешними кратчайшими
(b1, b2)- и (c1, c2)-маршрутами SB и SC над B и C соответственно,
которые содержат маршрут Si. Длины этих маршрутов обозна-
чим через sB и sC . По выбору вершин справедливо si < sB или
si < sC . При этом возможны следующие подслучаи:

а) si = sB и si < sC , т. е. (a′i, a
′
j) = (b1, b2) и (a′i, a

′
j) 6= (c1, c2);

б) si < sB и si = sC , т. е. (a′i, a
′
j) 6= (b1, b2) и (a′i, a

′
j) = (c1, c2);

в) si < sB и si < sC , т. е. (a′i, a
′
j) 6= (b1, b2) и (a′i, a

′
j) 6= (c1, c2).

В первом подслучае информация о маршрутах Si и SB в вы-
ражении V представлена в виде выражения αsi−αsB , равного 0.
Во втором подслучае информация о маршрутах Si и SC в вы-
ражении V представлена в виде выражения αsi − αsC , равно-
го 0. При этом, в первом случае маршрут SC , а во втором случае
маршрут SB содержит некоторый внешний кратчайший (a′i′ , a

′
j′)-

маршрут над B∪C такой, что (a′i′ , a
′
j′) 6∈ B2∪C2. Таким образом,

подсчет выражения V сводится к рассмотрению третьего подслу-
чая, для которого в выражении V информация о маршрутах Si,
SB и SC представлена в виде выражения

αsi − αsB − αsC . (4.4)

Это выражение положительно в силу αsB <
αsi
2 и αsC <

αsi
2 .

Сумма значений положительных выражений (4.4) дает нижнюю
оценку для значения V .

Рассмотрим случай, когда указанная выше пара (b1, b2) ∈ B2

существует, а пары (c1, c2) ∈ C2 нет. Тогда аналогичным рассмот-
рением подслучаев si = sB и si < sB приходим к выражению
αsi − αsB , которое в первом подслучае равно нулю, а во втором
подслучае положительно. При этом, положительные выражения
снова дают нижнюю оценку для значения V .
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Аналогичное рассмотрение случая, когда указанная выше па-
ра (c1, c2) ∈ C2 существует, а пары (b1, b2) ∈ B2 нет, также при-
водит к нахождению положительной нижней оценки для значе-
ния V . ¤

Лемма 4.2.11. Если B1 ⊆ B2, то r(A/B1) ≥ r(A/B2).
Д о к а з а т е л ь с т в о дословно повторяет доказательство

леммы 4.1.11. ¤
Если A — конечное множество, X — некоторое (не обязатель-

но конечное) множество, то

r(A/X) ­ inf{r(A/B) | B ⊆fin X}.

Лемма 4.2.12. Пусть A1 и A2 — конечные множества, X
— некоторое множество, для которого A1 \X = A2 \X. Тогда
r(A1/X) = r(A2/X).

Д о к а з а т е л ь с т в о повторяет доказательство леммы
4.1.12. ¤

Множество X ⊆ N называется замкнутым (в модели N )
(обозначается X 6 N), если ccl(X) = X и для любого конечно-
го множества A ⊆ X выполняется A ⊆ X. Последнее условие
равносильно отсутствию в N \X каких-либо n новых элементов,

для которых n <
∞∑

k=1

αk · ek, где e1 — число новых Q-дуг, ek,

k > 1, — число новых пар элементов, связанных лишь внешними
кратчайшими Q-маршрутами длины k.

Лемма 4.2.13. Пусть X и Y — множества из модели N .
Тогда справедливы следующие утверждения:

1) если X 6 N и Y 6 N , то X ∩ Y 6 N ;
2) существует наименьшее замкнутое множество X

c ⊇ X;
при этом выполняются соотношения X

c =
⋃{A | A ⊆fin ccl(X)}

и X
c = acl(X);
3) если X ⊂ Y , то X

c ⊆ Y
c.

Множество X
c называется внутренним замыканием множе-

ства X (в модели N ).
Д о к а з а т е л ь с т в о. 1. Предположим, что X 6 N

и Y 6 N . Очевидно, что ccl(X ∩ Y ) = ccl(X) ∩ ccl(Y ) = X ∩ Y ,
т. е. множество X∩Y маршрутно замкнуто. Пусть A — конечное
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подмножество множества X ∩ Y . Так как A ⊆ X и A ⊆ Y , а X
и Y — замкнутые множества, то A ⊆ X и A ⊆ Y . Следовательно,
A ⊆ X ∩ Y . Таким образом, X ∩ Y — замкнутое множество.

2. Обозначим множество
⋃{A | A ⊆fin ccl(X)} через Z. Оче-

видно, любое замкнутое надмножество множества X содержит
множество Z и X ⊆ Z. С другой стороны, в силу предложения
4.2.9 справедливо равенство ccl(Z) = Z, и если A — конечное
подмножество Z, то существует конечное множество B ⊆ ccl(X)
такое, что A ⊆ B. Покажем, что A ⊆ B. Действительно, A ⊆
A ∩ B 6c N , следовательно, A ⊆ A ∩ B и A ⊆ B. Из включений
A ⊆ B и B ⊆ Z вытекает A ⊆ Z. Таким образом, Z — наимень-
шее замкнутое множество, содержащее множество X.

3. Очевидно, что из X ⊂ Y следует ccl(X) ⊆ ccl(Y ). Остается
заметить, что для любых c-графов A и B, если A ⊆ B, то A ⊆ B.
Действительно, как и выше A ⊆ A ∩ B 6c N . Следовательно,
A ⊆ A ∩B и A ⊆ B. ¤

Как и в параграфе 4.1 будем говорить, что конечные множе-
ства A и B независимы над Z и писать A ↓r

Z B, если r(A/Z) =
r(A/(Z ∪B)) и A ∪ Z

c ∩B ∪ Z
c ⊆ Z.

Будем говорить, что множества X и Y независимы над Z
и писать X ↓r

Z Y , если A ↓r
Z B для любых конечных множеств

A ⊆ X и B ⊆ Y .
Лемма 4.2.14. Если X и Y — замкнутые множества, Z =

X ∩ Y и X ↓r
Z Y , то X ∪ Y — замкнутое множество.

Д о к а з а т е л ь с т в о. Из равенства ccl(X∪Y ) = ccl(X)∪
ccl(Y ) и маршрутной замкнутости множеств X и Y вытекает
маршрутная замкнутость множества X ∪ Y . Проверка имплика-
ции

A ⊆fin (X ∪ Y ) ⇒ A ⊆fin (X ∪ Y )

проводится повторением доказательства леммы 4.1.14 с исполь-
зованием леммы 4.2.11. ¤

Лемма 4.2.15. Если X — J-самодостаточное множество,
Y — замкнутое множество и Z = X ∪ Z

c ∩ Y , то X ↓r
Z Y

тогда и только тогда, когда X ∪ Z
c ∪ Y — замкнутое множе-

ство такое, что не существует элементов x ∈ X ∪ Z
c \ Y и

y ∈ Y \X ∪ Z
c, связанных внешними кратчайшими маршрута-

ми над X ∪ Z
c ∪Y , и ни один из внешних кратчайших маршру-

тов над Z не содержит промежуточных вершин из X ∪ Z
c∪Y .
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Д о к а з а т е л ь с т в о аналогично доказательству леммы
4.1.15 с использованием лемм 4.2.11 и 4.2.13. ¤

Непосредственно из леммы 4.2.15 вытекает
Следствие 4.2.16. Если X — J-самодостаточное множе-

ство, Y — замкнутое множество, Z = X ∪ Z
c ∩ Y и X ↓r

Z Y ,
то тип tp(X/Y ) однозначно определяется типом tp(X/Z), опи-
санием замкнутости множества X ∪ Z

c∪Y и типом, описыва-
ющим отсутствие элементов x ∈ X ∪ Z

c \ Y и y ∈ Y \X ∪ Z
c,

связанных внешними кратчайшими маршрутами над X ∪ Z
c ∪

Y , а также отсутствие промежуточных вершин из X ∪ Z
c∪Y

для внешних кратчайших маршрутов над Z.
Лемма 4.2.17. Если X — замкнутое множество, a — эле-

мент модели N , не принадлежащий X, то существует не бо-
лее чем счетное замкнутое подмножество X ′ ⊆ X такое, что
{a} ↓r

X′ X.
Д о к а з а т е л ь с т в о повторяет доказательство леммы

4.1.17 с применением лемм 4.2.11 и 4.2.13. ¤
Теорема 4.2.18. 1. Теория T nf стабильна, мала и имеет

счетное число 1-типов: элементов цвета J0, элементов цве-
та J1, промежуточных элементов, находящихся на некотором
конечном удалении от элементов цвета J0 и (или) элементов
цвета J1, и промежуточных элементов, не связанных маршру-
тами с элементами цвета J0 ∪ J1.

2. Любой 1-тип непромежуточных элементов теории T nf

имеет бесконечный вес: для любого элемента a цвета Ji, i =
0, 1, существует бесконечное множество независимых элемен-
тов bn, n ∈ ω, цвета J1−i, зависящих от элемента a.

Д о к а з а т е л ь с т в о. 1. Малость теории T nf вытекает из
теоремы 4.2.8. Доказательство стабильности теории T nf прово-
дится аналогично доказательству стабильности теории T bp с ис-
пользованием следствия 4.2.16 и леммы 4.2.17.

По построению каждое одноэлементное множество {a} само-
достаточно. По теореме 4.2.8 это означает, что существуют счет-
ное число 1-типов теории T nf , каждый из которых определяется
одним из следующих множеств:

а) {J0(x)};
б) {J1(x)};
в) множеством формул, описывающих фиксированное конеч-

ное удаление промежуточного элемента x от элемента множе-
ства J0 и конечное удаление от элемента множества J1;
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г) множеством формул, описывающих фиксированное конеч-
ное удаление промежуточного элемента x от элемента множе-
ства Ji и отсутствие связи элемента x с элементами множе-
ства J1−i посредством Q-маршрута, i = 0, 1;

д) множеством формул, описывающих отсутствие связи эле-
мента x с элементами множества J0 ∪ J1 посредством Q-марш-
рутов.

2. Пусть A — c-граф с носителем {a}, Ap = {a, bp} — но-
ситель двухэлементного c-графа Ap, содержащего Qp-дугу меж-
ду a и bp, где a ∈ Ji, bp ∈ J1−i. Положим B1 ­ A1, Bp+1 ­
Bp ∗AAp+1, B ­

⋃
p∈ω\{0}

Bp. По построению c-граф B является са-

модостаточным подграфом некоторой генерической модели M
теории T nf . Поскольку α1 + . . . + αp+1 < 1 и {b1, . . . , bp+1} 6c

{a, b1, . . . , bp+1} 6c B 6c M , справедливо {bp+1} ↓r
∅ {b1, . . . , bp}.

Таким образом, (bp)p∈ω\{0} — бесконечная независимая последо-
вательность элементов типа {J1−i(x)}, где каждый элемент bp

зависим с элементом a. ¤
Поскольку αp < 1

2 для любого натурального числа p ≥ 1,
любые два элемента a и b цвета J0 связаны через некоторый
элемент c цвета J1 так, что aQc и bQc. Точно так же, любые
два элемента a и b цвета J1 связаны через некоторый элемент
c цвета J0 так, что cQa и cQb. При этом, в каждом из случа-
ев указанных элементов c существует бесконечно много. Таким
образом, справедливо следующее

Предложение 4.2.19. Множество элементов цвета Ji об-
ладает свойством попарного Q(−1)1−i-пересечения, i = 0, 1.

В следующих двух утверждениях проясняется структура про-
стых моделей MA над конечными множествами A.

Лемма 4.2.20. Если A и B — J-самодостаточные множе-
ства в модели N и A 6c B, то тип tp(B/A) изолирован тогда
и только тогда, когда выполняются следующие условия:

1) любой промежуточный элемент из B \ A, принадлежа-
щий бесконечной цепи, связан Q-маршрутом с некоторым про-
межуточным элементом из A;

2) любые два J-разноцветных элемента a ∈ B ∩ (J0 ∪ J1)
и b ∈ (B \A) ∩ (J0 ∪ J1) связаны Q-маршрутами.
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Д о к а з а т е л ь с т в о. Пусть Y — множество переменных,
биективное с множеством B \ A. Если выполняются условия 1
и 2, то по теореме 4.2.8 тип tp((B \A)/A) изолируется формулой
χB(A ∪ Y ) ∧ ψB,s(A ∪ Y ), где s — положительное число, большее
длин внешних кратчайших маршрутов, связывающих элементы
из B. Если же хотя бы одно из условий 1 и 2 нарушается, то по
теореме 4.2.8 тип tp((B \A)/A) изолируется множеством формул
{χB(A ∪ Y )} ∪ {ψB,s(A ∪ Y ) | s ∈ ω}, но не изолируется никакой
конечной частью этого множества. ¤

Из леммы 4.2.20 вытекает
Следствие 4.2.21. Пусть A — J-самодостаточное множе-

ство в модели N . В модели MA любой промежуточный эле-
мент из MA \ A, принадлежащий бесконечной цепи, связан Q-
маршрутом с некоторым промежуточным элементом из A.
Кроме того, любые два J-разноцветных элемента a ∈ M ∩ (J0∪
J1) и b ∈ (M \ A) ∩ (J0 ∪ J1) связаны Q-маршрутами. Мно-
жество типов изоморфизма простых моделей над конечными
множествами совпадает с множеством типов изоморфизма
моделей MA, где A — J-самодостаточные множества.

§ 4.3. Малые стабильные генерические графы с бес-
конечным весом. Властные орграфы

В этом параграфе на основе генерических конструкций из па-
раграфов 4.1 и 4.2 мы описываем генерическую конструкцию,
приводящую к построению семейства стабильных властных ор-
графов с почти несущественной упорядоченной раскраской.

1. Тандемные безразвилочные c-графы. Развилочным
тандемом в c-графе A (соответственно графе M) называется
пара вершин (ab, at) таких, что в графе cc(A) (вM) выполняются
следующие условия:

а) вершина ab имеет нулевую полустепень исхода deg+ab и не-
нулевую полустепень захода deg−ab;

б) вершина at имеет нулевую полустепень захода deg−at и не-
нулевую полустепень исхода deg+at;

в) deg−ab + deg+at ≥ 3.
Очевидно, что в любом c-графе (бесконтурном графе) в ре-

зультате отождествления пары вершин развилочного тандема
(ab, at) образуется развилка. Обратно, развилочный тандем об-
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разуется после замены любой развилки a на пару различных
вершин (ab, at), где концы маршрутов, заходящих в a, заменя-
ются на ab, а начала маршрутов, исходящих из a, заменяются
на at. При этом после замены в c-графе A (бесконтурном гра-
фе M) всех его развилок на развилочные тандемы образуется
безразвилочный c-граф (граф). Снабдив получившийся c-граф
(граф) отношением эквивалентности E, каждый класс которой
одноэлементен для сохранившихся неизменными вершин и двух-
элементен для пар вершин, образующих развилочные тандемы
относительно начальных вершин, получаем тандемный безраз-
вилочный c-граф T (A) = 〈T (A), Q, W,E〉 (тандемный безразви-
лочный граф T (M) = 〈T (M), Q, E〉), соответствующий c-графуA
(графу M). При этом условимся считать для определенности,
что каждая вершина a степени 0 из c-графа T (A) лежит в J1.

Очевидно, что для любого c-графа A = 〈A,Q, W 〉 число дуг
c-графа T (A) совпадает с числом дуг из Q, а число записей
о его внешних кратчайших маршрутах — с числом троек
(a, b, n) ∈ W .

Для любого c-графа A (бесконтурного графа M) через Af
(соответственно Mf ) обозначим множество всех развилок в A
(в M), а через Anf (Mnf) — множество всех вершин в A (M),
не являющихся развилками в A (в M): Anf = A \ Af (Mnf =
M \ Mf ). При этом вместо записей Af , Anf , Mf и Mnf будем
использовать записи Af , Anf , Mf и Mnf , если из контекста ясно
о каком c-графе (графе) идет речь.

Очевидно, что если A ⊆c B, то Af ⊆ Bf .
При построении тандемного безразвилочного c-графа T (B)

относительно c-графа A, где A ⊆c B, будем считать, что каж-
дая вершина a ∈ A ∩ (Bf \ Af ) совпадает с ab, если deg+

Aa = 0,
и совпадает с at в противном случае. Каждая вершина a из T (B)
относительно A будет обозначаться через aT (A).

Пусть f0 : A →c B — c-вложение. c-Вложение g : T (A) →c

T (B) называется каноническим c-вложением c-графа T (A) в c-
граф T (B) относительно вложения f0 (обозначается g : T (A) →c,f0

T (B)), если g(a) = f0(a)T (f0(A)) для любой вершины a ∈ Anf

и g(ab) = f0(a)b, g(at) = f0(a)t для любой вершины a ∈ Af .
Очевидно, что для любого c-вложения f0 : A →c B канониче-

ское c-вложение g : T (A) →c,f0 T (B) существует.
c-Графы T (A) и T (B) называются канонически c-изоморф-

ными, если существуют c-изоморфизмы f0 : A →c B и g :
T (A) →c,f0 T (B). При этом отображение g называется канони-
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ческим c-изоморфизмом между T (A) и T (B) относительно c-
изоморфизма f0, а c-графы T (A) и T (B) — канонически c-изо-
морфными копиями (относительно c-изоморфизма f0).

Для любых c-графов A, B и C справедливы следующие утвер-
ждения, связывающие отношением канонического c-изоморфиз-
ма теоретико-множественные операции над c-графами с соответ-
ствующими операциями над их тандемными образами.

Предложение 4.3.1. c-Графы T (A ∩ B) и T (A) ∩ T (B) ка-
нонически c-изоморфны тогда и только тогда, когда (A∩B)f =
Af ∩Bf .

Д о к а з а т е л ь с т в о. Предположим, что c-графы
T (A∩B) и T (A)∩ T (B) канонически c-изоморфны. Тогда каж-
дый развилочный тандем (ab, at) из T (A ∩ B) является разви-
лочным тандемом одновременно в T (A) и в T (B), и, наоборот,
каждый общий развилочный тандем c-графов T (A) и T (B) яв-
ляется развилочным тандемом в T (A ∩ B). Первое заключение
означает, что (A∩B)f ⊆ Af ∩Bf , а второе — Af ∩Bf ⊆ (A∩B)f .
Таким образом, (A ∩B)f = Af ∩Bf .

Предположим теперь, что (A ∩ B)f = Af ∩ Bf . Тогда при
построении c-графа T (A ∩ B) в развилочные тандемы превра-
щаются в точности те вершины из A ∩ B, которые становятся
развилочными тандемами в T (A) и в T (B). Остается заметить,
что после одновременного превращения развилок в развилочные
тандемы c-графы T (A ∩ B) и T (A) ∩ T (B) одинаково наследуют
маршрутные связи между элементами из A ∩ B, т. е. c-графы
T (A ∩ B) и T (A) ∩ T (B) канонически c-изоморфны. ¤

Предложение 4.3.2. Пусть M — бесконтурный граф, со-
держащий c-подграфы A и B так, что Mf ∩ A = Af ,
Mf ∩ B = Bf . Тогда c-графы T (A ∪M B) и T (A) ∪T (M) T (B) ка-
нонически c-изоморфны, если и только если (A∪B)f = Af ∪Bf .

Д о к а з а т е л ь с т в о получается почти дословным повто-
рением доказательства предложения 4.3.1 с заменой символов ∩
на символы ∪. ¤

Предложение 4.3.3. Если A = B∩C, то c-графы T (B∗AC) и
T (B)∗T (A)T (C) канонически c-изоморфны тогда и только тогда,
когда Af = Bf ∩ Cf .

Д о к а з а т е л ь с т в о аналогично доказательству предыду-
щих предложений. Следует лишь заметить, что по определению
свободной амальгамы из равенства Af = Bf ∩ Cf вытекает ра-
венство (B ∪ C)f = Bf ∪ Cf . ¤
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Если A ⊆c B, то c-граф A будем обозначать через B ¹ A.
Для c-графа A через Υ(A) обозначим множество A∪

∪∪{{ab, at} | a ∈ A}. Тогда для всевозможных c-графов B таких,
чтоA ⊆c B и множество B с каждой вершиной a ∈ A не содержит
отличных от a вершин ab и at, а с каждой вершиной aj ∈ A не
содержит отличной от ab и at вершины a,3 ограничения T (B) ¹
Υ(A) будут соответствовать всевозможным вариантам замены
каких-то вершин из Anf на развилочные тандемы относительно
c-расширений c-графа A. c-Граф T (B) ¹ Υ(A), в котором все
вершины из A заменены на развилочные тандемы, обозначается
через T ∗(A).

c-Граф T (A) называется каноническим c-подграфом c-графа
T (B), если A ⊆c B и T (A) = T (B) ¹ Υ(A).

Пусть A — c-подграф c-графа B. c-Граф B называется разви-
лочно наследственным расширением c-графа A и пишется A ⊆f

B, если Af = Bf ∩Ain, где Ain — множество вершин из A с нену-
левой полустепенью исхода и ненулевой полустепенью захода.

Очевидно, что отношение ⊆f рефлексивно, антисимметрично
и транзитивно.

Предложение 4.3.4. Пусть A — c-подграф c-графа B, и мно-
жество B с каждой вершиной a ∈ A не содержит отличных
от a вершин ab и at, а с каждой вершиной aj ∈ T (A) не содер-
жит отличной от ab и at вершины a. Тогда c-граф T (A) яв-
ляется каноническим c-подграфом c-графа T (B), если и только
если A ⊆f B.

Д о к а з а т е л ь с т в о. Предположим, что T (A) — кано-
нический c-подграф c-графа T (B). Тогда развилочный тандем
(ab, at) любой вершины a из Bf совпадает с развилочным танде-
мом вершины a из A или содержит вершину a из A. В первом
случае имеем a ∈ Af , а во втором случае вершина a в A не может
быть промежуточной, т. е. иметь ненулевую полустепень исхода
и ненулевую полустепень захода, поскольку для вершины a, рас-
смотренной в B, выполняется deg+ab = 0 и deg−at = 0. Таким
образом, Af = Bf ∩Ain, т. е. A ⊆f B.

Предположим теперь, что A ⊆f B. Тогда при построении тан-
демных безразвилочных c-графов T (A) и T (B) каждая проме-

3Ограничения на несовместимость в одном c-графе различных элементов
a и aj требуются во избежание коллизий, и при работе с конечным числом
c-графов всегда могут и будут предполагаться.
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жуточная вершина c-графа A (не) заменяется на развилочный
тандем как для A, так и для B, а каждая вершина a ∈ A, кото-
рая превращается в развилочный тандем для B, совпадает с ab,
если deg+

Aa = 0, и совпадает с at в противном случае. Из со-
хранения дуг и информации о внешних кратчайших маршрутов
при построении T (A) и T (B) вытекает, что T (A) — канонический
c-подграф T (B). ¤

Пусть A — c-подграф c-графа B, и A′ — c-подграф c-гра-
фа T ∗(A), в котором все развилочные вершины a из Bf ∩A пред-
ставлены развилочными тандемами (ab, at), а остальные верши-
ны из A — либо сами, либо их развилочные тандемы. Тогда тан-
демный безразвилочный c-граф, соответствующий c-графу, по-
лучаемому из A′ добавлением всех вершин из B \A, а также дуг
и информации о внешних кратчайших маршрутах, связывающих
в B элементы из B\A c элементами из B, называетсятандемным
безразвилочным c-графом, соответствующим c-графу B относи-
тельно c-графа A′, и обозначается через T (BA′).

Очевидно, что T (B) = T (B∅) для любого c-графа B, а если
A′ 6= ∅, то T (B) естественным образом вкладывается в T (BA′).

2. Предранговые функции. Определим предпредранговую
функцию y0, которая каждому c-графу A ставит в соответствие
некоторое вещественное число по правилу

y0(A) = 2 · |Af |+ |Anf | −
∞∑

k=1

αk · ek(A).

Заметим, что сумма в определении предпредранговой функ-
ции всегда конечна в силу конечности любого c-графа. Кроме
того, для любого c-графа A значение y0(A) совпадает со значе-
нием y(T (A)) и при этом 2 · |Af |+ |Anf | = |T (A)|. Таким образом,

y0(A) = |T (A)| −
∞∑

k=1

αk · ek(A).

p-Аппроксимацией предпредранговой функции y0 называется
функция y0

p, которая каждому c-графу A ставит в соответствие
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вещественное число по правилу

y0
p(A) = 2 · |Af |+ |Anf | −

p∑

k=1

αk · ek(A).

Очевидно, y0
p(A) = yp(T (A)).

Дальнейшие построения будем проводить одновременно для
c-графовA и соответствующих им безразвилочных c-графов T (A).

Определенная по аналогии с предранговыми функциями
функция y0(·) имеет следующий существенный недостаток. При
переходе от c-графов с неотрицательными значениями y0(·) к c-
подграфам, получаемых удалением развилок, предпредранговая
функция может принимать значения, меньшие любого наперед
заданного отрицательного числа.

Действительно, если c-граф An состоит из развилки a, вер-
шин b1, . . . , bn, c1, . . . , cn, множества дуг Q = {(b1, a), . . . , (bn, a),
(a, c1), . . . , (a, cn)} и пустого множества W , то c-подграф Bn c-
графа An, который получается из An удалением развилки a,
имеет следующее значение предпредранговой функции: y0(Bn) =
2n− α2 · n2. Отсюда получаем равенство lim

n→∞ y(Bn) = −∞.
Для контроля реального баланса в c-графах A между чис-

лом элементов и числом связей посредством предранговой функ-
ции нам придется учитывать виртуальное наличие (в виде до-
полнения к записям W ) конечного числа так называемых “при-
нудительных” развилок, т. е. развилок a, в обход которых нет
достаточно большого числа кратчайших маршрутов, связыва-
ющих различные пары элементов (a′, a′′) ∈ ⋃

n∈ω\{0}
Qn(a,A) ×

⋃
n∈ω\{0}

Qn(A, a). При этом до добавления всех принудительных

развилок, принадлежащих кратчайшим (a′, a′′)-маршрутам, па-
ры (a′, a′′) не будут участвовать в подсчете значения предран-
говой функции, а после добавления всех принудительных раз-
вилок будут учитываться все пары, связанные лишь внешними
кратчайшими маршрутами. Тем самым, предранговая функция
будет принимать лишь неотрицательные значения и позволит
включать в самодостаточные замыкания c-графов все их при-
нудительные развилки.
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Итак, развилка a c-графа A называется A-принудительной,
если для некоторого c-подграфа B ⊆c A выполняется

y(T ∗(B)) > y(T ((A ¹ (B ∪ {a}))T ∗(B))).4

При этом развилка a будет также называться B-принуди-
тельной.5

A-Принудительная развилка называется B-внешней (где
B ⊆c A), если она не принадлежит B. A-Принудительная развил-
ка называется принудительной, если из контекста ясно, о каком
c-графе A идет речь. B-Внешняя принудительная развилка на-
зывается внешней, если из контекста ясно, о каком c-графе B
идет речь.

Из определения класса Knf
0 вытекает, что для любого фикси-

рованного числа k ∈ ω к каждому c-графу T ∗(A) ∈ Knf
0 можно

присоединить лишь ограниченное в зависимости от мощности
|T ∗(A)| число внешних кратчайших маршрутов длины, не пре-
восходящей k, соединяющих вершины из T ∗(A) с некоторой но-
вой вершиной a так, чтобы полученный c-граф B с носителем
T ∗(A)∪{a} или T ∗(A)∪{ab, at} принадлежал классу Knf

0 . Поэто-
му последовательным выбором чисел αs, удовлетворяющих всем
вышеперечисленным условиям, можно добиться, чтобы некото-
рая из вершин ab или at каждой принудительной развилки a
попадала в самодостаточное замыкание множества ее предше-
ственников в c-графе T ∗(A) или множества ее последователей
в том же c-графе.

Действительно, удаление каждой развилки a, связанной с вер-
шинами b1, . . . , bl, c1, . . . , cm лишь внешними кратчайшими (b1, a)-
, . . ., (bl, a)-, (a, c1)- и (a, cm)-маршрутами длин s1, . . . , sl, s

′
1, . . . , s

′
m

соответственно такими, что для любой такой пары (bi, cj) дли-
на sij кратчайшего (bi, cj)-маршрута совпадает с si + s′j , приво-
дит к установлению лишь внешних кратчайших маршрутов меж-
ду элементами bi и cj . При этом, в предранговой функции y(·)

4По определению функции y(·) для проверки принудительно-
сти развилки a достаточно рассматривать c-подграфы B ⊆c A ¹(

⋃
n∈ω\{0}

Qn(a,A) ∪ ⋃
n∈ω\{0}

Qn(A, a)

)
.

5В данной ситуации отличиеA-принудительности от B-принудительности
состоит в том, что развилка a принадлежит A и не принадлежит B. При
этом, попадая в самодостаточное замыкание B, вершина a является элемен-
том, неотъемлемо связанным с B.
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суммы
∑
i,j

(αsi + αs′j ) заменяются на суммы
∑
i,j

αsij , где αsij <

min{αsi , αsj}. Перебором всех возможных конфигураций c-гра-
фов с носителями {a, b1, . . . , bl, c1, . . . , cm} и имеющими лишь
внешние кратчайшие маршруты длины, не превосходящей k− 1,
можно на каждом последовательном шаге определения чисел αk

выбирать их настолько малыми, чтобы выполнялись следующие
условия (∗):

1) если для c-графов B и C с носителями {a, b1, . . . , bl} и
{a, c1, . . . , cm} соответственно, где deg+

B (a) = deg−C (a) = 0, вы-
полняется

y(T (BT ∗(B¹{b1,...,bl}))) ≥ y(T ∗(B ¹ {b1, . . . , bl})) (4.5)

и
y(T (CT ∗(C¹{c1,...,cm}))) ≥ y(T ∗(C ¹ {c1, . . . , cm})), (4.6)

то для c-графа D с носителем {a, b1, . . . , bl, c1, . . . , cm}, отноше-
нием QB ∪ QC и записью WB ∪ WC и для c-графа E ­ D ¹
{b1, . . . , bl, c1, . . . , cm} выполняется

y(T (DT ∗(E))) ≥ y(T ∗(E)); (4.7)

2) если вершина a не является E-принудительной развилкой,
то для c-графов B′, C′ и E ′, которые получаются из B, C и E
соответственно удалением всех (bi, bj)- и (ci, cj)-маршрутов, вы-
полняется

∞∑

k=1

αk · ek(E ′) <
1
2
·min

{ ∞∑

k=1

αk · ek(B′),
∞∑

k=1

αk · ek(C′)
}

. (4.8)

Рассмотрение двухэлементных c-графов B и C позволяет на
основании условия 2 заключить, что

∞∑

k=1

αk · ek(E ′) <
1
2
· αl,

где l — наибольший из индексов, до которого включительно все
значения ek(E ′) равны нулю. Кроме того, перебор всех возмож-
ных c-графов, удовлетворяющих условию (∗), позволяет нера-
венство (4.8) переписать в виде следующей последовательности
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неравенств по всем натуральным p ≥ 1:

p∑

k=1

αk · ek(E ′) <
1
2
·min

{
p∑

k=1

αk · ek(B′),
p∑

k=1

αk · ek(C′)
}

.

В дальнейшем будем предполагать, что выполнение условий
(∗) уже заложено в определение чисел αk. Это означает, в частно-
сти, что нарушение условия (4.7) влечет нарушение хотя бы од-
ного из условий (4.5) или (4.6), т. е. из попаданияD-принудитель-
ной развилки a в самодостаточное замыкание c-графа E следует
ее попадание в самодостаточное замыкание какого-нибудь из c-
графов B ¹ (B \ {a}) или C ¹ (C \ {a}).

Из условий (∗) также вытекает, что для любой непринуди-
тельной развилки a c-графаA все связи между элементами из A\
{a} с помощью внешних над A\{a} кратчайших маршрутов, про-
ходящих через вершину a, могут быть заменены на связи с по-
мощью внешних над A \ {a} кратчайших маршрутов, у которых
множества промежуточных элементов попарно не пересекаются.

Приводимая ниже модификация предпредранговой функции
позволит все A-принудительные развилки присоединять к са-
модостаточному замыканию c-графа A посредством дополнения
к записи WA.

Позволим каждому c-подграфу B ⊆c A иметь менее k|T (B)|
принудительных развилок (эти развилки могут быть не толь-
ко B-принудительными, но и принудительными относительно c-
графа, который получается расширением B какими-то други-
ми из менее k|T (B)| принудительных развилок).6 Теперь добавим
к каждой записи WB тип, описывающий структуру c-графа B
вместе со всеми его принудительными развилками, а также опи-
сывающий отсутствие каких-либо дополнительных принудитель-
ных развилок. Полученные обогащенные c-графы будем назы-
вать cc-графами.

Множество всехA-принудительных развилок cc-графаA, при-
надлежащих A, обозначим через Acf . cc-Граф A называется cf-
замкнутым, если Acf содержит всеA-принудительные развилки.

6В силу построений параграфа 4.2 указанному ограничению удовлетво-
ряет любой c-граф A, у которого выполняется T (A) ¹ B ∈ Knf

0 для каждого
c-подграфа B ⊆c A.
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Операция добавления к cc-графу A всех его принудительных
развилок вместе со структурой, описываемой в W (A), называ-
ется операцией cf-замыкания cc-графа A. cc-Граф, являющийся
результатом применения cf-замыкания к cc-графу A, обознача-
ется через cfc(A).

cc-Граф A называется cc-подграфом cc-графа B и пишется
A ⊆cc B, если выполняются следующие условия:

1) c-граф 〈A,QA, W1〉 с записью W1 структуры c-графа в A
является c-подграфом c-графа 〈B,QB,W2〉 с записью W2 струк-
туры c-графа в B;

2) запись WA совпадает с ограничением записи WB на мно-
жество A.

cc-ГрафA называется cc-подграфом графаM, если 〈A,QA,W 〉
с записью W структуры c-графа в A является c-подграфом гра-
фаM и запись WA cc-графа A согласуется с типом tpM(A). При
этом запись A ⊆cc M будет означать, что cc-граф A является cc-
подграфом графа M.

Очевидно, что если A ⊆cc B, то любая A-принудительная
развилка является B-принудительной и, в частности, Acf ⊆ Bcf .

Определим предранговую функцию y1, которая каждому cc-
графу A ставит в соответствие некоторое вещественное число по
правилу

y1(A) = 2 · |Af |+ |Anf | −
∞∑

k=1

αk · e1
k(A),

где e1
1(A) — число дуг в A, e1

k(A), k ≥ 2, — число пар (a, a′) ∈ A2,
связанных лишь внешними кратчайшими (a, a′)-маршрутами дли-
ны k и такими, что никакой (a, a′)-маршрут длины k не содержит
A-внешних A-принудительных развилок.

Построение тандемного безразвилочного cc-графа Tc(A)
(T ∗c (A)), соответствующего cc-графу A, состоит в удалении из
c-графа T (A) (T ∗(A)) всех наборов (a1, a2, n), для которых су-
ществуют внешние кратчайшие (a1, a2)-маршруты длины n, со-
держащие внешние принудительные развилки.

По определению имеем |T ∗c (A)| = 2 · |A|, |Tc(A)| = |T (A)|
и y1(A) = y(Tc(A)) = y(T ∗c (A))− |Anf |.

p-Аппроксимацией предранговой функции y1 называется
функция y1

p, которая каждому cc-графу A ставит в соответствие
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вещественное число по правилу

y1
p(A) = 2 · |Af |+ |Anf | −

p∑

k=1

αk · e1
k(A).

Очевидно, y1
p(A) = yp(Tc(A)).

3. Генерический класс и генерическая теория. Нам
предстоит определить класс cc-графов, в котором аналогично
классам c-графов из параграфов 4.1 и 4.2, с одной стороны, обес-
печивается баланс между числом элементов и числом связей по-
средством нижних оценок bp

n значений предранговой функции,
а с другой стороны, уменьшение значений предранговой функ-
ции при расширении носителей cc-графов определяет попадание
элементов расширений в самодостаточные замыкания исходных
cc-графов. Вместе с тем удвоение весов вершин в предранговой
функции при переходе от элементов a ∈ Anf к тем же самым
элементам, принадлежащим Bf , где A ⊆cc B, не позволяет от-
слеживать самодостаточность cc-графов A (означающую превы-
шение числа новых элементов, а не виртуальных пар элементов,
над числом новых связей) неравенствами y1(A) ≤ y1(B). Эта
же причина даже при рассматриваемом ниже определении само-
достаточности не позволяет добиться наличия конечных замы-
каний у всех конечных множеств моделей генерической теории
и, как следствие, насыщенности генерической модели рассмот-
рением класса cc-графов A, все cc-подграфы A′ которых удовле-
творяют условию y1

p(A′) ≥ bp
n n = |T (A′)|, kp ≤ n < kp+1.

Для реализации требуемых свойств мы ограничим класс рас-
сматриваемых cc-графов на подкласс, обеспечивающий ограни-
ченность числа итераций самодостаточных замыканий cc-под-
графов в зависимости от мощностей данных cc-графов, а само
условие самодостаточности определим как неуменьшение значе-
ний предрангового баланса между числом новых вершин и чис-
лом новых связей в тандемных безразвилочных c-графах относи-
тельно тандемного безразвилочного c-графа рассматриваемого
самодостаточного cc-графа, у которого каждая вершина пред-
ставлена развилочным тандемом.

Пусть A — cc-подграф cc-графа B, и A′ — cc-подграф cc-
графа T ∗c (A), в котором все развилочные вершины a из Bf ∩ A
представлены развилочными тандемами (ab, at), а остальные вер-
шины из A — либо сами, либо их развилочные тандемы. Тогда
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тандемный безразвилочный cc-граф, соответствующий cc-графу,
получаемому изA′ добавлением всех вершин из B\A, а также со-
ответствующих дуг и информации о принудительных развилках
и о внешних кратчайших маршрутах, связывающих в B элемен-
ты из B \ A c элементами из B, называется тандемным безраз-
вилочным cc-графом, соответствующим cc-графу B относительно
cc-графа A′, и обозначается через Tc(BA′).

Напомним [13], что граф A называется частью графа B, если
A ⊆ B и граф B содержит все дуги графа A. Аналогично cc-граф
A будем называть частью cc-графа B и писать A v B, если
A ⊆ B, B содержит все дуги cc-графа A и запись WB содержит
все записи из WA. Будем также писать A vM, если A — часть
некоторого cc-графа B, являющегося cc-подграфом графа M.

Заметим, что переход от cc-графаA к его частям с сохранени-
ем носителя A позволяет рассматривать любые подмножества A,
состоящие из развилочных вершин, в виде неразвилочных и пе-
ребором частей тестировать cc-подграфы A′ cc-графа A на пред-
мет их самодостаточности в A. При этом в силу условия (∗) неса-
модостаточность в A будет обладать следующим свойством на-
следственности: если в A имеется множество B ⊆ A \A′, добав-
ление которого к A′ дает относительно A′ отрицательную раз-
ность между числом новых вершин и взвешенным числом новых
связей в некоторой части cc-графа A с носителем A′ ∪B, то для
любого cc-графа A′′, где A′ ⊆cc A′′ ⊆cc A, B ⊆ A \ A′′, отри-
цательной останется и разность между числом новых вершин
и взвешенным числом новых связей относительно A′′ в некото-
рой части cc-графа A с носителем A′′ ∪B.

Лемма 4.3.5. Для любого положительного числа p ∈ ω
и любых cc-графов A и B, где A — собственная часть cc-графа B,
|T (B)| = n < kp+1, справедливы следующие утверждения.

1. Выполняется y1
p(B)− y1(B) < εp+1.

2. Выполняется y1
p(A) < y1

p(B) тогда и только тогда, когда
y1(A) < y1(B), и выполняется y1

p(A) < y1
p(B) тогда и только

тогда, когда y1
q (A) < y1

q (B) для любого q ≥ p.
Д о к а з а т е л ь с т в о получается из доказательства леммы

4.1.1 заменой y на y1 и графов A, B на cc-графы Tc(A) и Tc(B)
соответственно. ¤

Для cc-графа A будем писать A ∈ Kf
1 тогда и только тогда,

когда y1
1(A′) ≥ b1

n для любого непустого cc-графа A′ v cfc(A),
где n = |T (A′)|.
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Для cc-графа A будем писать A ∈ Kf
p+1 тогда и только тогда,

когдаA ∈ Kf
p и y∆

p (A′) ≥ bp
n для любого cc-графаA′ v cfc(A), где

y∆
p (A′) — минимальное из значений yp(Tc(A0)) + ∆1 + . . . + ∆m,

∆i = yp(Tc((Ai+1)T ∗c (Ai))) − yp(T ∗c (Ai)), A0 ⊆cc A1 ⊆cc . . . ⊆cc

Am = A′, n — натуральное число, для которого y∆
p (A′) = n−s·α1

при некотором s ∈ ω, kp ≤ n < kp+1. Заметим, что определение
корректно, поскольку в выражении n−s·α1 значение n не зависит
от p.

Положим Kf
0 ­

∞⋂
p=1

Kf
p . Обозначим через Kf класс всех бес-

контурных орграфов, у которых каждый cc-подграф принадле-
жит классу Kf

0 .
Пусть A — cc-подграф графа (cf-замкнутого cc-подграфа)M

(графа), принадлежащего классу Kf . Будем говорить, что A —
самодостаточный cc-подграф графа (соответственно cc-гра-
фа) M и писать A 6cc M, если для любых cc-графов A′ v A,
B′ vM,A′ = A0 ⊆cc A1 ⊆cc . . . ⊆cc Am = B′, из ∆1+. . .+∆m < 0,
где ∆i = y(Tc((Ai+1)T ∗c (Ai))) − y(T ∗c (Ai)), следует B′ ⊆ A. Если
A 6cc M иM— cc-граф, тоA называется сильным cc-подграфом
cc-графа M.

В частности, условие самодостаточности cc-графа A влечет
его cf-замкнутость.

Нам предстоит показать, что класс Tf
0 , состоящий из типов,

соответствующих всем cc-графам из класса Kf
0 , и снабженный

отношением 6′
cc (где Φ(A) 6′

cc Ψ(B) ⇔ A 6cc B), является са-
модостаточным генерическим классом, обладающим (после до-
бавления к типам необходимых формул, описывающих самодо-
статочные замыкания) свойством однородного t-амальгамирова-
ния. Это повлечет ω-насыщенность (Tf

0 ; 6′
cc)-генерической моде-

ли, реализующей все типы Φ(X), соответствующие типам Φ(A)
из Tf

0 .

Замечание 4.3.6. 1. Из условий A ∈ Kf
0 и kp ≤ |T (A)| =

n < kp+1 не следует y∆(A) ­ inf
p

y∆
p (A) ≥ bp

n. Вместе с тем,

значение y∆(A) не может быть намного меньше bp
n: поскольку

y1
p(A)− y1(A) < εp+1, имеем y∆(A) > bp

n − εp+1.
Кроме того, с учетом неравенства (4.1), для cc-графов

178



A ∈ Kf
0 , удовлетворяющих условию |T (A)| ≥ max{2, kp}, спра-

ведливо неравенство y∆(A) > p.
2. Пусть A — cc-граф из класса Kf

0 , |T ∗(A)| = p, M — граф
из класса Kf , A ⊆cc M. Тогда A 6cc M в том и только в
том случае, когда для любых cc-графов A′ v A, B′ v M, A′ =
A0 ⊆cc A1 ⊆cc . . . ⊆cc Am = B′, из ∆p

1 + . . . + ∆p
m < 0, где

∆p
i = yp(Tc((Ai+1)T ∗c (Ai)))− yp(T ∗c (Ai)), следует B′ ⊆ A.

Действительно, если |Tc((B′)T ∗c (A′))| < kp+1, то неравенство
∆p

1 + . . . + ∆p
m < 0 равносильно неравенству ∆1 + . . . + ∆m < 0

в силу леммы 4.3.5, п. 2, а если |Tc((B′)T ∗c (A′))| ≥ kp, то ∆p
1 + . . .+

∆p
m ≥ ∆1 + . . . + ∆m > p− yp(T ∗c (A′)) ≥ 0.
Более того, для проверки самодостаточности cc-графаA в гра-

фе M достаточно выбрать число nA = kp и проверить соотно-
шения B′ ⊆ A лишь для cc-графов A′ v A и B′ с условиями
A′ ⊆cc B′, B′ v B ⊆cc M, ∆p

1 + . . . + ∆p
m < 0, |T ∗(B′)| < nA.

Таким образом, условие A 6cc M формульно определимо
с помощью формулы, описывающей отсутствие ni новых отно-
сительно T ∗(Ai−1) (где A0 ⊆cc A1 ⊆cc . . . ⊆cc Am v M, A0 v A)
вершин из Am ∪Υ(Am), где n1 + . . . + nm < nA, таких, что сово-
купность этих элементов не содержится в A ∪Υ(A) и

n < α1 · e1 + α2 · (e2 − e′2) + . . . + αp · (ep − e′p), (4.9)

где p = |T ∗(A)|; e1 — число новых дуг; es, s > 1, — число но-
вых пар вершин (a, b), связанных лишь внешними кратчайшими
маршрутами длины s и такими, что никакой кратчайший (a, b)-
маршрут не содержит Am-внешних Am-принудительных разви-
лок; e′s — число пар вершин (a, b), учтенных при подсчете ∆i,
которые перестают быть связанными лишь внешними кратчай-
шими маршрутами длины s в расширенном относительно Ai cc-
подграфе cc-графа Am.

В дальнейшем будем считать, что к записи WA каждого cc-
графа A присоединена информация о (не)возможности расши-
рения A с помощью менее чем nA новых вершин до получения
значения y(·), неуменьшаемого при расширениях. Тем самым,
к типу, описывающему положение A относительно внешних эле-
ментов, добавлена полная информация о минимальных самодо-
статочных расширениях A, включающая информацию о прину-
дительных развилках.
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Непосредственно из определения вытекает

Лемма 4.3.7. 1. Если A 6cc B, то A ⊆cc B.
2. Если A 6cc C, B ∈ Kf

0 и A ⊆cc B ⊆cc C, то A 6cc B.
3. Пустой граф ∅ является наименьшим элементом

системы (Kf
0 ; 6cc).

Лемма 4.3.8. Если A,B, C ∈ Kf
0 , A 6cc B и C ⊆cc B, то

A ∩ C 6cc C.
Д о к а з а т е л ь с т в о. Предположим противное. Тогда

существуют некоторые n1, . . . , nm новых элементов из (Υ(C),
для которых выполняется неравенство

n1 + . . . + nm < α1 · e1 + α2 · (e2 − e′2) + . . . + αp · (ep − e′p),

где p = |T ∗(A)|, и es, e′s — значения, о которых идет речь в
неравенстве (4.9). Поскольку все новые элементы лежат в Υ(B),
они будут нарушать условие A 6cc B. ¤

Лемма 4.3.9. Отношение 6cc является частичным по-
рядком на классе Kf

0 .
Д о к а з а т е л ь с т в о. Рефлексивность и антисимметрич-

ность отношения 6cc очевидны.
Покажем, что отношение 6cc транзитивно. Предположим про-

тивное и рассмотрим cc-графы A,B, C ∈ Kf
0 , для которых A 6cc

B, B 6cc C, но A 66cc C. По предположению найдется часть A′
cc-графа A и ее расширение C′, являющееся частью cc-графа C
и не являющееся частью cc-графа B, для которого A′ = A0 ⊆cc

A1 ⊆cc . . . ⊆cc Am = C′ и ∆1 + . . . + ∆m < 0. Поскольку A′ яв-
ляется частью cc-графа B, последнее неравенство противоречит
самодостаточности B в C. ¤

Лемма 4.3.10. Для любого cc-подграфа A графа M из клас-
са Kf существует наименьший cc-граф A, содержащий A и яв-
ляющийся самодостаточным cc-подграфом графа M. При этом
|A| < k|T ∗(A)|, каждая вершина из T (A) \ Υ(A) имеет степень,
не меньшую двух, и принадлежит J0 ∪ J1.

Д о к а з а т е л ь с т в о. Существование самодостаточных
расширений cc-графа A в графе M вытекает из определения
класса Kf , а именно, из неравенств y∆

p (A′) ≥ bp
n, где A′ — ча-

сти cc-графа A с носителями A. Из этих же неравенств следует
наличие верхней мощностной оценки k|T ∗(A)| для минимальных
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самодостаточных расширений A. По лемме 4.3.8 пересечение лю-
бых двух таких самодостаточных расширений также будет само-
достаточным cc-подграфом графаM, содержащим A. Это озна-
чает, что существует наименьшее самодостаточное расширение
cc-графа A, совпадающее с самодостаточным замыканием A.

Степень каждой вершины из T (A) \ Υ(A) не меньше двух
в силу минимальности самодостаточного расширенияA. Условие
T (A)\Υ(A) ⊆ J0∪J1 вытекает из того, что удаление любой про-
межуточной вершины a степени 2 уменьшает значение предран-
говой функции на положительную величину 1−αs+αs1 +αs2 , где
s = s1 + s2 — длина внешнего (после удаления вершины a) крат-
чайшего маршрута, содержащего вершину a. Таким образом, ни-
какая новая промежуточная вершина a не попадает в надмноже-
ство множества A с наименьшим значением y(·). ¤

На основании леммы 4.3.10 мы вправе к каждому cc-графу A
из класса Kf

0 добавить информацию о его самодостаточном
замыкании A в некотором графе M ∈ Kf . Такое добавление,
очевидно, неоднозначно (зависит от выбора графа M) и порож-
дает для каждого cc-графа конечное число вариантов типов c-
изоморфизма его самодостаточных замыканий. Это число опре-
деляется вариантами распределения длин кратчайших маршру-
тов среди менее чем k|T ∗(A)| элементов, составляющих носители
типов c-изоморфизма самодостаточных замыканий. cc-Графы,
совпадающие со своими самодостаточными замыканиями будем
называть самодостаточными cc-графами.

В дальнейшем будем считать, что к записи W каждого cc-
графа добавлена информация о его самодостаточном замыкании
и при рассмотрении расширений и ограничений cc-графов эта
информация соответствующим образом наследуется.

Разнозначное отображение f : A → B называется cc-вложе-
нием cc-графа A = 〈A,QA,WA〉 в cc-граф B = 〈B, QB,WB〉 (обо-
значается f : A →cc B), если f — вложение c-графа, который
получается из A ограничением записи WA до c-графовой, в c-
граф, который получается из B ограничением записи WB до c-
графовой, и такой, что ограничение записи WB на множество
f(A) совпадает с подстановкой в запись WA элементов из f(A)
вместо соответствующих элементов A.

cc-ГрафыA и B называются cc-изоморфными, если существу-
ет cc-вложение f : A →cc B с условием f(A) = B. При этом
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отображение f называется cc-изоморфизмом между A и B, а cc-
графы A и B — cc-изоморфными копиями.

Разнозначное отображение f : A → N называется cc-вложе-
нием cc-графа A в орграф N (обозначается f : A →cc N ), если
f — cc-вложение cc-графа A в cc-подграф f(A) орграфа N , име-
ющий носитель f(A).

cc-Вложение f cc-графа A в cc-граф B называется сильным,
если f(A) 6cc B.

Пусть A, B = 〈B, QB,WB〉 и C = 〈C,QC ,WC〉 — самодостаточ-
ные cc-графы, A = B ∩ C. Свободной cc-амальгамой cc-графов B
и C над A (обозначаемой через B ∗A C) называется самодоста-
точный cc-граф 〈B ∪C, QB ∪QC ,WB ∪WC ∪W 〉, где W — запись
о самодостаточности получаемого cc-графа.

Заметим, что по определению любая свободная cc-амальгама
является cf -замкнутой.

Лемма 4.3.11. (амальгамационная лемма). Класс Kf
0 удо-

влетворяет cc-амальгамационному свойству cc-(AP), т. е. для
любых сильных cc-вложений f0 : A →cc B и g0 : A →cc C, где
A,B, C — самодостаточные cc-графы из класса Kf

0 , существу-
ет самодостаточный cc-граф D ∈ Kf

0 и сильные cc-вложения
f1 : B →cc D и g1 : C →cc D, для которых f0 ◦ f1 = g0 ◦ g1.

Д о к а з а т е л ь с т в о. Без ограничения общности можно
считать, что A 6cc B, A 6cc C, A = B ∩ C. Покажем, что cc-граф
D ­ B ∗A C является искомым. Для этого, в силу симметрич-
ности определения свободной cc-амальгамы, достаточно устано-
вить B 6cc D и D ∈ Kf

0 .
Предположим, что B 66cc D. Тогда существуют некоторые

n1, . . . , nm новых элементов из Υ(D), не все из которых лежат
в Υ(B) и выполняется неравенство

n1 + . . . + nm < α1 · e1 + α2 · (e2 − e′2) + . . . + αp · (ep − e′p),

где p = |T ∗(B)|, и es, e′s — значения, о которых идет речь в
неравенстве (4.9). Поскольку элементы, опровергающие условие
самодостаточности B в D, лежат в Υ(C), эти элементы при рас-
ширении множества элементов из A, через которые элементы из
B\A связываются с новыми элементами из C, в силу условия (∗)
будут нарушать условие A 6cc C.
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Действительно, если какие-то маршруты, связывающие эле-
менты из B с элементами из C \ A, содержат принудительные
развилки, то соответствующие связи при подсчете ∆i не учи-
тываются. Поэтому без ограничения общности можно считать,
что кратчайшие маршруты S, связывающие элементы a ∈ B \A
и b ∈ C \ A, не содержат принудительных развилок. Предполо-
жим теперь, что некоторое значение ∆1 + . . .+∆m отрицательно
после добавления к некоторому множеству B′ ⊆ B элементов
из C \A.

По определению свободной амальгамы для каждой пары
вершин (a, a′) ∈ B × (C \ A), связанных лишь внешними над
B′∪(C\A) кратчайшими маршрутами, выполняется одно из сле-
дующих условий:

1) a принадлежит A;
2) a не принадлежит A и некоторый внешний над B′∪ (C \A)

кратчайший (a, a′)- или (a′, a)-маршрут содержит промежуточ-
ную вершину из A.

Обозначим через A′ множество всех промежуточных вершин
из A, о которых идет речь в условии 2. После добавления к B′
множества A′ и соответствующих связей отрицательная часть
∞∑

k=1

αk · ek значения ∆1 + . . .+∆m в силу условия (∗) увеличится,
а положительная часть останется прежней, поскольку указанное
минимальное добавление связей с элементами из C \A к частям
cc-графа D сохраняет неразвилочность вершин. Тогда для мно-
жества (B′ ∩ A) ∪ A′ некоторое значение ∆1 + . . . + ∆m после
добавления элементов из C \A также окажется отрицательным.
Последнее противоречит самодостаточности A в C.

Покажем теперь, что каждый cc-граф D принадлежит клас-
су Kf

0 . Для этого нужно установить, что y∆
p (E) ≥ bp

n, где E v D,
n — натуральное число, для которого y∆

p (E) = n − s · α1 при
некотором s ∈ ω, kp ≤ n < kp+1.

Обозначим через E1 cc-граф E ¹ B, через E2 — cc-граф E ¹ C,
через E3 — cc-граф E ¹ A. Предположим для определенности,
что для значений y∆

r (E1) = l1 − s1 · α1 и y∆
q (E2) = l2 − s2 · α1,

kr ≤ l1 < kr+1, kq ≤ l2 < kq+1, соответствующих значению y∆
p (E),

выполняется l1 ≤ l2, и без ограничения общности будем считать,
что E1 * A и E2 * A. Заметим, что значения ∆1+. . .+∆m не мо-
гут быть отрицательными (т. е. оказываются положительными)
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при добавлении к E2 элементов из E1 \ E3. В силу леммы 4.3.5,
п. 2 положительны и соответствующие значения ∆q

1 + . . . + ∆q
m.

На основании леммы 4.1.1, п. 3 заключаем

sl((l2, y∆
q (E2)), (n, y∆

q (E))) ≥ sl((l2, b
q
l2
), (n, bq

n)). (4.10)

Из принадлежности cc-графа E2 классу Kf
0 следует, что точка

(l2, y∆
q (E2)) находится выше точки (l2, b

q
l2
). Тогда на основании

неравенства (4.10) заключаем, что точка (n, y∆
q (E)) находится

выше точки (n, bq
n), т. е. y∆

q (E) ≥ bq
n.

Если p = q, то требуемое неравенство y∆
p (E) ≥ bp

n установле-
но. В противном случае, т. е. если q < p, y∆

p (E) будет отличаться
от y∆

q (E) меньше, чем на αq+1 ·kq+1 ·(kq+1−1) < 2εq+1, поскольку
E содержит в сумме менее kq+1 · (kq+1 − 1) дуг и записей о крат-
чайших Q-маршрутах. В силу леммы 4.1.1, п. 4 заключаем, что
y∆

p (E) ≥ bp
n. ¤

На основании лемм 4.3.7–4.3.11 справедливо

Следствие 4.3.12. Класс (Tf
0 ; 6′

cc) самодостаточен.

Обозначим (Tf
0 ; 6′

cc)-генерическую теорию через T f .
Покажем, что после добавления к каждому самодостаточно-

му типу Φ(A) ∈ Tf
0 некоторой формулы χΦ(A), для которой

(T f , A) ` χΦ(A), получается самодостаточный класс (T0;6′′
cc),

обладающий свойством однородного t-амальгамирования.
Действительно, на основании замечания 4.3.6 для любого cc-

графа A ∈ Kf
0 мощности p и любого графа M |= T f , A ⊆cc M,

условие A 6cc M равносильно выполнению условий ∆p
1 + . . . +

∆p
m > 0 при расширении подмножеств множества A элементами,

совокупность которых не содержится в A. Поскольку провер-
ка этих условий рассматривается лишь для расширений мощно-
сти, не превосходящей nA7, и предполагает лишь подсчет связей
по отношениям Q1, . . . , Qp, условие самодостаточности A 6cc M
выразимо некоторой формулой χA(X) графовой сигнатуры {Q},
где множество переменных X биективно с множеством A.

7При этом верхняя оценка для мощностей расширений зависит лишь от
удвоенной мощности множества A.
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Пусть A и B — cc-графы из класса Kf
0 , M — генерическая

модель теории T f , A 6cc B 6cc M. Обозначим через ψA,s(X) (со-
ответственно ψB,s(X,Y )) формулу, описывающую {Q1, . . . , Qs}-
тип графа A (B), где X и Y — непересекающиеся множества
переменных, биективные с множествами A и B \ A. Тогда для
любого s ≥ |T (B)| в модели M истинна следующая формула:

∀X ((χA(X) ∧ ψA,s(X)) → ∃Y (χB(X, Y ) ∧ ψB,s(X, Y ))) .

Из последнего соотношения вытекает свойство однородного t-
амальгамирования для класса (Tf

0 ; 6′′
cc), который получается из

класса (Tf
0 ; 6′

cc) добавлением к типам формул, устанавливаю-
щих мощностные границы и {Q1, . . . , Qp}-структуры самодоста-
точных замыканий, а также формул χA(A) к типам самодоста-
точных множеств A.

Поскольку в силу леммы 4.3.10 имеются конечные замыкания
у любых конечных множеств моделей теории T f , на основании
теоремы 2.5.1 справедлива следующая

Теорема 4.3.13. (Tf
0 ; 6′′

cc)-Генерическая модель M насыще-
на. При этом любое конечное множество A ⊆ M расширяется
до своего самодостаточного замыкания A ⊆ M , и тип tpX(A)
выводится из множества [Φ(A)]AX , где Φ(A) — тип из Tf

0 , для
которого M |= Φ(A).

Пусть N — ω-насыщенная модель теории T f .

Предложение 4.3.14. Для любого конечного множества A
из модели N справедливо соотношение acl(A) = A.

Д о к а з а т е л ь с т в о. Включение acl(A) ⊇ A вытекает из
единственности A в любом элементарном расширении модели N .

Рассмотрим теперь произвольный элемент b ∈ N \ A и по-
кажем, что b 6∈ acl(A). Обозначим через B некоторый самодо-
статочный cc-подграф N такой, что A ∪ {b} ⊆ B и для каждой
вершины из Bf ∩ A к A добавлены вершины степени 1 с тем,
чтобы в полученном самодостаточном cc-графе A′ было спра-
ведливо A′f = Bf ∩A и b 6∈ A′. В силу конструкции генерической
модели существует бесконечное число cc-изоморфных попарно
непересекающихся копий множества B \ A′ над множеством A′,
т. е. b 6∈ acl(A). Таким образом, acl(A) ⊆ A. ¤
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4. Стабильность генерической теории. Схема доказа-
тельства стабильности генерической теории T f будет несколько
отличаться от схемы доказательства стабильности генерических
теорий из параграфов 4.1 и 4.2, поскольку специфика представ-
ленной в предыдущем пункте генерической конструкции порож-
дает структуру, набор свойств которой не позволяет использо-
вать стандартные рассуждения из работы Дж. Болдуина
и Н. Ши [72]. В частности, мы не будем определять и использо-
вать в качестве инструмента доказательства аналоги ранговых
функций (эти аналоги не обладают, например, свойством моно-
тонности), а проведем непосредственный анализ насыщенной мо-
дели, позволяющий установить счетную отделимость (счетную
базируемость) конечных множеств от заданных замкнутых мно-
жеств и, как следствие, найти верхнюю оценку числа типов над
множеством, обеспечивающую стабильность теории T f .

Зафиксируем некоторую достаточно насыщенную модель N
теории T f . В дальнейшем все рассматриваемые cc-графы A бу-
дут считаться частями cc-подграфов N , а все рассматриваемые
множества — подмножествами N . При этом самодостаточные
(в N ) cc-графы A также будут обозначаться своими носителя-
ми A, а сами носители A будут называться самодостаточными
множествами.

Множество X ⊆ N называется замкнутым (в модели N )
(обозначается X 6 N), если для любого конечного множества
A ⊆ X выполняется A ⊆ X, т. е. в T (N) \ Υ(X) нет каких-либо
n новых элементов, для которых выполняется неравенство (4.9).

Лемма 4.3.15. Пусть X и Y — множества из модели N .
Тогда справедливы следующие утверждения:

1) если X 6 N и Y 6 N , то X ∩ Y 6 N ;
2) существует наименьшее замкнутое множество X ⊇ X;

при этом выполняются соотношения X =
⋃{A | A ⊆fin X}

и X = acl(X);
3) если X ⊂ Y , то X ⊆ Y .
Множество X называется внутренним замыканием множе-

ства X (в модели N ).
Д о к а з а т е л ь с т в о повторяет доказательство леммы

4.1.13. ¤
Множество V (в модели N ) называется свободной cc-амаль-

гамой замкнутых множеств X и Y над множеством Z и обозна-
чается X ∗Z Y , если X ∪ Y = V , X ∩ Y = Z и нет пар вершин
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(a, b) ∈ V 2 \ (X2 ∪ Y 2), связанных дугами или лишь внешними
над V кратчайшими маршрутами.

Будем говорить, что множества X и Y независимы над Z
и писать X ↓Z Y , если X ′∩Y ′ = Z, X ′∪Y ′ = X ′ ∗Z Y ′ и X ′∪Y ′ 6
N , где X ′ = X ∪ Z и Y ′ = Y ∪ Z.

Лемма 4.3.16. Если X — самодостаточное множество, Y —
замкнутое множество, Z = (X ∪ Z) ∩ Y и X ↓Z Y , то тип
tp(X/Y ) однозначно определяется типом tp(X/Z), описанием
замкнутости множества (X ∪ Z)∪ Y и типом, описывающим
совпадение (X ∪ Z) ∪ Y со свободной cc-амальгамой X ∗Z Y .

Д о к а з а т е л ь с т в о. В силу конструкции генерической
модели очевидно, что при рассмотрении двух полных типов q1(X)
и q2(X) над множеством Y , содержащих тип tp(X/Z), описание
замкнутости множества (X ∪ Z)∪Y и тип, описывающий совпа-
дение (X ∪ Z) ∪ Y со свободной амальгамой X ∗Z Y , существует
автоморфизм |Y |+-насыщенной модели, переводящий реализа-
цию типа q1(X) в реализацию типа q2(X). ¤

Лемма 4.3.17. Если X — замкнутое множество, a — эле-
мент модели N , не принадлежащий X, то существует не бо-
лее чем счетное замкнутое подмножество X ′ ⊆ X такое, что
{a} ↓X′ X.

Д о к а з а т е л ь с т в о. Заметим сначала, что элемент a
связан дугами или лишь внешними над X кратчайшими марш-
рутами не более чем со счетным числом элементов из X. Дей-
ствительно, предполагая что таких элементов несчетно, найдет-
ся несчетное число элементов из X, связанных с a дугами или
лишь внешними кратчайшими маршрутами одной и той же дли-
ны, и при этом элемент a является либо общим началом, либо
общим концом всех этих маршрутов. Однако превышение числа
маршрутов определенной длины над их соответствующим весом
αk означает, что элемент a попадает в замыкание выбранных
элементов из X, а это невозможно, поскольку множество X за-
мкнуто и a 6∈ X. Приведенное рассуждение показывает также,
что любое не более чем счетное множество, не пересекающееся
с X, также имеет не более чем счетное число связей с X посред-
ством дуг и лишь внешних кратчайших маршрутов.

Предположим, что искомого множества X ′ не существует. То-
гда найдется несчетное множество попарно различных конечных
замкнутых подмножеств Xi ⊆ X, для которых самодостаточные
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замыкания Xi ∪ {a} не содержатся в X∪{a} и некоторые элемен-
ты из Xi ∪ {a} \ X связаны с Xi попарно различными (относи-
тельно i) дугами или лишь внешними кратчайшими маршрута-
ми. При этом без ограничения общности можно считать, что мно-
жества Xi ∪ {a} образуют cc-изоморфные cc-графы, у которых
все соответствующие (относительно i) элементы либо совпадают
(неподвижны), либо попарно различны (подвижны). По опреде-
лению самодостаточного замыкания, множества Xi имеют ми-
нимальные по включению подмножества X ′

i, для которых неко-
торые расширения X ′

i ∪{a} в Xi ∪ {a} имеют превышение числа
новых связей над числом новых элементов в соответствии с нера-
венством (4.9), т. е. отрицательны некоторые суммы ∆1+. . .+∆m,
получаемые при расширениях множеств X ′

i ∪{a} элементами, не
лежащими в X. Снова в силу невозможности выбора счетного
числа множеств X ′

i можно считать, что множества X ′
i ∪ {a} по-

парно различны и образуют cc-изоморфные cc-графы. Тем са-
мым суммы ∆ ­ ∆1 + . . .+∆m можно считать одинаковыми для
всех множеств X ′

i.
Если суммы ∆ можно получить с помощью лишь неподвиж-

ных элементов a1, . . . , ak из Xi ∪ {a} \X, то в силу cc-изоморф-
ности множеств Xi ∪ {a} можно выбрать n множеств X ′

i c усло-
вием превышения взвешенного числа связей между элемента-
ми из X ′

i и неподвижными элементами более чем на 2 · k + 1.
Указанный выбор обеспечивает попадание в самодостаточное за-
мыкание объединения этих множеств Xi не только элементов
a1, . . . , ak, но и элемента a, что противоречит условию a 6∈ X.

Если же отрицательные суммы ∆ достигаются лишь добавле-
нием соответствующих подвижных элементов из Xi ∪ {a}\X, то
выберем n множеств Xi, где n ·α > 2, α — наименьший вес крат-
чайших маршрутов, участвующих в подсчете ∆ для подвижных
вершин. Добавляя к объединению этих множеств Xi неподвиж-
ные элементы bij из Xi ∪ {a} \X, а также подвижные элементы
cik из Xi ∪ {a} \X, связывая дугами или лишь внешними крат-
чайшими маршрутами элементы из Xi ∪ {a}, соответствующие
сумме ∆, и не связывая дугами и внешними кратчайшими марш-
рутами подвижные элементы из разных множеств Xi ∪ {a} \X,
получаем cc-граф (являющийся свободной амальгамой над мно-
жеством некоторых элементов из X и неподвижных элементов,
включая элемент a), который будет давать отрицательную сум-
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му ∆′
1 + . . . + ∆′

m′ при добавлении к объединению выбранных
n множеств Xi не только элементов bij , cik, но и элемента a. По-
следнее снова противоречит тому, что элемент a не принадлежит
замкнутому множеству X.

Таким образом, указанного несчетного семейства конечных
множеств Xi не существует, а искомое множество X ′ можно вы-
брать как пересечение с множеством X замыкания Y объеди-
нения не более чем счетного семейства не более чем счетных
множеств Xi, к которым присоединен элемент a, а также всевоз-
можные элементы из X, с которыми элементы из Y \X связаны
дугами или лишь внешними кратчайшими маршрутами. ¤

Теорема 4.3.18. Теория T f стабильна, мала и имеет един-
ственный 1-тип. Вес этого типа бесконечен.

Д о к а з а т е л ь с т в о. Малость теории T f вытекает
из теоремы 4.3.13. Для доказательства стабильности теории T f

найдем оценку числа 1-типов из S(N), где N — некоторая мо-
дель теории T f . Рассмотрим произвольный элемент a. По лем-
ме 4.3.17 существует не более чем счетное замкнутое множество
X ⊆ N такое, что {a} ∪X ∩N = X и {a} ↓X N . По лемме 4.3.16
тип tp(a/N) определяется типом tp(a/X), описанием замкнуто-
сти множества {a} ∪X ∪ N и типом, описывающим совпадение
{a} ∪X ∪ N со свободной амальгамой {a} ∪X ∗X N . Таким об-
разом, для подсчета числа типов из S(N) достаточно посчитать
число типов из S(X) и число выборов счетных множеств X из N .
Тогда

|S(N)| ≤ 2ω · |N |ω = |N |ω.

Следовательно, теория T f стабильна.
По построению каждое одноэлементное множество {a} са-

модостаточно. По теореме 4.3.13 это означает, что существует
единственный 1-тип теории T f . Пусть A — cc-граф с носите-
лем {a}, Ap = {a, bp} — носитель двухэлементного самодоста-
точного cc-графа Ap, содержащего Qp-дугу между a и bp. По-
ложим B1 ­ A1, Bp+1 ­ Bp ∗A Ap+1, B ­

⋃
p∈ω\{0}

Bp. По по-

строению B образует замкнутое множество в некоторой генери-
ческой модели M теории T f . Поскольку α1 + . . . + αp+1 < 1
и {b1, . . . , bp+1} 6cc {a, b1, . . . , bp+1} 6cc B 6 M , справедливо
{bp+1} ↓∅ {b1, . . . , bp}. Таким образом, (bp)p∈ω\{0} — бесконеч-
ная независимая последовательность элементов, где каждый эле-
мент bp зависим с элементом a. ¤
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Поскольку α1 < 1
2 , любые два элемента a и b связаны через

некоторый элемент c так, что aQc и bQc, а также через некото-
рый элемент d так, что dQa и dQb. Таким образом, любая модель
теории T f обладает свойством попарного пересечения.

Из единственности 1-типа вытекает транзитивность группы
автоморфизмов любой однородной модели теории T f .

Из самодостаточности любого двухэлементного множе-
ства {a, b}, где aQb, на основании теоремы 4.3.13 получаем, что
Q(x, y) — главная формула теории T f .

Поскольку для любого элемента a моделиM теории T f в си-
лу предложения 4.3.14 справедливо acl({a}) = {a}, имеет место
равенство

acl({a}) ∩
⋃
n∈ω

Qn(M, a) = {a}.

Сопоставляя указанные свойства с определением властного
орграфа и учитывая теорему 4.3.18, получаем следующую тео-
рему.

Теорема 4.3.19. Генерическая модель теории Tf является
малым стабильным властным орграфом.

В следующих двух утверждениях проясняется структура про-
стых моделей MA над конечными множествами A.

Лемма 4.3.20. Если A и B — самодостаточные множе-
ства в модели N и A 6cc B, то тип tp(B/A) изолирован тогда

и только тогда, когда B — полный
∞⋃

k=1

Qk-граф над A, т. е. лю-

бые два различных элемента a ∈ B и b ∈ B \A связаны некото-
рой Qk-дугой.

Д о к а з а т е л ь с т в о. Пусть Y — множество переменных,

биективное с множеством B \ A. Если B — полный
∞⋃

k=1

Qk-граф

над A, то по теореме 4.3.13 тип tp((B \A)/A) изолируется глав-
ной формулой типа Φ(A, Y ), где Φ(B) — тип из Tf

0 , для кото-
рого N |= Φ(B). Эта формула существует в силу формульности
условия самодостаточности и конечности записи о существова-
нии кратчайших маршрутов между элементами. Если же B не

является полным
∞⋃

k=1

Qk-графом над A, то по теореме 4.3.13 тип
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tp((B \A)/A) изолируется типом Φ(A, Y ), но не изолируется ни-
какой конечной частью этого множества. ¤

Из леммы 4.3.20 вытекает
Следствие 4.3.21. Пусть A — самодостаточное множе-

ство в модели N . Модель MA является полным
∞⋃

k=1

Qk-графом

над A. Множество типов изоморфизма простых моделей над
конечными множествами совпадает с множеством типов изо-
морфизма моделейMA, где A — самодостаточные множества.

5. Властные орграфы с почти несущественными упо-
рядоченными раскрасками. Приведенное выше построение
стабильных генерических властных орграфов допускает следу-
ющую модификацию. Рассмотрим класс Kf

0 и обогатим каждый
cc-граф A из этого класса всевозможными раскрасками Col :
A → ω ∪ {∞} такими, что если вершины a, a′ ∈ A связаны
(a, a′)-маршрутом, то Col(a) ≤ Col(a′). Полученный расширен-
ный класс обозначим через K̂f

0 . Заметим, что при этом каждому
непустому cc-графу соответствует счетное число вариантов рас-
краски его вершин.

Учитывая бесконтурность cc-графов, замечаем, что свобод-
ные амальгамы самодостаточных cc-графов из класса K̂f

0 также
являются самодостаточными cc-графами из класса K̂f

0 , и в силу
леммы 4.3.11 справедлива следующая

Лемма 4.3.22. (амальгамационная лемма). Класс K̂f
0 удо-

влетворяет cc-амальгамационному свойству cc-(AP), т. е. для
любых сильных cc-вложений f0 : A →cc B и g0 : A →cc C, где
A,B, C — самодостаточные cc-графы из класса K̂f

0 , существу-
ет самодостаточный cc-граф D ∈ K̂f

0 и сильные cc-вложения
f1 : B →cc D и g1 : C →cc D, для которых f0 ◦ f1 = g0 ◦ g1.

Тем самым, генерическая конструкция приводит к построе-
нию генерического стабильного насыщенного властного оргра-
фа Γcpg, в котором раскраска его элементов Q-упорядочена. При
этом тип любого самодостаточного множества A определяется
формулой, описывающей его самодостаточность, множеством
формул, описывающих наличие или отсутствие маршрутов меж-
ду элементами, а также формулами, описывающими цвета эле-
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ментов. Поскольку при графовом обеднении сохранение инфор-
мации о взаимосвязи элементов самодостаточных множеств озна-
чает совпадение их полных типов, раскраска графа Γcpg почти
несущественна.

Таким образом, справедлива следующая
Теорема 4.3.23. Существует малый стабильный гене-

рический властный орграф Γ = 〈X, Q〉 с почти несущественной
Q-упорядоченной раскраской.

Обозначим теорию генерического властного орграфа Γcpg

с почти несущественной упорядоченной раскраской через T cpg.
Комбинируя доказательство теоремы 3.1.7 и леммы 4.3.20,

получаем следующую теорему, в которой описываются типы, ре-
ализуемые в простой модели теории T cpg, а также в простой мо-
делиMp∞ над реализацией типа p∞(x) элементов, имеющих бес-
конечный цвет.

Теорема 4.3.24. 1. Тип q теории T cpg является главным
тогда и только тогда, когда любые два различных элемента ai

и aj из любой реализации a типа q соединены некоторым (ai, aj)-
маршрутом или (aj , ai)-маршрутом, и все элементы реализа-
ций типа q имеют конечные цвета.

2. Тип q теории T cpg реализуется в модели Mp∞ тогда
и только тогда, когда для любой реализации a типа q любые
два ее различных элемента ai и aj соединены некоторым (ai, aj)-
маршрутом или (aj , ai)-маршрутом и выполняются следующее
условие: если среди элементов кортежа a есть элементы ко-
нечного цвета, af — элемент конечного цвета, являющийся об-
щим концом маршрутов, связывающих все элементы конечных
цветов с элементом af , и если среди элементов кортежа a
есть элементы бесконечного цвета, a∞ — элемент бесконеч-
ного цвета, являющийся общим началом маршрутов, связыва-
ющих все элементы бесконечного цвета с элементом a∞, то
существует (af , a∞)-маршрут.

§ 4.4. Об обогащениях властных орграфов

В этом параграфе исследуется возможность обогащения
структуры стабильного властного орграфа до структуры ста-
бильной эренфойхтовой теории.

Мы покажем, что простейший вид обогащения, предложен-
ный в третьей главе, — обогащение 1-несущественной упорядо-

192



ченной раскраской и локально графово ∃-определимыми много-
местными отношениями, позволяющими взаимно реализовывать
неглавные типы, — не способен сохранить структуру в классе
стабильных структур: 1-несущественная упорядоченная раскрас-
ка с локально графово ∃-определимыми отношениями, взаимо-
реализующими неглавные типы, влечет существование формулы
с двумя свободными переменными, обладающей свойством стро-
гого порядка.
1. Ти́пово нестабильные теории. Следующие понятия
обобщают соответствующие понятия теории классификаций
[10], [26].

Пусть q(x, y) — некоторый (не обязательно полный) тип тео-
рии T , x и y — непересекающиеся наборы переменных, M —
некоторая счетно насыщенная модель теории T .

Тип q(x, y) называется нестабильным, или типом, имеющим
свойства порядка, если существуют кортежи an, bn, n ∈ ω, для
которых выполняется |= q(ai, bj) ⇔ i ≤ j.

Будем говорить, что тип q(x, y) имеет свойство независимо-
сти, если существуют кортежи an, n ∈ ω, такие, что для любого
множества w ⊆ ω существует кортеж bw, для которого выполня-
ется |= q(an, bw) ⇔ n ∈ w.

Тип q(x, y) имеет свойство строгого порядка, если существу-
ют кортежи an, n ∈ ω, такие, что q(an,M) % q(an+1,M) для всех
n ∈ ω.

Теория T называется ти́пово стабильной, если T не имеет
нестабильных типов q(x, y). Теория T называется ти́пово неста-
бильной или имеющей ти́повое свойство порядка, ти́повое свой-
ство независимости или ти́повое свойство строгого порядка,
если соответствующее свойство имеет некоторый тип q(x, y) тео-
рии T .

Ясно, что свойства порядка, независимости и строгого поряд-
ка для типов обобщают соответствующие понятия для формул
(см. [10], c. 342), а ти́повое свойство порядка является следствием
как ти́пового свойства независимости, так и ти́пового свойства
строгого порядка.

Пусть Γ = 〈X, Q〉 — некоторый граф без петель, a — вер-
шина графа Γ. Множество 5Q(a) ­

⋃
n∈ω

Qn(a,Γ) (соответствен-

но 4Q(a) ­
⋃

n∈ω
Qn(Γ, a)) называется верхним (нижним) Q-
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конусом вершины a. Будем называть Q-конусы 5Q(a) и 4Q(a)
конусами и обозначать через 5(a) и 4(a) соответственно, если
из контекста ясно, о каком отношении Q идет речь.

Отметим следующий очевидный критерий включения одних
конусов вершин в другие.

Предложение 4.4.1. Для любых вершин a и b графа Γ сле-
дующие условия эквивалентны:

1) 5(a) ⊇ 5(b);
2) 4(a) ⊆ 4(b);
3) a = b или вершина a достижима из вершины b.
Непосредственно из предложения вытекают следующие два

утверждения.
Следствие 4.4.2. Для любой последовательности вер-

шин an, n ∈ ω, графа Γ следующие условия эквивалентны:
1) верхние конусы 5(an) образуют бесконечную последова-

тельность, строго возрастающую (убывающую) по отношению
включения;

2) нижние конусы 4(an) образуют бесконечную последова-
тельность, строго убывающую (возрастающую) по отношению
включения;

3) для любого n ∈ ω вершина an (контр)достижима из вер-
шины an+1, но an+1 не (контр)достижима из an.

Следствие 4.4.3. Для любой последовательности вер-
шин an, n ∈ ω, бесконтурного орграфа Γ следующие условия
эквивалентны:

1) верхние конусы 5(an) образуют бесконечную последова-
тельность, строго возрастающую (убывающую) по отношению
включения;

2) нижние конусы 4(an) образуют бесконечную последова-
тельность, строго убывающую (возрастающую) по отношению
включения;

3) для любого n ∈ ω вершина an (контр)достижима из вер-
шины an+1.

Ясно, что отношения x 6∈ 5(y) и x 6∈ 4(y) ти́пово определи-
мы. Таким образом, справедливо следующее утверждение.

Предложение 4.4.4. Если Γ — бесконтурный орграф с бес-
конечной цепью, то теория Th(Γ) имеет ти́повое свойство
строгого порядка.
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Из бесконтурности любого властного орграфа и наличия об-
разов и прообразов у любой вершины вытекает

Следствие 4.4.5. Теория любого властного орграфа имеет
ти́повое свойство строгого порядка.

2. От ти́пового к формульному свойству строгого по-
рядка. Пусть Col : X → ω ∪ {∞} — 1-несущественная рас-
краска графа Γ = 〈X,Q〉, имеющего транзитивную группу авто-
морфизмов, ∆ — некоторое множество формул сигнатуры {Q}∪
{Coln | n ∈ ω}. Предикатное обогащение M структуры цветного
графа 〈Γ, Col〉 называется локально (∆, 1, Col)-определимым, ес-
ли после обогащения раскраска Col остается 1-несущественной, и
для любого нового предикатного символа R(m) формула R(x, y)∧
Coln(x) эквивалентна некоторой булевой комбинации фор-
мул из ∆. Если множество ∆ состоит из ∃-формул, то локаль-
но (∆, 1, Col)-определимое обогащение называется локально
(∃, 1, Col)-определимым.

Пусть Col — 1-несущественная Q-упорядоченная раскраска
властного орграфа Γpg = 〈X,Q〉, p∞(x) — тип элементов беско-
нечного цвета. Локально (∃, 1, Col)-определимое обогащение M
структуры 〈Γpg,Col〉 называется p∞-властным, если выполня-
ются следующие условия:

1) отношение полуизолированности SIp∞ на реализациях ти-
па p∞ несимметрично посредством формулы Q(x, y);

2) p∞ — властный тип теории T ­ Th(M);
3) каждый неглавный тип q(y) ∈ S(T ) реализуется в Mp∞

посредством некоторой главной формулы Rq(a, y) (т. е. Rq(a, y) `
q(y)), где Rq — новый сигнатурный символ, |= p∞(a);

4) если |= Rq(a, b), |= p∞(a), |= p∞(bi), где bi ∈ b, то существу-
ет (a, bi)-Q-маршрут.

Отметим, что свойства 1–4 выполняются в морлизациях
структур формульных окрестностей неглавных властных типов,
из которых извлекаются структуры властных орграфов (см. до-
казательство предложения 1.4.2).

Напомним (см. доказательство предложения 1.3.4), что огра-
ниченность длин кратчайших маршрутов во властном оргра-
фе Γpg влечет свойство строгого порядка и, в частности, неста-
бильность теории Th(Γpg).
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ПустьM— локально (∃, 1, Col)-определимое p∞-властное обо-
гащение структуры властного орграфа Γpg = 〈X,Q〉 с неогра-
ниченными длинами кратчайших маршрутов. Тогда существует
тип q(y1, y2, y3) ∈ S3(Th(M)), для которого первая координата
любой реализации имеет конечный цвет, а вторая и третья — бес-
конечный, и эти реализации попарно не связаны маршрутами в
орграфе. Рассмотрим формулу

ϕ(x, y1) ­ ∃y2 ∃y3 Rq(x, y1, y2, y3).

Из локальной (∃, 1, Col)-определимости отношения Rq, взаимной
недостижимости реализаций a и b1 (где |= ϕ(a, b1), |= p∞(a)) в
графе Γpg и неограниченности длин кратчайших маршрутов вы-
текает, что формулой ϕ(x, y1) задается двухместное отношение,
не определимое формулой сигнатуры цветного властного оргра-
фа. Более того, поскольку ∃-формулами на графовой структу-
ре с транзитивной группой автоморфизмов можно определить
лишь ограниченные длины кратчайших маршрутов, из условий
|= p∞(a1) и |= Q(a1, a2) вытекает

|= ∀y (ϕ(a1, y) → ϕ(a2, y)) ∧ ∃y (¬ϕ(a1, y) ∧ ϕ(a2, y)). (4.11)

Так как элементы a1 и a2 реализуют один и тот же тип p∞,
соотношение (4.11) влечет свойство строгого порядка.

Таким образом, справедлива следующая теорема, согласно
которой сохранение 1-несущественности раскраски властного ор-
графа несовместимо со стабильностью локально (∃, 1,Col)-опре-
делимой структуры обогащенной теории, имеющей неглавный
властный тип p∞.

Теорема 4.4.6. Теория любого локально (∃, 1,Col)-определи-
мого p∞-властного обогащения структуры властного орграфа
имеет свойство строгого порядка.

Представленный в доказательстве теоремы 4.4.6 механизм
появления свойства строгого порядка при обогащении структу-
ры властного орграфа демонстрирует переход от ти́пового свой-
ства строгого порядка теории властного орграфа к формульному
свойству строгого порядка, порожденному указанной специфи-
кой обогащения.
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§ 4.5. Описание особенностей генерической
конструкции стабильных эренфойхтовых
теорий

В следующих четырех параграфах будет доказано усиление
основного результата третьей главы — теоремы 3.4.1, устанав-
ливающее реализуемость в классе стабильных теорий всех воз-
можных параметров, приведенных в характеризационной тео-
реме 1.1.13. Это усиление, в частности, представляет положи-
тельное решение проблемы Лахлана о существовании стабиль-
ной эренфойхтовой теории.

Напомним, что в третьей главе конструкция эренфойхтовых
теорий с тремя счетными моделями складывалась из следующих
составляющих:

— неглавного властного типа p∞(x), структура которого со-
стоит из элементов бесконечного цвета Col∞ и получается несу-
щественной упорядоченной раскраской Col всех элементов в цве-
та из множества ω ∪ {∞};

— двухместного отношения Q, определяющего властный ор-
граф с неограниченными длинами кратчайших Q-маршрутов на
структуре типа p∞(x) и на любой его окрестности и, как след-
ствие, определяющего на этих структурах частичные порядки
посредством транзитивного замыкания TC(Q);

— счетного множества двухместных отношений Rq и R′
q,

R′
q = R−1

q , обеспечивающих взаимореализующее амальгамирова-
ние (совпадение простых моделей над реализациями типа p∞(x),
связанных отношением Rq) и определяющих отношение эквива-
лентности, классы которого являются компонентами связности
по отношению R∗ ­

⋃
q

Rq ∪ R′
q; при этом компоненты связно-

сти по отношению R∗ частично упорядочены отношением TC(Q)
(две компоненты C1 и C2 связаны отношением частичного поряд-
ка TC(Q), если этим отношением связаны некоторые их пред-
ставители), а элементы каждой компоненты связности попарно
несравнимы по отношению TC(Q) \ idX ;

— многоместных предикатов RA, обеспечивающих взаиморе-
ализуемость типа p∞(x) со всеми неглавными типами.

Нетрудно заметить, что указанные атрибуты, возможно с ло-
кальным свойством попарного пересечения по отношению Q или
с вырожденными отношениями R∗ и RA, присутствуют в любой
полной теории с тремя счетными моделями.
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Стратегия построения искомых стабильных теорий будет не-
сколько отличаться от стратегии построения эренфойхтовых тео-
рий из третьей главы в силу следующих обстоятельств.

Как показано в предыдущем параграфе, использование 1-
несущественной раскраски с последующим обогащением струк-
туры властного орграфа согласованными предикатами RA, ре-
ализующими все неглавные типы, выводит структуру из класса
стабильных структур. Поэтому перед построением RA-обогаще-
ний мы обогатим структуру властного орграфа с почти несуще-
ственной упорядоченной раскраской попарно непересекающими-
ся симметричными двухместными отношениями Pi,n, i, n ∈ ω,
каждое из которых не пересекается с отношением TC(Q) и свя-
зывает лишь элементы цвета своего второго индекса с элемен-
тами бо́льших цветов так, чтобы выполнялось следующее свой-
ство (P, Q)-пересечения: для любых элементов a1, . . . , ak беско-
нечного цвета, для любых элементов b1, . . . , bl конечных цветов
m1, . . . ,ml соответственно и любого цвета σ > max{m1, . . . , ml}
существует элемент c цвета σ, для которого справедливо

|=
k∧

j=1

Qij (c, aj) ∧
l∧

j=1

Prj ,mj (c, bj)

с некоторыми i1, . . . , ik, r1, . . . , rl ∈ ω \ {0}.
Предикаты Pi,n, строящиеся в стабильной генерической струк-

туре на основе линейной предранговой функции, позволят, не
меняя графовой структуры и сохраняя стабильность теории, ре-
ализовывать в простой модели Mp∞ над реализацией типа p∞
все неглавные типы посредством RA-обогащений, для которых

∃y \ yj RA(x, y) ≡ Qn(x, yj) ∧
∧

m<n

¬Qm(x, yj)

или
∃y \ yj RA(x, y) ≡ Pi,n(x, yj).

Контроль баланса между числом элементов и числом связей,
осуществляемый посредством предранговой функции и обеспе-
чивающий стабильность теории, будет достигаться слиянием ге-
нерической модели властного орграфа и генерической модели
сигнатуры {P (2)

i,n | n ∈ ω}.

198



Различная природа замыканий конечных множеств в R∗-
структурах и Q-структурах (маршрутные замыкания для лесов и
самодостаточные замыкания относительно предранговых функ-
ций для структур генерических властных орграфов) затрудняет
проверку выполнения свойства конечных замыканий в слияниях
этих структур.

Для достижения единой природы замыканий конечных мно-
жеств в слияниях R∗-структур и Q-структур (самодостаточных
замыканий относительно предранговых функций, сводящихся к
общей предранговой функции) мы определим компоненты связ-
ности по отношению R∗, являющиеся вариантами конструкции
Хрушовского стабильной несуперстабильной счетно категорич-
ной структуры (см. [113]). В эти компоненты связности вводятся
симметричные двухместные отношения Rj , играющие роль от-
ношений Rq. Возможность одновременного контроля числа Rj-
связей, числа Pi,n-связей и числа связей относительно Q-маршру-
тов посредством единой предранговой функции позволит ограни-
чить мощность самодостаточного замыкания любого конечного
множества единой функцией, зависящей лишь от мощности это-
го множества. Тем самым, будет гарантирована ти́повая опреде-
лимость самодостаточных замыканий для слияния R∗-структур,
Pi,n-структур и Q-структур и выполнится свойство конечных за-
мыканий, обусловленное ступенчатой специальной системой за-
мыканий. Наличие свойства конечных замыканий в свою очередь
позволит установить насыщенность генерических моделей и ста-
бильность искомых теорий.

§ 4.6. Стабильные графовые расширения цветных
властных орграфов

Обозначим через Γ стабильный генерический властный ор-
граф Γcpg = 〈X, Q〉 с почти несущественной Q-упорядоченной
раскраской Col, описанный в параграфе 4.3.

Рассмотрим класс K̂f
0 , определенный в параграфе 4.3 для

построения цветного графа Γ, и обогатим структуры из клас-
са K̂f

0 симметричными двухместными предикатами Pi,n, i, n ∈ ω,
связывающими лишь вершины a цвета n с вершинами b, имею-
щими цвета, бо́льшие n, и такими, что не существует (a, b)-Q-
маршрутов.

Аналогично операторам Tc и T ∗c на классе cc-графов опре-
деляются операторы Tc и T ∗c на классе обогащенных структур.
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При этом, каждая пара вершин из отношений Pi,n в безразвилоч-
ных структурах интерпретируется одним ребром, связывающим
элементы из J0 ∪ J1.

Рассмотрим теперь монотонно убывающую последователь-
ность положительных вещественных чисел αk, определенных для
предранговой функции y1(·) из параграфа 4.3 в качестве весов
пар вершин, связанных кратчайшими Q-маршрутами длины k.
Отнесем элементы αQ

m ­ α2m к весам пар вершин, связанных
кратчайшими Q-маршрутами длины m, а элементы αP

m ­ α2m+1

к весам Pi,n-ребер, где m — значение c(i, n) канторовской ну-
мерующей функции (см., например, [14], с. 137). После указан-
ных переобозначений определим предранговую функцию y(·) для
структур A из класса K̂f

0 , обогащенных предикатами Pi,n:

y(A) = 2 · |Af |+ |Anf | −
∞∑

k=1

αQ
k · eQ

k (A)−
∞∑

k=0

αP
k · eP

k (A),

где eQ
1 (A) — число Q-дуг в A; eQ

k (A), k ≥ 2, — число пар
(a, a′) ∈ A2, связанных лишь внешними кратчайшими (a, a′)-Q-
маршрутами длины k и такими, что никакой (a, a′)-Q-маршрут
длины k не содержит A-внешних A-принудительных развилок;
eP
k (A) — число Pi,n-ребер в структуре A, где k = c(i, n).

p-Аппроксимацией предранговой функции y(·) называется
функция yp(·), которая каждой структуре A из K̂f

0 , обогащенной
предикатами Pi,n, ставит в соответствие вещественное число по
правилу

yp(A) = 2 · |Af |+ |Anf | −
p∑

k=1

αQ
k · eQ

k (A)−
p∑

k=0

αP
k · eP

k (A).

Обозначим через Kf,P
1 класс всех структур A из K̂f

0 , обога-
щенных предикатами Pi,n и удовлетворяющих условиям y1(A′) ≥
b1
n для любой структуры A′ v cfc(A), где n = |T (A′)|, v — от-
ношение “быть частью структуры”. Для структуры A из класса
Kf,P

1 будем писать A ∈ Kf,P
p+1, p > 0, тогда и только тогда, когда

A ∈ Kf,P
p и y∆

p (A′) ≥ bp
n для любой структуры A′ v cfc(A), где

y∆
p (A′) — минимальное из значений yp(Tc(A0)) + ∆1 + . . . + ∆m,

∆i = yp(Tc((Ai+1)T ∗c (Ai))) − yp(T ∗c (Ai)), A0 ⊆cc A1 ⊆cc . . . ⊆cc
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Am = A′, n — натуральное число, для которого y∆
p (A′) = n−s·α1

при некотором s ∈ ω, kp ≤ n < kp+1.

Положим Kf,P
0 ­

∞⋂
p=1

Kf,P
p . Обозначим через Kf,P класс всех

графов сигнатуры ΣP ­ {Coln | n ∈ ω} ∪ {Q} ∪ {Pi,n | i, n ∈ ω},
у которых каждая конечная подструктура (т. е. подграф вместе
с информацией о длинах кратчайших Q-маршрутов и о прину-
дительности развилок) принадлежит классу Kf,P

0 .
ПустьA— конечная подструктура графа (конечной подструк-

туры) M (графа), принадлежащего классу Kf,P . Будем гово-
рить, что A — самодостаточная подструктура графа (соответ-
ственно конечной структуры) M и писать A 6 M, если
для любых конечных структур A′ v A, B′ v M, A′ = A0 ⊆cc

A1 ⊆cc . . . ⊆cc Am = B′, из ∆1 + . . . + ∆m < 0, где ∆i =
y(Tc((Ai+1)T ∗c (Ai))) − y(T ∗c (Ai)), следует B′ ⊆ A. Если A 6 M
иM — конечная структура, то A называется сильной подструк-
турой структуры M.

Обозначим через Tf,P
0 класс типов, соответствующих всем

структурам из класса Kf,P
0 , и снабдим его отношением 6′, где

Φ(A) 6′ Ψ(B) ⇔ A 6 B.
Повторяя рассуждения для класса (Tf

0 ; 6′
cc), устанавлива-

ем, что класс (Tf,P
0 ; 6′) является самодостаточным генерическим

классом, у которого после добавления к типам необходимых фор-
мул, описывающих самодостаточные замыкания, выполня-
ется свойство однородного t-амальгамирования. Это влечет ω-
насыщенность (Tf,P

0 ; 6′)-генерической модели, реализующей все
типы Φ(X), соответствующие типам Φ(A) из Tf,P

0 , а также ста-
бильность (Tf,P

0 ; 6′)-генерической теории T f,P . Из условий
αk < 1

2 и lim
k→∞

αk = 0 вытекает выполнимость в теории T f,P свой-

ства (P,Q)-пересечения.
Из самодостаточности двухэлементных множеств {a, b}

с условием (a, b) ∈ ⋃
i,n∈ω

Pi,n следует, что тип tp(aˆb) определя-

ется цветами концов ребра [a, b], т. е. все формулы Pi,n(a, x), где
Col(a) > n, являются главными. То же самое свойство сохра-
няется и для формул Q(a, x), где Col(a) = ∞. Таким образом,
справедливы следующие две теоремы.
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Теорема 4.6.1. (Tf,P
0 ; 6′)-Генерическая модель M насыще-

на. При этом любое конечное множество A ⊆ M расширяется
до своего самодостаточного замыкания A ⊆ M , и тип tpX(A)
выводится из множества [Φ(A)]AX , где Φ(A) — тип из Tf,P

0 , для
которого M |= Φ(A).

Теорема 4.6.2. Теория T f,P стабильна, мала, обладает
свойством (P,Q)-пересечения и имеет счетное число 1-типов,
и каждый 1-тип определяется цветом любой своей реализации.
Каждая формула Pi,n(a, x), где Col(a) > n, а также каждая
формула Q(b, x), где Col(b) = ∞, является главной.

Лемма 4.6.3. Если A и B — самодостаточные множества
в модели N |= T f,P и A 6 B, то тип tp(B/A) изолирован тогда
и только тогда, когда B — полный

⋃
k,n∈ω

(Qk ∪ Pk,n)-граф над A,
т. е. любые два различных элемента a ∈ B и b ∈ B \A связаны
некоторой Qk-дугой или некоторым Pi,n-ребром.

Д о к а з а т е л ь с т в о. Пусть Y — множество переменных,

биективное с множеством B \A. Если B — полный
∞⋃

k=1

(Qk∪Pk,n)-

граф над A, то по теореме 4.6.1 тип tp((B \ A)/A) изолируется
главной формулой типа Φ(A, Y ), где Φ(B) — тип из Tf,P

0 , для ко-
торого N |= Φ(B). Эта формула существует в силу ти́повой опре-
делимости условия самодостаточности, условия связи элементов
Pi,n-ребрами, а также в силу конечности записи о существовании
кратчайших Q-маршрутов между элементами. Если же B не яв-

ляется полным
∞⋃

k=1

(Qk ∪Pk,n)-графом над A, то по теореме 4.6.1

тип tp((B \A)/A) изолируется типом Φ(A, Y ), но не изолируется
никакой конечной частью этого множества. ¤

Из леммы 4.6.3 вытекает
Следствие 4.6.4. Пусть A — самодостаточное множество

в модели N |= T f,P . Простая модель MA над множеством A
является полным

⋃
k,n∈ω

(Qk ∪ Pk,n)-графом над A. Множество

типов изоморфизма простых моделей над конечными множе-
ствами совпадает с множеством типов изоморфизма моделей
MA, где A — самодостаточные множества и MA — полные⋃
k,n∈ω

(Qk ∪ Pk,n)-графы над A.
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§ 4.7. Стабильные теории с неглавными властны-
ми типами

В этом параграфе будет описана модификация генерической
конструкции из параграфа 3.2, позволяющая строить стабиль-
ные теории с неглавными властными типами в виде обогащений
теории T f,P властного орграфа 〈X,Q〉 c упорядоченной раскрас-
кой Col и двухместными предикатами Pi,n, обеспечивающими
выполнимость свойства (P,Q)-пересечения.

Зафиксируем теорию T f,P 8 и определим обогащение этой
теории с той же самой упорядоченной раскраской так, чтобы
тип p∞(x) элементов бесконечного цвета стал властным типом.

Для превращения типа p∞ во властный тип с сохранением
единственности неглавного полного 1-типа над ∅ мы будем вво-
дить для каждого типа q(y2, . . . , yk), реализующегося элемента-
ми, образующими самодостаточное множество, и не содержаще-
гося ни в одном (p∞, y1)-главном типе r(y1, y2, . . . , yk), новый k-
местный предикат Rq так, чтобы множество {Rq(y1, . . . , yk)} ∪
p∞(y1) было совместно и выполнялось

{Rq(y1, . . . , yk)} ∪ p∞(y1) ` q(y2, . . . , yk).

С этой целью перенумеруем множество q всех ти-
пов q(y1, . . . , yk) кортежей aq с попарно различными координа-
тами, для которых множества элементов из aq самодостаточны,
а модели Maq не изоморфны простой модели или модели Mp∞ :
q = {qm(y1, . . . , ykm) | m ∈ ω}. При этом на основании теоремы
4.6.1 типы qm(y1, . . . , ykm) определяются типами изоморфизма
Am ­ Ψm(Ym) (где Ψm(Am) ∈ Tf,P

0 ) своих реализаций am. По-
этому в дальнейшем типы qm(y1, . . . , ykm) будут отождествляться
с типами изоморфизма Am.

Для каждого типа qm(y) ∈ q и соответствующего типа Am

зафиксируем изолирующее тип qm(y) множество ΦAm
(y) формул

ϕn(y), n ∈ ω, описывающих
а) конечные цвета элементов из am, а также отрицания цве-

тов, меньших n, для элементов из am, имеющих бесконечный
цвет;

б) существование и длины кратчайших Q-маршрутов, связы-
вающих элементы из am;

8Напомним, что теория T f,P однозначно определяется специальной по-
следовательностью иррациональных чисел αk, 0 < αk+1 ¿ αk < 1

2
, k ∈

ω \ {0}.
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в) отсутствие связывающих элементы из am Q-маршрутов
длины, меньшей n, если элементы Q-маршрутами не связаны;

г) Pi,m-ребра, связывающие элементы из am, а также отсут-
ствие связывающих элементы из am Pj,n′-ребер с условием
c(j, n′) < n, если элементы Pi,m-ребрами не связаны;

д) самодостаточность множества элементов из am.
Теперь рассмотрим тип изоморфизма A произвольно-

го кортежа a = (a1, . . . , ak) самодостаточного множества A =
{a1, . . . , ak} мощности k, не лежащего в модели Mp∞ , и обозна-
чим через maxA максимальный из конечных цветов элементов
множества A, если такие элементы есть, и положим maxA ­ 0,
если все элементы множества A имеют бесконечный цвет. Выбе-
рем для каждого элемента aj конечного цвета nj предикат Pij ,nj

такой, что
∑

j∈{j′|Col(aj′ )<ω}
αP

c(ij ,nj)
< 1− 2 · αQ

1 .9

Определим (k+1)-местные отношения RA, удовлетворяющие
следующим условиям:

1) `
(
∃y (RA(x, y) ∧ ϕm(y)) ↔ ∧

i≤maxA
¬Coli(x)

)
∧

∧
(
∃y (RA(x, y) ∧ ϕn(y)) ↔ ∧

i≤n
¬Coli(x)

)
, m ≤ maxA ≤ n;

2) для любого n > maxA формула RA(x, y1, . . . , yk)∧Coln(x)
эквивалентна конъюнкции формулы ϕn(y) ∧ ¬ϕn+1(y) и форму-
лы, описывающей следующие свойства:

а) если 〈ai1 , . . . , air〉 (где k1 < . . . < kr) — кортеж всех элемен-
тов ai из a, имеющих бесконечный цвет, 〈aj1 , . . . , ajs〉 (где j1 <
. . . < js) — кортеж всех элементов aj из a, имеющих конечные
цвета, то существуют элементы z0, . . . , zr−1 такие, что zr−1 = ykr ,
выполняется Q(zm−1, zm) ∧Q(zm−1, yim), m = 1, . . . , r − 1, x = z0

и выполняется Pijl
,njl

(x, yjl
), l = 1, . . . , s;

9Указанный выбор предикатов возможен в силу выполнимости свойства
(P, Q)-пересечения и условия lim

i→∞
αP

c(i,nj) = 0. Это делается с целью сохране-
ния самодостаточности при добавлении к множеству A некоторого элемента,
связанного c элементами aj конечных цветов отношениями Pij ,nj , а с эле-
ментами aj бесконечного цвета — Q-маршрутами.
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б) в структуре, состоящей из элементов x, y, z1, . . . , zr−1, нет
ребер с номерами c(·, ·) ≤ n и Q-дуг кроме ребер и Q-дуг, ука-
занных в пункте a и в описании A для элементов y, а также
нет внешних кратчайших Q-маршрутов длины, не превосходя-
щей n, кроме внешних кратчайших Q-маршрутов, связывающих
элементы y и описанных в A; при этом указанная структура об-
разует самодостаточное множество.10

Из определения вытекает, что предикаты RA утончают гра-
фовую структуру, не увеличивая множества двухместных отно-
шений посредством проекций ∃y1, . . . , yi−1, yi+1, . . . , yk RA(x, y).

Покажем, что при наличии указанного выше утончения гра-
фовой структуры посредством отношений RA, требуемое ста-
бильное обогащение можно осуществить новым построением ге-
нерической модели из конечных структур, обогащенных конеч-
ными записями о позитивных связях между элементами через
промежуточные элементы посредством проекций отношений RA.

Это построение начнем с описания классаK∗
1 конечных струк-

тур, снабженных конечными записями о взаимоотношении эле-
ментов, удовлетворяющими условиям 1 и 2. Поскольку искомая
генерическая модель обогащает (Tf,P

0 ; 6′)-генерическую модель,
будем считать, что каждая структура A, входящая в K∗

1 и огра-
ниченная на графовую сигнатуру {Q} ∪ {Pi,n | i, n ∈ ω} c рас-
краской Col, образует структуру с записью WA, и это ограниче-
ние принадлежит классу Kf,P

0 . Кроме того, введение отношений
RAm

требует добавления к записи WA позитивной информации о
взаимоотношении элементов по проекциям ∃yl1 , . . . , ylt RAm

(x, y)
в соответствии с пунктом 2.

Перед завершением определения структур класса K∗
1 отме-

тим следующее. Как показано в теореме 4.6.1, тип из Tf,P
0 каж-

дой самодостаточной структуры A определяет тип множества A
в генерической модели. В определении каждого отношения RA
принадлежность каждого набора a ˆ a этому отношению зада-
ется либо главной формулой, описывающей соотношение между
элементами, лежащими в простой модели, либо последовательно-
стью формул (описанных в пункте 2), в которых локально опи-
сывается отсутствие связей между какими-то элементами из a
посредством ребер или Q-маршрутов при сохранении фиксиро-
ванных по длине связей между элементом a и элементами из a.

10Это означает, в частности, что типы множеств A имеют однозначные
расширения до типов, включающих элементы x, z1, . . . , zr−1, где x удовле-
творяет типу p∞.
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Последнее описание, как замечено выше для бинарных отно-
шений, напрямую зависит от соотношения между цветами ап-
проксимаций an (в простой модели) элемента a (эти аппрок-
симации называются источниками) и длинами кратчайших Q-
маршрутов и номерами P -ребер между соответствующими эле-
ментами аппроксимаций an (в простой модели) кортежа a (эти
аппроксимации называются последователями): если номер цве-
та источника an не превосходит (неограниченных при n → ∞)
длин кратчайших Q-маршрутов (номеров P -ребер) между эле-
ментами последователей an, то при наличии элементов z1, . . . , zk,
описанных в пункте 2, отношение RA выполняется, а если но-
мер цвета источника an больше какой-то из неограниченных при
n →∞ длин кратчайших Q-маршрутов (номеров P -ребер) меж-
ду элементами последователя an, то при тех же условиях отноше-
ние RA выполняться не будет. В дальнейшем соотношения “но-
мер цвета источника an — попарные, неограниченные при n →∞
длины кратчайших Q-маршрутов и номера P -ребер между эле-
ментами последователя an” будем для краткости называть соот-
ношениями CLN.

Поскольку в генерической теории любой тип из S(∅) рас-
ширяется до типа из S(∅) некоторого самодостаточного мно-
жества, описываемого цветами элементов, длинами кратчайших
Q-маршрутов, номерами P -ребер и условием самодостаточности
множества, соотношения CLN можно охарактеризовать форму-
лами ρ(x, yi, yj), определяющими длины кратчайших (x, yi)-
и (x, yj)-Q-маршрутов и номера P -ребер между x и yi, yj , а также
соотношения между цветами элементов an и длинами кратчай-
ших Q-маршрутов (номеров P -ребер), связывающих элементы
an

i и an
j .

Таким образом, формулы ρ(x, yi, yj) являются трехмест-
ными индикаторами позитивных или негативных вхожде-
ний формул ∃yl1 , . . . , ylt RAm

(x, y) в типы теории рассматри-
ваемой генерической модели. Эти индикаторы мы присоединим
как к описаниям типов Am при определении самих отношений
RAm

(формулы ρ(yi, yj , yk) или их отрицания конъюнктивно до-
бавляются к формулам ϕn(y)), так и к общим описаниям типов
кортежей. При этом за счет добавления формул ρ расширяется и
сама сигнатура, обусловленная типами Am с добавлениями фор-
мул ρδ(yi, yj , yk), δ ∈ {0, 1}. Эта расширенная сигнатура остается
счетной в силу конечного числа вариантов добавления формул
ρ к каждому типу.
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Окончательно определяем, что класс K∗
1 состоит из всех ко-

нечных систем сигнатуры

Σ1 ­ {Coln | n ∈ ω} ∪ {Q(2)} ∪ {P (2)
i,n | i, n ∈ ω} ∪ {RAm

| m ∈ ω}∪

∪{ρ(3) | ρ(x, yi, yj) характеризует некоторое CLN-соотношение},
которые получаются из структур, принадлежащих классу Kf,P

0 ,
добавлением отношений ρ, а также согласованных с пунктом 2
отношений RAm

(с расширенными c помощью формул RAm
и ρ

типами Am) и всевозможных допустимых формул ρ(ai, aj , ak).
Конечные структуры A со своими записями WA, образующие

класс K∗
1, называются c1-структурами. Обозначим через K1

класс всех моделей сигнатуры Σ1, у которых каждое конечное
подмножество образует c1-структуру из класса K∗

1.
Понятие c1-вложения f : A →c1 B для c1-структур A и B,

при котором сохраняется соответствующая запись WA (Wf(A) =
WB ¹ f(A)), естественным образом обобщает понятие cc-вложения.
Тем самым определяется и понятие c1-вложения f : A →c1 N c1-
структуры A в модель N из класса K1.

c1-Структуры A и B называются c1-изоморфными, если су-
ществует c1-вложение f : A →c1 B с условием f(A) = B.

Отношение самодостаточности 61 на классе K∗
1 наследует от-

ношение 6 на классе Kf,P
0 : для любых c1-структурA и B из клас-

са K∗
1 выполняется

(A 61 B) ⇔ (A ¹ ΣP 6 B ¹ ΣP ) .

Теорема 4.7.1. Существует насыщенная (K∗
1;61)-генери-

ческая модель M стабильной теории, удовлетворяющая следу-
ющим условиям:

а) если A и B — c1-изоморфные самодостаточные c1-
структуры в модели M, то tpM(A) = tpM(B);

б) обеднение модели M до сигнатуры ΣP является Kf,P
0 -

генерической моделью;
в) теория Th(M) имеет счетное число 1-типов, и каждый

1-тип определяется цветом любой своей реализации; тип p∞(x)
элементов бесконечного цвета является единственным неглав-
ным 1-типом, и его собственный вес бесконечен;
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г) каждая формула RA(a, y), где |= p∞(a), является главной,
и тип c1-изоморфизма каждой реализации формулы RA(a, y)
совпадает с типом c1-изоморфизма A;

д) каждая формула RA(x, a), где A — тип c1-изоморфизма
кортежа a, является главной, и каждая реализация формулы
RA(x, a) является реализацией типа p∞.

Д о к а з а т е л ь с т в о существования насыщенной (K∗
1;61)-

генерической модели M из класса K1, удовлетворяющей усло-
виям “а” и “б”, почти слово в слово повторяет доказательство
теоремы 4.6.1. При этом наличие новых предикатов RAm

и ρ
не отражается при подсчете значений предранговой функции,
поскольку эти предикаты утончают соответствующие графовые
структуры из класса Kf,P

0 .
Аналогично теореме 4.6.2 доказывается стабильность генери-

ческой теории Th(M), а также устанавливается пункт “в”.
Доказательство пунктов “г” и “д” проводится повторением до-

казательства соответствующих пунктов теоремы 3.2.3. ¤
Обозначим через T1 теорию Th(M) (K∗

1; 61)-генерической мо-
дели M.

Поскольку в теории T1 каждый тип над пустым множеством
является подтипом типа, определяемого записью некоторой са-
модостаточной c1-структуры, а для каждого типа q c1-структуры,
не лежащей в простой модели, найдется главная фор-
мула ∃yl1 , . . . , ylt RA(a, y) (где |= p∞(a)), для которой
∃yl1 , . . . , ylt RA(x, y)(a, y) ` q, то в модели Mp∞ реализуются все
типы теории T1. Таким образом, тип p∞(x) является властным
типом.

Из пункта “д” теоремы 4.7.1 вытекает, что для каждого неглав-
ного типа q(y) теории T1 в моделиMq реализуется тип p∞ и, сле-
довательно, каждый неглавный тип является властным. Более
того, введение предикатов RA позволяет для любого кортежа a,
имеющего некоторый тип c1-изоморфизма Am, найти реализа-
цию a типа p∞(x) такую, что |= RAm

(a, a), и, следовательно,
в силу предложения 1.1.3 модель Ma совпадает с моделью Ma.
Таким образом, все простые модели над кортежами, реализую-
щими неглавные типы, изоморфны модели Mp∞ и справедлива
следующая теорема.

Теорема 4.7.2. Существует малая стабильная теория T1,
обогащающая теорию T f,P и удовлетворяющая условию
|RK(T1)| = 2.
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§ 4.8. Стабильные теории с тремя счетными моде-
лями

Общие принципы обогащения теории T1, приводящие к по-
строению малой стабильной теории T с |RK(T )| = 2 и свойством
(CEP) совпадают с теми же принципами, которые описаны в па-
раграфе 3.3, но имеют оговорки, отраженные в параграфе 4.5.
При построении искомой стабильной теории T мы будем исполь-
зовать амальгамы взаимореализуемости, которые в отличие от
конструкции третьей главы будут получаться автоматически в
силу самодостаточности двухэлементных графов, содержащих
новые ребра, а также в силу неограниченно малых весов новых
ребер. При этом теория T будет варьироваться в зависимости
от перемежающихся весов αQ

k длин кратчайших Q-маршрутов,
весов αP

k Pi,n-ребер и весов αR
k Rj-ребер.

Обозначим через Kf,P,R
−1 класс всех конечных структур A

(включая пустую структуру) сигнатуры

ΣP,R ­ {Col(1)
n | n ∈ ω}∪{Q(2)}∪{P (2)

i,n | i, n ∈ ω}∪{R(2)
j | j ∈ ω},

удовлетворяющих следующим условиям:
а) структура A ¹ ΣP принадлежит классу Kf,P

0 ;
б) отношения Rj симметричны, иррефлексивны, попар-

но не пересекаются и связывают лишь одноцветные вершины;
при этом

⋃
j∈ω

Rj-компоненты связности строго Q-упорядочены,

т. е. элементы одной и той же
⋃

j∈ω
Rj-компоненты связности не

связаны Q-маршрутами, а если вершины a1 и a2 связаны
⋃

j∈ω
Rj-

маршрутом, вершины b1 и b2 связаны
⋃

j∈ω
Rj-маршрутом и суще-

ствует (a1, b1)-Q-маршрут, то не существует (b2, a2)-Q-маршрута.
Рассмотрим теперь монотонно убывающую последователь-

ность положительных вещественных чисел αk, определенных для
предранговой функции y1(·) из параграфа 4.3 в качестве весов
пар вершин, связанных кратчайшими Q-маршрутами длины k.
Отнесем элементы αQ

m ­ α3m к весам пар вершин, связанных
кратчайшими Q-маршрутами длины m, элементы αP

m ­ α3m+1 —
к весам Pi,n-ребер, где m = c(i, n), а элементы αR

m ­ α3m+2 —
к весам Rm-ребер. После указанных переобозначений определим
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предранговую функцию y(·) для структур A из класса Kf,P,R
−1 сле-

дующим равенством:

y(A) = 2·|Af |+|Anf |−
∞∑

k=1

αQ
k ·eQ

k (A)−
∞∑

k=0

αP
k ·eP

k (A)−
∞∑

k=0

αR
k ·eR

k (A),

где eQ
1 (A) — число Q-дуг в A; eQ

k (A), k ≥ 2, — число пар
(a, a′) ∈ A2, связанных лишь внешними кратчайшими (a, a′)-Q-
маршрутами длины k и такими, что никакой (a, a′)-Q-маршрут
длины k не содержит A-внешних A-принудительных развилок;
eP
k (A) — число Pi,n-ребер в структуре A, где k = c(i, n); eR

k (A) —
число Rk-ребер в структуре A.

p-Аппроксимацией предранговой функции y(·) называется
функция yp(·), которая каждой структуре A ∈ Kf,P,R

−1 ставит в
соответствие вещественное число по правилу

yp(A) = 2·|Af |+|Anf |−
p∑

k=1

αQ
k ·eQ

k (A)−
∞∑

k=0

αP
k ·eP

k (A)−
p∑

k=0

αR
k ·eR

k (A).

Аналогично операторам Tc и T ∗c на классе cc-графов опреде-
ляются операторы Tc и T ∗c на классе Kf,P,R

−1 . При этом, каждая
пара вершин из отношений Pi,n и Rm в безразвилочных струк-
турах интерпретируется одним ребром, связывающим элементы
из J0 ∪ J1.

Обозначим через Kf,P,R
1 класс всех структурA из Kf,P,R

−1 , удо-
влетворяющих условиям y1(A′) ≥ b1

n для любой структуры A′ v
cfc(A), где n = |T (A′)|. Для структуры A из класса Kf,P,R

1 будем
писать A ∈ Kf,P,R

p+1 , p ≥ 1, тогда и только тогда, когда A ∈ Kf,P,R
p

и y∆
p (A′) ≥ bp

n для любой части A′ структуры cfc(A) ∈ Kf,P,R
1 , где

y∆
p (A′) — минимальное из значений yp(Tc(A0)) + ∆1 + . . . + ∆m,

∆i = yp(Tc((Ai+1)T ∗c (Ai))) − yp(T ∗c (Ai)), A0 ⊆cc A1 ⊆cc . . . ⊆cc

Am = A′, n — натуральное число, для которого y∆
p (A′) = n−s·α1

при некотором s ∈ ω, kp ≤ n < kp+1.

Положим Kf,P,R
0 ­

∞⋂
p=1

Kf,P,R
p . Обозначим через Kf,P,R класс

всех графов сигнатуры ΣP,R, у которых каждая конечная под-
структура (т. е. подграф вместе с информацией о длинах крат-
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чайших Q-маршрутов и о принудительности развилок) принад-
лежит классу Kf,P,R

0 .
ПустьA— конечная подструктура графа (конечной подструк-

туры) M (графа), принадлежащего классу Kf,P,R. Будем го-
ворить, что A — самодостаточная подструктура графа (со-
ответственно конечной структуры) M и писать A 6 M, если
для любых конечных структур A′ v A, B′ v M, A′ = A0 ⊆cc

A1 ⊆cc . . . ⊆cc Am = B′, из ∆1 + . . . + ∆m < 0, где ∆i =
y(Tc((Ai+1)T ∗c (Ai))) − y(T ∗c (Ai)), следует B′ ⊆ A. Если A 6 M
иM — конечная структура, то A называется сильной подструк-
турой структуры M.

Обозначим через Tf,P,R
0 класс типов, соответствующих всем

структурам из класса Kf,P,R
0 , и снабдим его отношением 6′, где

Φ(A) 6′ Ψ(B) ⇔ A 6 B).
Повторяя рассуждения для класса (Tf

0 ; 6′
cc), устанавлива-

ем, что класс (Tf,P,R
0 ; 6′) является самодостаточным генериче-

ским классом, у которого после добавления к типам необходи-
мых формул, описывающих самодостаточные замыкания, вы-
полняется свойство однородного t-амальгамирования. Это вле-
чет ω-насыщенность (Tf,P,R

0 ; 6′)-генерической модели, реализу-
ющей все типы Φ(X), соответствующие типам Φ(A) из Tf,P,R

0 ,
а также стабильность (Tf,P,R

0 ; 6′)-генерической теории T f,P,R.
Из самодостаточности двухэлементных множеств {a, b} с усло-
вием (a, b) ∈ ⋃

j∈ω
Rj следует, что тип tp(aˆb) определяется цветом

ребра [a, b] и цветом любого из его концов, т. е. все формулы
Rj(a, x) являются главными. Повторяя доказательство теоремы
4.3.18, получаем, что каждый тип из S1(∅) имеет бесконечный
собственный вес. Таким образом, справедлива следующая

Теорема 4.8.1. Теория T f,P,R стабильна, мала и имеет
счетное число 1-типов, каждый из которых определяется цве-
том любой своей реализации и имеет бесконечный собственный
вес. Тип p∞(x), определяемый бесконечным цветом, является
единственным неглавным 1-типом. Каждая формула Pi,n(a, x),
где Col(a) > n, Q(b, x), где Col(b) = ∞, Rj(c, x) является
главной.

Поскольку lim
k→∞

αR
k = 0, любое самодостаточное множество A

в генерической модели, содержащее две реализации a1 и a2 ти-
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па p∞(x), не связанные ни Q-маршрутами, ни ребрами, можно
превратить в самодостаточное множество B в этой же модели,
имеющее ту же структуру, что и множество A, c единственным
отличием — некоторым Rj-ребром, связывающим элементы b1

и b2, соответствующие элементам a1 и a2. Поскольку формулы
Rj(b1, x) и Rj(x, b2) являются главными, переход от структуры A
к структуре B можно проинтерпретировать как амальгаму вза-
имореализуемости моделей Ma1 и Ma2 над типом tp(A). Таким
образом, структура графовой сигнатуры {Rj | j ∈ ω} играет в
генерической модели ту же роль, что и ациклические структу-
ры в генерических моделях эренфойхтовых теорий, описанных в
третьей главе.

Аналогично следствию 4.6.4 доказывается
Предложение 4.8.2. Пусть A — самодостаточное множе-

ство в модели теории T f,P,R. Модель MA является полным⋃
k,n∈ω

(Qk ∪ Pk,n ∪ Rk)-графом над A, т. е. любые два различных

элемента a ∈ MA и b ∈ MA \ A, связаны некоторой Qk-дугой
или ребром. Множество типов изоморфизма простых моделей
над конечными множествами совпадает с множеством типов
изоморфизма моделей MA, где A — самодостаточные множе-
ства и MA — полные

⋃
k,n∈ω

(Qk ∪ Pk,n ∪Rk)-графы над A.

Определим класс K∗
2 конечных структур сигнатуры

Σ2 ­ ΣP,R ∪ {RAm
| m ∈ ω}∪

∪{ρ(3) | ρ(x, yi, yj) характеризует некоторое CLN-соотношение},
снабженных записями о взаимоотношении элементов, удовлетво-
ряющими условиям 1 и 2 из предыдущего параграфа, где вместо
структур из класса Kf,P

0 рассматриваются структуры из клас-
са Kf,P,R

0 . Отношение самодостаточности 62 для класса K∗
2 есте-

ственным образом наследует отношение самодостаточности 6
для класса Kf,P,R

0 .
Обозначим через K2 класс всех моделей сигнатуры Σ2,

у которых каждое конечное подмножество образует структуру
из класса K∗

2.
Понятие c2-вложения f : A →c2 B для структур A и B

из класса K∗
2, при котором сохраняется соответствующая за-

пись WA (Wf(A) = WB ¹ f(A)), естественным образом обобщает
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ранее введенные понятия c-вложений. Тем самым определяется
и понятие c2-вложения f : A →c2 N c2-структуры A в модель N
из класса K2.

Структуры A и B называются c2-изоморфными, если суще-
ствует c2-вложение f : A →c2 B с условием f(A) = B.

Теорема 4.8.3. Существует насыщенная (K∗
2;62)-генери-

ческая модель M стабильной теории, удовлетворяющая следу-
ющим условиям:

а) если A и B — c2-изоморфные самодостаточные струк-
туры в модели M, то tpM(A) = tpM(B);

б) обеднение модели M до сигнатуры ΣP,R является Kf,P,R
0 -

генерической моделью;
в) теория Th(M) имеет счетное число 1-типов, каждый из

которых определяется цветом любой своей реализации и имеет
бесконечный собственный вес; тип p∞(x), определяемый беско-
нечным цветом, является единственным неглавным 1-типом;

г) каждая формула Pi,n(a, x), где Col(a) > n, Q(b, x), где
Col(b) = ∞, Rj(c, x) является главной;

д) каждая формула RA(a, y), где |= p∞(a), является глав-
ной, и тип c2-изоморфизма каждой реализации формулы
RA(a, y) совпадает с типом c2-изоморфизма A;

е) каждая формула RA(x, a), где A — тип c2-изоморфизма
кортежа a, является главной, и каждая реализация формулы
RA(x, a) является реализацией типа p∞.

Д о к а з а т е л ь с т в о состоит в очевидной комбинации
доказательств теорем 4.7.1 и 4.8.1. ¤

Обозначим (K∗
2; 62)-генерическую теорию через T2. Очевид-

но, что теория T2 обогащает теорию T f,P,R.
Повторяя доказательство теоремы 4.7.2 с использованием тео-

ремы 4.8.3, устанавливаем следующую теорему.

Теорема 4.8.4. Теория T2 удовлетворяет условию
|RK(T2)| = 2.

Теорема 4.8.5. Существует единственная с точностью до
изоморфизма предельная модель теории T2 над типом p∞.

Д о к а з а т е л ь с т в о. Существование предельной моде-
ли вытекает из предложения 1.1.8 и следствия 1.1.9 в силу несим-
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метричности отношения полуизолированности SIp∞ по формуле
Q(x, y). Для доказательства единственности предельной модели
достаточно показать, что любая предельная модель M над ти-
пом p∞ насыщена.

Пусть предельная модель M представляется в виде объеди-
нения элементарной цепи моделей Man , |= p∞(an), n ∈ ω. За-
метим, что в силу генерической конструкции эту цепь можно
выбрать так, что каждая главная формула ϕn(an+1, x), для ко-
торой |= ϕn(an+1, an), n ∈ ω, эквивалентна некоторой формуле
Rj(an+1, x) или некоторой формуле Qk(an+1, x)∧¬Qk−1(an+1, x),
k ≥ 1. Если |= Rj(an+1, an), то в моделях Man и Man+1 компо-
ненты связности по отношению

⋃
i∈ω

Rj , содержащие элементы an

и an+1 соответственно, образуют полный граф и при отсутствии
переходов от an к последующим элементам по отношениям Qk

модель M будет простой над некоторым элементом из
⋃
i∈ω

Rj-

компоненты связности, содержащей элемент an, т. е.M не может
быть предельной. Таким образом, в последовательности (an)n∈ω

имеется бесконечное число переходов от an к an+1, удовлетворя-
ющих условиям |= Qkn(an+1, an) ∧ ¬Qkn−1(an+1, an). Теперь за-
метим, что для элементов an и an+1, удовлетворяющих условию
|= Qkn(an+1, an) ∧ ¬Qkn−1(an+1, an),

⋃
j∈ω

Rj-компоненты связно-

сти в моделяхMan иMan+1 , содержащие соответственно элемен-
ты an и an+1, образуют полный граф по отношению

⋃
k∈ω

(Qk∪Rk).

Следовательно, из последовательности (an)n∈ω можно извлечь
бесконечную подпоследовательность, в которой все элементы по-
парно связаны Q-маршрутами. Уплотняя эту подпоследователь-
ность элементами кратчайших Q-маршрутов, соединяющих со-
седние элементы подпоследовательности, получаем элементар-
ную цепь простых моделей (Mbn)n∈ω, для которых M =

⋃
nω
Mbn

и |= Q(bn+1, bn), n ∈ ω.
Рассмотрим теперь произвольный 1-тип q(x, c) ∈ S(c), где

c — кортеж из M . Покажем, что q(x, c) реализуется в моделиM.
Действительно, кортеж c принадлежит некоторой модели Mbn ,
и в силу определения отношений RA для некоторого типа c2-
изоморфизма A, содержащего реализации типа q(x, y), и для
некоторого n′ ≥ n найдется элемент d ∈ Mbn′ такой, что некото-
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рая проекция ∃zi1 , . . . , zim RA(d, z) реализуется кортежем c. По-
скольку RA(d, z) — главная формула, то существует реализую-
щий ее кортеж d ∈ M , расширяющий кортеж c, и по выбору
типа c2-изоморфизма A некоторая координата кортежа d реали-
зует тип q(x, c). Поскольку тип q выбран произвольно, модельM
является насыщенной. ¤

На основании следствия 1.1.15 и теорем 4.8.4, 4.8.5 справед-
лива следующая

Теорема 4.8.6. Существует стабильная эренфойхтова
теория T , у которой I(T, ω) = 3.

§ 4.9. Реализации основных характеристик стабиль-
ных эренфойхтовых теорий

Покажем, что аналогично теореме 3.4.1 все возможные набо-
ры основных характеристик эренфойхтовых теорий можно реа-
лизовать в классе стабильных теорий.

Теорема 4.9.1. Для любого конечного предупорядоченного
множества 〈X,≤〉 с наименьшим элементом x0 и наибольшим
классом x̃1 в упорядоченном фактор-множестве 〈X,≤〉/∼ по
отношению ∼ (где x ∼ y ⇔ x ≤ y и y ≤ x), а также для любой
функции f : X/∼→ ω, удовлетворяющей условиям f(x̃0) = 0,
f(x̃1) > 0 при |X| > 1, f(ỹ) > 0 при |ỹ| > 1, существует
стабильная теория T и изоморфизм g : 〈X,≤〉 →̃RK(T )
такой, что IL(g(ỹ)) = f(ỹ) для любого ỹ ∈ X/∼.

Д о к а з а т е л ь с т в о. Пусть 〈X,≤〉 — конечное предупо-
рядоченное множество с наименьшим элементом x0 и наиболь-
шим классом x̃1 в упорядоченном фактор-множестве 〈X,≤〉/∼,
f : X/∼→ ω — функция, удовлетворяющая следующим усло-
виям: f(x̃0) = 0, f(x̃1) > 0 при |X| > 1, f(ỹ) > 0 при |ỹ| > 1.
Без ограничения общности будем считать, что |X| > 1. Зафик-
сируем нумерацию ν : |X| → X такую, что из ν(m) < ν(n) и
ν(m) 6∼ ν(n) следует m < n, а любому ∼-классу соответствует
интервал в |X|. Рассмотрим теорию T−1 одноместных предика-
тов S1, . . . , S|X|−1, образующих разбиение на |X|−1 бесконечных
классов, с несущественной раскраской Col : M → ω ∪{∞} такой,
что ` ∃≥ω (Si(x) ∧ Coln(x)), i = 1, . . . , |X| − 1, n ∈ ω.
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Очевидно, что проведенным ранее построением теорию T−1

можно обогатить симметричными двухместными предикатами
Pi,n,i′ , i, n ∈ ω (где третий индекс i′ означает, что элементы
цвета, большего n, связываются с элементами цвета n, принад-
лежащими отношению Si′), до малой стабильной генерической
теории T0 с весами ребер αP

c(c(i,n),i′), у которой любое конечное
множество элементов, имеющих конечные цвета, связано двух-
местными предикатами с некоторыми элементами бесконечно-
го цвета, принадлежащими отношениям S1, . . . , S|X|−1. Тем са-
мым, добавление предикатов RA со структурами властных ор-
графов позволит свести построение искомого предпорядка под-
чинения ≤RK к установлению этого предпорядка для 1-типов
элементов бесконечного цвета, определяемых формула-
ми S1(x), . . . , S|X|−1(x).

Покажем, что существует стабильное обогащение T теории T0

c изоморфизмом g : 〈X,≤〉 →̃RK(T ), удовлетворяющим следую-
щим условиям:

i) g(ν(i)) = Mpi , где Mpi — тип изоморфизма простой мо-
дели Mpi над реализацией типа pi(x) из S1(∅), изолируемого
множеством формул {Si(x)∧¬Coln(x) | n ∈ ω}, i = 1, . . . , |X|−1,
а p1(x), . . . , p|X|−1(x) — все неглавные 1-типы над ∅ от перемен-
ной x;

ii) IL(g(ỹ)) = f(ỹ) для любого ỹ ∈ X/∼.
Построение теории T =

⋃
i<|X|

Ti проведем по индукции в со-

ответствии с нумерацией ν. Пусть уже построены теории T0, . . . ,
Tk−1, а элементы ν(k), ν(k + 1), . . . , ν(k + l) образуют ∼-класс.

Если f(ν̃(k)) = 0, то l = 0 и теорию Tk зададим обогащени-
ем сигнатуры теории Tk−1 новыми двухместными предикатными
символами Rki (где класс ν̃(k) покрывает класс ν̃(i), i 6= 0) с вы-
полнением следующих условий:

1) каждый предикат Rki разнозначно связан с некоторым ве-
сом αk′ , ограничивающим линейной предранговой функцией y(·)
(указанного в параграфе 4.8 вида) число Rki-связей в зависимо-
сти от мощности данного конечного множества;

2) Rki(a, y) — главная формула и Rki(a, y) ` pi(y) для любого
a |= pk;
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3) для любых a, b |= pi существует бесконечно много элемен-
тов c |= pk и бесконечно много элементов d, не реализующих
типы p1(x), . . . , p|X|−1, таких, что

|= Rki(c, a) ∧Rki(c, b) ∧Rki(d, a) ∧Rki(d, b);

при этом из c |= pk и |= Rki(c, a) следует, что a не полуизолиру-
ет c.

Очевидно, условия 1–3 можно реализовать так, что мо-
дель Mpk

теории Tk будет иметь единственную реализацию
типа pk и, значит, IL(g(ν̃(k))) = 0 = f(ν̃(k)). Кроме того в Mpk

по индукции будут реализовываться все типы pi, подчиняющиеся
типу pk, т. е. удовлетворяющие соотношению ν(i) ≤ ν(k). Нали-
чие предранговой функции на основе рассуждений, проведенных
в предыдущих параграфах, позволяет установить малость и ста-
бильность теории Tk.

Предположим, что f(ν̃(k)) = r > 0. Зададим теорию T 0
k обо-

гащением сигнатуры теории Tk−1 новыми двухместными преди-
катными символами Rki (где класс ν̃(k) покрывает класс ν̃(i),
i 6= 0) с условиями 1–3, а также двухместными предикатными
символами R′

ij (где ν(i), ν(j) ∈ ν̃(k)), удовлетворяющими следу-
ющим условиям:

4) каждый предикат Rki, R′
ij разнозначно связан с некото-

рым весом αk′ , ограничивающим линейной предранговой функ-
цией y(·) (указанного в параграфе 4.8 вида) число Rki-связей и
число R′

ij-связей в зависимости от мощности данного конечного
множества;

5) R′
ij(a, y) — главная формула и R′

ij(a, y) ` pj(y) для любого
a |= pi;

6) для любых a, b |= pj существует бесконечно много элемен-
тов c |= pi и бесконечно много элементов d, не реализующих типы
p1(x), . . . , p|X|−1, таких, что

|= R′
ij(c, a) ∧R′

ij(c, b) ∧R′
ij(d, a) ∧R′

ij(d, b);

при этом из c |= pi и |= R′
ij(c, a) следует, что a не полуизолирует c;

7) для любых элементов a и b, не реализующих формулы
Sk+l+1(x), . . . , S|X|−1(x), существует бесконечно много элементов
c |= pj таких, что |= R′

ij(a, c) ∧R′
ij(b, c);
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8) отношение R′
k =

⋃
ν(i),ν(j)∈ν̃(k)

R′
ij образует орграф, изоморф-

ный некоторому орграфу Γcpg, и при этом длины кратчайших
Q-маршрутов разнозначно и монотонно связаны с весами αk′ .

Как и выше предикаты Rki обеспечивают подчинение ти-
пов pi типу pk при ν(i) < ν(k) и ν(i) 6∼ ν(k), а отношения R′

ij —
взаимоподчиняемость типов pi и pj , а также неизоморфность мо-
делей Mpi и Mpj при i 6= j. Наличие предранговой функции с
весами αk′ также позволяет установить малость и стабильность
теории, строящейся на рассматриваемом шаге.

Теперь аналогично условиям 1 и 2 из параграфа 4.7 с заменой
предиката Q на предикат R′

k расширим сигнатуру предикатами
RA так, чтобы типам pi, i = k, . . . , k + l, подчинялись все типы
q(x) ∈ S(Tk) с условиями Sj(xi) 6∈ q(x) для j > k+l, и указанным
типам q, не подчиняющимся типам pi, i < k, подчинялись все
типы pk, . . . , pk+l, а модели Mq были изоморфны модели Mpk

.
Для выполнения условия IL(g(ν̃(k))) = r зададим на струк-

туре реализаций типа pk графовую структуру с двухместными
отношениями R′′

1 , . . . , R
′′
r такими, что

9) каждый предикат R′′
i разнозначно связан с некоторым ве-

сом αk′ , ограничивающим линейной предранговой функцией y(·)
(указанного в параграфе 4.8 вида) число R′′

i -связей в зависимо-
сти от мощности данного конечного множества;

10) R′′
i (a, y) — главная формула и R′′

i (a, y) ` pk(y) для любого
a |= pk, i ≤ r;

11) для любых a, b |= pk существует бесконечно много эле-
ментов c |= pk и бесконечно много элементов d, не реализующих
типы p1(x), . . . , p|X|−1, таких, что

|= R′′
i (c, a) ∧R′′

i (c, b) ∧R′′
i (d, a) ∧R′′

i (d, b);

при этом из |= R′′
i (c, a) и c |= pj следует, что a не полуизолирует c;

12) отношения R′′
i образуют орграфы, изоморфные некото-

рым орграфам Γcpg, и при этом длины кратчайших маршрутов
разнозначно и монотонно связаны с весами αk.

Если Ma и Mb — простые модели над реализациями a и b
типа pk такими, что |= R′′

i (a, b) иMb ≺Ma, то модельMa назы-
вается R′′

i -расширением моделиMb. Элементарная цепь (Ms)s∈ω

над типом pk называется R′′
i -цепью, еслиMs+1 — R′′

i -расширение
модели Ms для любого s.
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Если Ma и Mb — простые модели над реализациями a и b
типа pi, ν(i) ∼ ν(k), такими, что |= R′

ii(a, b) и Mb ≺ Ma, то мо-
дель Ma называется R′

ii-расширением модели Mb.
Аналогично условиям “а”, “б” из параграфа 4.8 расширим сиг-

натуру символами Rj двухместных симметричных предикатов
так, чтобы выполнялись следующие условия:

13) каждый предикат Rj разнозначно связан с некоторым ве-
сом αk′ , ограничивающим линейной предранговой функцией y(·)
(указанного в параграфе 4.8 вида) число Rj-связей в зависимо-
сти от мощности данного конечного множества;

14) для любой предельной над типом pk+i, 0 ≤ i ≤ l, моде-
ли M найдется отношение R′′

j такое, что M является объедине-
нием R′′

j -цепи (Ms)s∈ω над типом pk;
15) предельные над типом pk модели M1 и M2 изоморфны

тогда и только тогда, когда найдется предикат R′′
i такой, чтоM1

иM2 являются объединениями R′′
i -цепей и не являются объеди-

нениями R′′
j -цепей для j > i.

Заметим, что свойства 14 и 15 реализуются с помощью пре-
дикатов Rj “говорящих” о том, что

а) любое R′
kk-расширение Ma модели Mb содержит R′′

1-рас-
ширение и наоборот;

б) для любого i, ν(i) ∼ ν(k), i 6= k, и любой конечной элемен-
тарной цепи Ma1 , . . . ,Mas , a1, . . . , as |= pi, существуют реализа-
ции b1, . . . , bs−1 типа pk такие, что последовательностьMa1 ,Mb1 ,
. . . ,Mbs−1 ,Mas также образует элементарную цепь;

в) если Mb0 и Mb1 — R′′
s -расширения модели Man , q — тип

кортежа 〈a0, a
′
0 . . . , an, a′n, a′′n, b0, b1〉 элементов, реализующих тип

pk и таких, что Mai+1 — R′′
ti-расширение модели Ma′i , равной

Mai , |= R′′
ti(ai+1, a

′
i), Mb0 , Mb1 — R′′

tn-расширения модели Man ,
равнойMa′n иMa′′n , |= R′′

tn(b0, a
′
n)∧R′′

ti(b1, a
′′
n), и элементы b0 и b1

не связаны ни (b0, b1)-Q-маршрутами, ни (b1, b0)-Q-маршрутами,
то модель Mb0 содержит амальгаму взаимореализуемости
Mb0 ∗q Mb1 ;

г) если Ma1 , . . . ,Mas — конечная элементарная цепь такая,
что модель Maj+1 является R′′

ij
-расширением модели Maj , j =

1, . . . , s− 1, и max{i1, . . . , is−2} < is−1, то Mas содержит некото-
рую цепь R′′

is−1
-расширений модели Ma1 и наоборот.

В результате указанных обогащений образуется малая ста-
бильная теория Tk = Tk+1 = . . . = Tk+l такая, что ти-
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пы pk, . . . , pk+l взаимоподчиняются друг другу, моделиMpk
, . . . ,

Mpk+l
попарно неизоморфны, а число предельных моделей над

типами pk, . . . , pk+l равно f(ν̃(k)).
Продолжая процесс, на шаге |X| − 1 получаем малую ста-

бильную теорию T = T|X|−1 и изоморфизм g : 〈X,≤〉 →̃ RK(T )
такой, что g(ν(0)) — тип изоморфизма простой модели теории T ,
g(ν(m)) — тип изоморфизма модели Mpm , 1 ≤ m ≤ |X| − 1,
и IL(g(ỹ)) = f(ỹ) для любого ỹ ∈ X/∼. ¤



Г л а в а 5

ГИПЕРГРАФЫ ПРОСТЫХ МОДЕЛЕЙ
И РАСПРЕДЕЛЕНИЯ СЧЕТНЫХ
МОДЕЛЕЙ МАЛЫХ ТЕОРИЙ

В заключительной главе мы рассмотрим семейство гипергра-
фов простых моделей произвольной малой теории и представим
механизм структурного описания моделей теории по этим семей-
ствам. Тем самым обосновывается, в частности, ключевая роль
теоретико-графовых конструкций в построении приведенных вы-
ше примеров эренфойхтовых теорий.

Построения будут проводиться преимущественно на основе
моделей Meq, которые, как показано, например, в работе П. Та-
новича [195], во многих случаях позволяют свести достаточно
общую структурную ситуацию к классам известных объектов.

Напомним определение моделиMeq [26]. ПустьM — некото-
рая модель. Добавим к сигнатуре Σ(M) модели M всевозмож-
ные одноместные предикатные символы PE , соответствующие
∅-определимым отношениям эквивалентности E(x, y), а также
всевозможные (l(x) + 1)-местные предикатные символы πE . По-
лученная сигнатура Σ(M)eq является сигнатурой модели Meq.
Носитель M eq модели Meq состоит из всевозможных E-классов.
При этом элементы модели M рассматриваются как =-классы
и образуют домашний сорт элементов, а интерпретации симво-
лов из Σ(M) совпадают с их интерпретациями в моделиM. Все
остальные элементы из M eq образуют воображаемые, или мни-
мые сорта. Каждый предикат PE состоит из всевозможных E-
классов, а каждый предикат πE является графиком функции,
отображающей кортежи элементов домашнего сорта в E-классы,
содержащие эти кортежи. Теория моделиMeq не зависит от вы-
бора модели данной теории и обозначается через T eq.
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§ 5.1. Гиперграфы простых моделей

Напомним, что гиперграфом называется любая пара мно-
жеств (X, Y ), где Y — некоторое подмножество булеана P(X)
множества X.

Пусть M — некоторая модель малой теории T . Обозначим
через H(M) совокупность всех подмножеств носителя M систе-
мы M, которые являются носителями простых над некоторыми
кортежами a ∈ M элементарных подмоделей Ma модели M:
H(M) = {Ma | Ma — простая над некоторым кортежом a ∈ M
элементарная подмодель модели M}. Пара (M, H(M)) называ-
ется гиперграфом всех простых подмоделей модели M.

Очевидно, что принадлежность кортежа b простой модели
Ma ∈ H(M) равносильна существованию элементарной подмо-
дели Mb ∈ H(M) модели Ma. Тем самым отношение включе-
ния на множестве H(M) задает отношение, состоящее из всех
пар кортежей (a, b) на множестве M , для которых типы tp(b/a)
являются главными.

П р и м е р 5.1.1. 1. Для бесконечной модели M пустой сиг-
натуры гиперграф (M, H(M)) включает все счетные подмноже-
ства множества M .

2. Для модели M плотного линейного порядка без концевых
элементов гиперграф (M, H(M)) состоит из всевозможных но-
сителей счетных плотных линейно упорядоченных подмножеств
без концевых элементов.

3. Модель M теории Эренфойхта с тремя счетными моделя-
ми, построенная на плотном линейно упорядоченном множестве
без концевых элементов с добавлением констант ck, k ∈ ω, таких,
что ck < ck+1, порождает гиперграф (M, H(M)), состоящий из
всевозможных носителей счетных плотных линейно упорядочен-
ных подмножеств без концевых элементов, каждый из которых
включает плотные линейные порядки на каждом из интервалов
(−∞; c0), (ck; ck+1), k ∈ ω.

4. Для модели M линейного пространства над некоторым
полем гиперграф (M, H(M)) строится из всевозможных конеч-
номерных или счетномерных подпространств. ¤

Поскольку операция (·)eq сохраняет малость теории и есте-
ственным образом расширяет простые модели над кортежами
до простых моделей над элементами, в дальнейшем для удоб-
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ства изложения вместо моделейM часто будут рассматриваться
модели Meq, а в гиперграфы простых моделей будут включать-
ся лишь носители простых моделей над элементами (а не корте-
жами) моделиMeq. Рассматриваемое множество носителей про-
стых моделей будет обозначаться через H(Meq).

Отметим, что приводимые ниже понятия и рассуждения так-
же имеют смысл для моделей, в которых каждая простая над
некоторым кортежом элементарная подмодель является простой
над некоторым своим элементом. К таким моделям, например,
относятся простые модели над ∅, а также модели теорий, у ко-
торых имеется неглавный 1-тип и все неглавные типы являются
властными.

Покажем, что гиперграфы (M eq,H(Meq)) счетных моде-
лей M позволяют определять счетную категоричность данной
теории T .

Действительно, простота моделиMeq над некоторым элемен-
том равносильна тому, что множество M eq принадлежит H(Meq).
Поскольку любая счетная модель счетно категоричной теории
проста, а любая не счетно категоричная малая теория имеет
счетную насыщенную модель, которая не является простой ни
над каким кортежом, справедливо следующее

Предложение 5.1.1. Теория T счетно категорична то-
гда и только тогда, когда для любой счетной модели M |= T
выполняется M eq ∈ H(Meq).

Если исходная теория не является счетно категорич-
ной, как показывают приведенные выше примеры, структуры
(M eq,H(Meq)) с классификационной точки зрения в общей си-
туации мало информативны, поскольку классы эквивалентности
по типам изоморфизма гиперграфов слишком широки относи-
тельно типов формульной взаимоопределимости данных струк-
тур и слабо учитывают специфику самих структур.

Вместе с тем в определенных ситуациях свойства ги-
перграфов (M eq,H(Meq)) могут оказаться полезными. Напри-
мер, наличие минимальных простых моделей отражается в ги-
перграфе в виде наличия минимальных множеств, а структуры
с несимметричным отношением полуизолированности влекут су-
ществование в гиперграфах бесконечных ⊆-цепей без концевых
элементов. В подобных ситуациях представляется перспектив-
ной проблема изучения взаимосвязи классов структур и классов
соответствующих гиперграфов.
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Отметим следующее полезное свойство гиперграфов
(M eq,H(Meq)) для счетных моделей M, которое вытекает из
представимости (см. доказательство предложения 1.1.7) любой
счетной модели малой теории в виде объединения элементарной
цепи простых моделей и, тем самым, выделяет все гиперграфы
счетных моделей малых теорий среди всех возможных гипергра-
фов на счетных носителях.

Предложение 5.1.2. Любое счетное множество M eq пред-
ставляется в виде счетного объединения ⊆-цепи множеств
из H(Meq).

§ 5.2. HPKB-Гиперграфы и теорема о структуре ти-
па

Для получения дополнительной классификационной инфор-
мации о моделях данной теории T свяжем с гиперграфом
(M eq,H(Meq)) ядерную функцию

kerM : H(Meq) → P(M eq),

действующую по следующему правилу:

kerM(Ma) ­ {b ∈ Ma | Mb = Ma}.
Множество kerM(Ma) называется ядром моделиMa (относитель-
но модели M).

Предложение 5.2.1. Ядро каждой элементарной подмоде-
ли Ma модели Meq состоит из всех элементов b ∈ Ma, связан-
ных с элементом a некоторыми формулами ϕb(x, y), для кото-
рых выполняется |= ϕb(a, b) и формулы ϕb(a, y), ϕb(x, b) явля-
ются главными.

Д о к а з а т е л ь с т в о. Если указанной формулы ϕb(x, y)
не существует, то tp(a/b) — неглавный тип и равенствоMb = Ma

невозможно. Если же формула ϕb(x, y) имеется, то рассмотрим
произвольный кортеж c элементов из Ma. По определению про-
стой модели существует главная формула ψ(a, y, z), для которой
выполняется |= ψ(a, b, c). Тогда формула ϕb(x, b)∧ψ(x, b, z) явля-
ется главной и изолирует тип tp(aˆc/b). Тем самым в моделиMa

реализуются лишь главные типы над b, и справедливо равенство
Ma = Mb. ¤
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Из предложения 5.2.1 вытекает, что для любой счетной про-
стой моделиM над ∅ выполняется kerM(M eq) = M eq. Тогда это
же равенство справедливо для любой счетной модели счетно ка-
тегоричной теории T и, более того, на основании предложения
5.1.1 справедливо

Следствие 5.2.2. Теория T счетно категорична тогда
и только тогда, когда для любой счетной модели M |= T яд-
ро каждой элементарной подмодели Ma модели Meq совпада-
ет с Ma.

Рассмотрим теперь для моделиMeq всевозможные формулы
ϕ(x, y), для которых ` ϕ(x, y) → ¬(x ≈ y) и найдутся элементы
a ∈ M eq такие, что формулы ϕ(a, y) являются главными. Опре-
делим для каждой такой формулы ϕ(x, y) двухместное отноше-
ние Rϕ ­ {(a, b) | Meq |= ϕ(a, b)}. При условии (a, b) ∈ Rϕ пару
(a, b) будем называть ϕ-дугой. Если ϕ(a, y) — главная формула,
то ϕ-дуга (a, b) называется главной. Если кроме того ϕ(x, b) яв-
ляется главной формулой, то множество [a, b] ­ {(a, b), (b, a)}
называется главным ϕ-ребром. ϕ-Дуги и ϕ-ребра называются со-
ответственно дугами и ребрами, если из контекста ясно о какой
формуле идет речь или речь идет о некоторой формуле ϕ(x, y).
Главные дуги (a, b), у которых пары (b, a) не являются главными
дугами, будем называть необращаемыми.

Модель
−→Meq с носителем M eq и всевозможными двухместны-

ми отношениями Rϕ называется главным графом модели Meq.
Предложение 5.2.3. Проекции всевозможных двухмест-

ных отношений Rϕ определяют множества реализаций всех 1-
типов теории T eq, реализуемых в модели Meq.

Д о к а з а т е л ь с т в о. Пусть p(x) — произвольный 1-тип
теории T eq, реализуемый в модели Meq. Из малости теории T
вытекает наличие некоторой главной формулы ϕ0(y) этой тео-
рии. Следовательно, найдется формула ψ(x, y) и реализация a
типа p(x) в модели Meq, для которых формула ψ(a, y) являет-
ся главной и выполняется ψ(a, y) ` ϕ0(y). При этом в качестве
ψ(x, y) годится любая формула χ(x, y) вида ψ(x, y) ∧ ϕ(x), где
ϕ(x) — произвольная формула типа p(x). Тогда любая реализа-
ция совокупности X всех указанных формул ∃y Rψ(x, y) являет-
ся реализацией типа p(x). ¤

Таким образом, помимо главной бинарной структуры мо-
дель

−→Meq содержит структуру всех 1-типов, реализуемых в мо-
дели Meq.
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Напомним [13], что неорграф без петель называется полным,
если любые две его различные вершины смежны.

Из предложения 5.2.1 вытекает, что ядро любой простой мо-
дели Ma со всевозможными главными ребрами образует пол-
ный неорграф, а любая вершина b ∈ Ma, не принадлежащая
kerM(Ma), является общим концом всевозможных главных дуг
(c, b), где c ∈ kerM(Ma), и никакая из пар (b, c) не является глав-
ной дугой. В частности, для любой счетной модели M счетно
категоричной теории ядро kerM(M eq) образует полный граф на
множестве M eq, и это свойство представляет еще одну характе-
ризацию счетной категоричности.

При рассмотрении гиперграфа (M eq,H(Meq)) с ядерной
функцией kerM ядра kerM(Ma) простых моделейMa над реали-
зациями a фиксированного 1-типа p(x) образуют максимальные
связные графы на множестве M eq. Эти графы соответствуют
компонентам связности C неорграфов с раскрашенными ребра-
ми, образованных всевозможными главными ребрами. Ограниче-
ния компонент C на множество реализаций типа p(x) образуют
графы с раскрашенными ребрами, которые при условии насы-
щенности исходной модели M будем называть ядерными неор-
графами над типом p. При этом, по определению, группы ав-
томорфизмов ядерных неорграфов транзитивны, а теории этих
неорграфов малы.

В силу теоремы компактности ядерный неорграф на мно-
жестве реализаций типа p(x) в модели Meq, соответствующей
насыщенной модели M, является единственным тогда и толь-
ко тогда, когда структура ядерного неорграфа, ограниченного
на p(Meq), имеет конечное число 2-типов и p(x) — главный тип.
В противном случае имеется бесконечное число таких ядерных
неорграфов. Поскольку группа автоморфизмов структуры типа,
получаемой из насыщенной модели, транзитивна, все ядерные
неорграфы над типом p(x) попарно изоморфны.

Среди известных ядерных неорграфов отметим следующие,
играющие существенную роль при построении эренфойхтовых
теорий:

а) полные α-элементные неорграфы, где ядерные неоргра-
фы получаются заменой каждого элемента в плотном линей-
ном порядке без концевых элементов со счетной цепью констант
на класс эквивалентности, содержащий α попарно несравнимых
элементов (см. параграф 1.4);
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б) ациклические неорграфы со счетным числом цветов ребер
и с бесконечным числом ребер каждого из цветов, инцидентных
любой вершине (см. параграф 3.3);

в) неорграфы Хрушовского — Хервига [113] (малые стабиль-
ные неорграфы с бесконечным весом и раскраской ребер счет-
ным числом цветов), использовавшиеся при решении проблемы
Лахлана (см. параграф 4.8);

г) модели кубических теорий [59].
Ядерные неорграфы, получаемые из примеров а, б и г, явля-

ются полными, а насыщенные неорграфы Хрушовского — Хер-
вига образуют ядерные неорграфы с бесконечным диаметром от-
носительно объединения всех входящих в них бинарных отноше-
ний.

Рассмотрим теперь связи между ядерными неорграфами, осу-
ществляемые с помощью необращаемых главных дуг. Эти связи
уместно прослеживать с помощью следующего объекта, включа-
ющего определенные выше составляющие.

Для данной моделиM гиперграфом простых моделей с ядер-
ной функцией и главной бинарной структурой, или HPKB-гипер-
графом будем называть четверку

H(M) ­
(
M eq,H(Meq), kerM, Σ

(−→Meq
))

,

где Σ
(−→Meq

)
— совокупность всех двухместных отношений глав-

ного графа
−→Meq.

Покажем, каким образом структуры HPKB-гиперграфов
H(M) в целом и входящие в них необращаемые главные дуги,
в частности, отражают структурные свойства данной теории T .

Прежде всего заметим, что из изоморфной вложимости мо-
дели M в модель N следует изоморфная вложимость HPKB-
гиперграфа H(M) в HPKB-гиперграф H(N ). Отсюда, в част-
ности, вытекает, что насыщенной (однородной, универсальной)
модели M соответствует HPKB-гиперграф H(M) специального
вида, который также можно рассматривать как насыщенный (од-
нородный, универсальный) HPKB-гиперграф среди всех HPKB-
гиперграфов моделей данной теории. Отношения полуизолиро-
ванности на множествах реализаций типов (и их свойства) так-
же преобразуются в отношения полуизолированности (и соответ-
ствующие свойства) на множествах реализаций 1-типов.
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Покажем, что при наличии необращаемых дуг, связывающих
реализации полного 1-типа p(x), отношение полуизолированно-
сти SIp несимметрично (как в исходной структуре, так и в соот-
ветствующем HPKB-гиперграфе).

Действительно, пусть (a, b) — ϕ(x, y)-главная дуга, а пара
(b, a) не является главной дугой, где a и b — реализации типа p.
Предполагая напротив, что SIp симметрично, рассматриваемую
формулу ϕ можно выбрать таким образом, что ϕ(x, b) ` p(x).
В силу малости теории некоторая пара (b, a′) является главной
дугой, где |= ϕ(a′, b). Рассмотрим формулу ψ(x, y), для которой
|= ψ(a′, b) и ψ(x, b) — главная формула. Переведем некоторым
автоморфизмом f элемент a′ в элемент a. Тогда элемент b пе-
рейдет в некоторый элемент b′ и выполнится |= ϕ(a, b′)∧ψ(a, b′).
Поскольку ϕ(a, y) — главная формула, найдется автоморфизм,
фиксирующий a и переводящий b′ в b. Следовательно, выпол-
няется |= ϕ(a, b) ∧ ψ(a, b) и пара (b, a) является главной дугой.
Полученное противоречие означает, что SIp несимметрично и
это свойство гарантируется каждой необращаемой главной ду-
гой (a, b) с концами на множестве реализаций типа p(x). Кроме
того, поскольку для любого главного типа отношение полуизоли-
рованности на множестве его реализаций симметрично, наличие
необращаемой главной дуги (a, b) влечет неизолированность ти-
па p(x).

Проведенное рассуждение показывает, что переходы с помо-
щью необращаемых главных дуг от элементов к элементам на
множестве реализаций типа p связывают различные ядерные
неорграфы над типом p. В силу транзитивности отношения по-
луизолированности эти переходы определяют отношение частич-
ного порядка ≤ на множестве ядерных неорграфов над типом p,
и каждый ядерный неорграф принадлежит бесконечной ≤-цепи.

Таким образом справедлива следующая p-декомпозиционная
теорема.

Теорема 5.2.4. 1. Структура множества реализаций лю-
бого полного 1-типа p(x) над ∅ в HPKB-гиперграфе H(M) со-
ставляется из попарно непересекающихся ядерных неорграфов
над типом p(x), а также из частичного порядка ≤ на множе-
стве этих ядерных неорграфов, который определяется необра-
тимыми главными дугами.

228



2. Ядерный неорграф на множестве реализаций типа p(x)
в модели Meq, соответствующей счетной насыщенной моде-
ли M, является единственным, если структура ядерного неор-
графа, ограниченного на p(Meq), имеет конечное число 2-типов
и p(x) — главный тип. Имеется бесконечное число таких ядер-
ных неорграфов в противном случае. Все ядерные неорграфы над
типом p(x) попарно изоморфны.

3. Совпадение частичного порядка ≤ с тождественным от-
ношением равносильно отсутствию необращаемых главных дуг,
связывающих реализации типа p(x), или, что то же самое,
симметричности отношения полуизолированности SIp. Если
≤ — нетождественный частичный порядок, то каждый ядер-
ный неорграф принадлежит бесконечной ≤-цепи.

Примеры указанных выше частичных порядков ≤ относи-
тельно необращаемых главных дуг извлекаются из следующих
известных примеров структур с несимметричным отношением
полуизолированности:

1) примеры Эренфойхта структур на плотных линейных по-
рядках со счетным множеством констант, упорядоченных по воз-
растанию;

2) примеры М. Г. Перетятькина структур на бесконечно вет-
вящихся деревьях со счетным множеством констант, упорядо-
ченных по возрастанию [42], [43];

3) структура свободной ориентированной псевдоплоскости с 1-
несущественной упорядоченной раскраской (см. пример 1.2.3);

4) нестабильные и стабильные генерические эренфойхтовы
структуры, представленные в третьей и четвертой главах.

§ 5.3. Графовые связи между типами

Рассмотрим теперь графовые связи между структурами раз-
ных типов.

В силу того, что всем n-типам, реализуемым в моделиM, со-
ответствуют 1-типы, реализуемые в моделиMeq именами реали-
заций n-типов, предпорядок Рудина — Кейслера ≤RK на множе-
стве типов, реализуемых в модели M, интерпретируется в виде
предпорядка Рудина — Кейслера ≤eq

RK на множестве 1-типов, ре-
ализуемых в модели Meq, который в свою очередь переносится
на структуру HPKB-гиперграфа H(M).
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Это, в частности, означает, что реализуемость в модели M
властного типа (или, что эквивалентно, наличие вM наибольше-
го ≤RK-класса для теории Th(M)) равносильна существованию
властного 1-типа и его реализуемости вH(M), т. е. наличию наи-
большего (≤eq

RK ∩ ≥eq
RK)-класса для совокупности 1-типов, реали-

зуемых в структуре
(
M eq, Σ

(−→Meq
))

, а также универсальности
HPKB-гиперграфа H(M).

Таким образом, справедлива следующая теорема, а также ее
непосредственное следствие.

Теорема 5.3.1. Для любого предпорядка Рудина — Кейсле-
ра ≤RK на множестве типов некоторой малой теории суще-
ствует универсальный HPKB-гиперграф H(M), в котором на
множестве всех реализаций 1-типов интерпретируется мно-
жество с предпорядком ≤eq

RK, изоморфное множеству с предпо-
рядком ≤RK.

Следствие 5.3.2. Предпорядок ≤RK теории T определяет
наибольший (≤eq

RK ∩ ≥eq
RK)-класс (непустое множество власт-

ных типов) тогда и только тогда, когда имеется наибольший
(≤eq

RK ∩ ≥eq
RK)-класс для совокупности 1-типов, реализуемых

в структуре
(
M eq,Σ

(−→Meq
))

, где M — универсальная модель
теории T .

Переходы между ядерными неорграфами 1-типов p и q
по предпорядку Рудина — Кейслера осуществляются с помощью
главных ребер (при этом типы p и q взаимоподчиняются друг
другу, и модели Mp и Mq изоморфны) или необратимых глав-
ных дуг. Если элементы a и b ядерных неорграфов Γp и Γq над
типами p и q соответственно связаны лишь необратимыми глав-
ными дугами (a, b), то модели Mp и Mq неизоморфны, а взаи-
моподчиняемость типов p и q равносильна существованию ядер-
ного неорграфа Γ′p над типом p, некоторый элемент c которого
принадлежит главной дуге (b, c).

Следовательно, на множестве главных компонент связно-
сти C, т. е. компонент связности, образованных главными реб-
рами, можно ввести частичный порядок ≤, который определяет-
ся необратимыми главными дугами. При этом как и для цепей
ядерных неорграфов ≤-цепи главных компонент связности в мо-
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делиMeq, соответствующей насыщенной моделиM, могут быть
лишь одноэлементными (для счетно категоричной теории) или
бесконечными.

Действительно, в силу теоремы компактности из наличия
двух главных компонент связности вытекает из бесконечное чис-
ло. С другой стороны, любое n-элементное множество A, состав-
ленное из элементов, принадлежащих n разным главным компо-
нентам связности, принадлежит простой моделиMA над A. Сле-
довательно, вMeq есть элемент c (имя для кортежа всех элемен-
тов из A), который является началом n необращаемых главных
дуг с концами из A. Таким образом, каждый элемент из Meq

является концом некоторой необращаемой главной дуги, и с по-
мощью этих дуг можно составить бесконечную ≤-цепь главных
компонент связности. Более того, в силу существования указан-
ных выше элементов c множество главных компонент связности
с частичным порядком ≤ является направленным вниз.

Таким образом аналогично теореме 5.2.4 справедлива сле-
дующая декомпозиционная теорема о структуре, связывающей
ядерные неорграфы над разными типами.

Теорема 5.3.3. 1. Структура множества реализаций лю-
бого полного 1-типа p(x) над ∅ в HPKB-гиперграфе H(M) со-
ставляется из попарно непересекающихся главных компонент
связности, а также из частичного порядка ≤ на множестве
главных компонент связности, который определяется необра-
тимыми главными дугами.

2. Главная компонента связности в модели Meq, соответ-
ствующей счетной насыщенной модели M, единственна, если
структураM счетно категорична. Имеется бесконечное число
главных компонент в противном случае. Все главные компонен-
ты, содержащие реализации одного и того же типа, попарно
изоморфны.

3. Совпадение частичного порядка ≤ с тождественным от-
ношением равносильно отсутствию необращаемых главных дуг
или, что то же самое, счетной категоричности данной тео-
рии. Если ≤ — нетождественный частичный порядок, то каж-
дая главная компонента связности принадлежит бесконечной
≤-цепи. Множество всех главных компонент связности направ-
лено вниз частичным порядком ≤.
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§ 5.4. Предельные модели

Модель M называется предельной, если M не является про-
стой моделью ни над каким кортежом и M =

⋃
n∈ω

Mn для неко-

торой элементарной цепи (Mn)n∈ω простых моделей над некото-
рыми кортежами.

На основе доказательства предложения 1.1.7 справедливо
Предложение 5.4.1. Любая счетная модельM малой тео-

рии T представляется в виде объединения некоторой элемен-
тарной цепи (Mai)i∈ω простых моделей над кортежами ai.

В силу предложения 5.4.1 справедлива следующая
Теорема 5.4.2. Каждая счетная модель малой теории, не

являющаяся простой ни над каким кортежом, предельна. Но-
сители всех счетных моделей малой теории представляются
в HPKB-гиперграфах H(M) в виде выделенных множеств или
в виде объединения счетных цепей последовательно строго вло-
женных выделенных множеств Mn, n ∈ ω. При этом во втором
случае элементы ядер kerM(Mn), n ∈ ω, связаны с элементами
ядер kerM(Mk), k < n, необращаемыми главными дугами.

Как замечено в предложениях 1.1.7 и 3.5.2, из конечности
предпорядка Рудина — Кейслера в системе RK(T ) следует, что
любая счетная модель M теории T , не являющаяся простой ни
над каким кортежом, предельна над некоторым типом p.

В общей ситуации предельные модели могут не составляться
из простых моделей Mn над реализациями одного и того же
типа, т. е. ядра моделейMn после переноса вMeq могут лежать
лишь в таких структурах реализаций типов pnk(x), k ∈ ω, что
pn1k1 6= pn2k2 при n1 6= n2.

Предельные модели M и N называются эквивалентными
(пишем M∼ N ), если существуют элементарные цепи (Mn)n∈ω

и (Nn)n∈ω простых над некоторыми кортежами моделей, удовле-
творяющие следующим условиям:

1) M =
⋃

n∈ω
Mn, N =

⋃
n∈ω

Nn;

2) существуют константные обогащения M′
n+1 =

〈Mn+1, c〉c∈M ′
n

и N ′
n+1 = 〈Nn+1, c〉c∈N ′

n
, n ∈ ω, M′

0 = M0, N ′
0 =

N0, такие, что M′
n+1 ' N ′

n+1, n ∈ ω.
Очевидным является следующее предложение.
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Предложение 5.4.3. Если M и N — предельные модели,
то M' N тогда и только тогда, когда M∼ N .

Рассмотрим теперь иерархии предельных моделей по степе-
ни их насыщенности, подобные иерархиям простых моделей по
предпорядкам Рудина — Кейслера и позволяющие оценивать чис-
ло попарно неизоморфных предельных моделей.

Обозначим через EEL(T ) множество LM типов изоморфиз-
ма предельных моделей теории T с отношением элементарной
вложимости ¹.

Очевидно, что любое непустое множество EEL(T ) предупоря-
дочено, а из малости теории T следует существование в EEL(T )
элемента (типа изоморфизма счетной насыщенной модели), в ко-
торый элементарно вкладываются все типы изоморфизма пре-
дельных моделей. Вместе с тем система EEL(T ) может не иметь
минимальных классов (¹ ∩ º)-эквивалентности. Кроме того,
вообще говоря, нельзя утверждать единственность такого “наи-
большего” элемента. Более того, например, в известных эрен-
фойхтовых теориях насыщенные модели элементарно вложимы
даже в простые модели над реализациями властных типов.

Таким образом, число Il(T ) попарно неизоморфных пре-
дельных моделей малой теории T ограничивается снизу числом
|EEL(T )/(¹ ∩ º)| классов (¹ ∩ º)-эквивалентности. В отдель-
ных случаях оценка

Il(T ) ≥ |EEL(T )/(¹ ∩ º)| (5.1)

неулучшаема, например, при I(T, ω) = 3, а в некоторых приме-
рах из третьей и четвертой глав неравенство (5.1) является стро-
гим. Остается открытой проблема характеризации малых теорий
с условием Il(T ) = |EEL(T )/(¹ ∩ º)|.

Приведенные рассуждения показывают, что иерархия насы-
щенности предельных моделей, строящаяся на основе множества
EEL(T ) с предпорядком элементарной вложимости достаточно
слабо связана с числом Il(T ).

Введем в рассмотрение утончение EEL(T )-иерархии, при ко-
тором связь между типами изоморфизмов моделей осуществля-
ется на основе согласования между последовательностями глав-
ных компонент связности, а простые модели над некоторыми
элементами этих компонент составляют заданные предельные
модели.
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Будем говорить, что предельная модельM согласованно эле-
ментарно вложима в предельную модель N , если существу-
ет элементарное вложение f модели M в модель N , переводя-
щее некоторые кортежи an ∈ M в соответствующие кортежи
f(an) ∈ N , n ∈ ω, такие, что M =

⋃
n∈ω

Man , N =
⋃

n∈ω
Nf(an).

Обозначим через CEEL(T ) множество LM типов изоморфизма
предельных моделей теории T с отношением согласованной эле-
ментарной вложимости ¹c.

Как и для EEL(T )-иерархии CEEL(T )-иерархия позволяет
оценивать снизу число Il(T ):

Il(T ) ≥ |CEEL(T )/(¹c ∩ c º)|. (5.2)

Следующий пример показывает, что в общем случае как и
для взаимной элементарной вложимости наличие взаимной со-
гласованной элементарной вложимости предельных моделей не
гарантирует их изоморфизма, т. е. неравенство (5.2) также мо-
жет являться строгим.

П р и м е р 5.4.1. Рассмотрим счетную модель M связного
бесконтурного ациклического графа 〈M ;Q〉, в котором каждый
элемент имеет бесконечное число образов и бесконечное число
прообразов (см. пример 1.2.3). Снабдим эту структуру 1-несущес-
твенной упорядоченной раскраской так, чтобы на множестве ре-
ализаций типа p∞(x) отношение полуизолированности было не-
симметричным: если |= p∞(a) и |= Q(a, b), то a полуизолирует b
посредством формулы Q(a, y), а b не полуизолирует a. Теперь
обогатим структуру предикатами R

(n+2)
n , n ∈ ω, удовлетворяю-

щими следующим условиям:
1) R0 = Q;
2) если n ∈ ω \ {0}, |= p∞(an) и |= Q(ai+1, ai), i = 0, . . . , n− 1,

то
Rn(an, . . . , a0, y) ` Rn−1(an−1, . . . , a0, y)

и Rn(x, an−1, . . . , a0, y) при изменении реализаций типа p∞(x)
в пределах Q(M, an−1) определяет на множестве Rn−1(an−1, . . . ,
a0,M) бесконечное число классов эквивалентности, каждый из
которых бесконечен.

Рассмотрим неглавный тип q(x), содержащий все формулы
Rn(an, . . . , a0, x), где (an)n∈ω — последовательность реализа-
ций типа p∞, |= Q(an+1, an), n ∈ ω. Существуют взаимно согла-
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сованно элементарно вложимые неизоморфные предельные мо-
дели, задаваемые последовательностью (an)n∈ω, в которых тип
q(x) имеет различное конечное число реализаций. ¤

Приведенная в примере причина неизоморфности взаимно
согласованно элементарно вложимых предельных моделей, ос-
нованная на возможности различного числа реализаций типов q
(и, как следствие, на неоднородности предельных моделей с вы-
деленными константами an), по-существу единственна, посколь-
ку отсутствие таких типов позволяет шаг за шагом расширять
конечные частичные изоморфизмы между взаимно согласован-
но элементарно вложимыми предельными моделями, доводя ча-
стичные изоморфизмы до изоморфизмов моделей. Возможность
таких расширений можно проследить на примерах предельных
моделей эренфойхтовых теорий из работ [42], [43], [199], а так-
же генерических эренфойхтовых теорий из третьей и четвертой
глав. При этом в генерических примерах изоморфизмы предель-
ных моделей строятся на основе существования в этих моделях
реализаций одних и тех же типов над конечными множествами,
обеспечиваемых специальными предикатами RA(x, y).

§ 5.5. λ-Модельные гиперграфы

В этом параграфе мы определим связь структуры HPKB-
гиперграфа H(M) счетной насыщенной модели M теории T
с числом I(T, ω) попарно неизоморфных счетных моделей тео-
рии T , а также укажем средства обогащения HPKB-гиперграфа,
приводящие к точному подсчету значения I(T, ω), равного числу
попарно неизоморфных структурных объектов, определяемых
обогащенным HPKB-гиперграфом.

Полные 1-типы q1(x) и q2(x) над ∅, реализуемые в HPKB-
гиперграфе H(M), назовем p-эквивалентными и будем писать
q1 ∼p q2, если некоторая главная компонента связности содержит
реализации типов q1(x) и q2(x).

Обозначим через Ip(T, ω) число попарно неизоморфных счет-
ных моделей теории T , каждая из которых является простой над
некоторым кортежом.

Предложение 5.5.1. Число Ip(T, ω) совпадает с числом
классов ∼p-эквивалентности теории T .
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Д о к а з а т е л ь с т в о. В силу насыщенности модели M
каждая простая над некоторым кортежом a модель представ-
ляется некоторым 1-типом, реализуемым именем ca кортежа a
в Meq. С другой стороны, представляемые ∼p-эквивалентными
типами простые модели изоморфны, поскольку при наличии марш-
рута, состоящего из главных ребер и соединяющего реализации
1-типов q1 и q2, простота модели над реализацией типа q1 рав-
носильна ее простоте над реализацией типа q2. Таким образом,
число Ip(T, ω) равно числу попарно ∼p-неэквивалентных полных
1-типов над ∅, реализуемых в H(M). ¤

Поскольку в силу теоремы 5.4.2 каждая предельная модель
теории T представляется в виде объединения счетной цепи струк-
тур последовательно строго вложенных выделенных множеств
HPKB-гиперграфаH(M), изоморфизм предельных моделей вле-
чет изоморфизм соответствующих предельных структур вH(M).
Следовательно, на основании предложения 5.4.1 число I(T, ω)
оценивается снизу суммой числа классов ∼p-эквивалентности и
числа Il(H(M)) попарно неизоморфных предельных структур
в H(M):

I(T, ω) ≥ Ip(T, ω) + Il(H(M)). (5.3)
Эта оценка на графовом уровне неулучшаема, так как графовые
структуры модели M переносятся в H(M).

Рассмотрим теперь возможности обогащений HPKB-гипер-
графа H(M), приводящие к достижению равенства в неравен-
стве (5.3) после заменыH(M) на обогащенный HPKB-гиперграф.

На основании предложения 5.4.3 наличие изоморфизма пре-
дельных моделей M и N свидетельствуется возможностью со-
гласованного расширения простых моделей, представленных в
HPKB-гиперграфах H(M) и H(N ). Эта согласованность дости-
гается введением в HPKB-гиперграфы соответствий между кор-
тежами элементов и их именами в Meq, а также некоторой си-
стемы формульно определимых двухместных отношений, через
которые формульно определяются все формульные отношения
исходной структуры. Тем самым для обогащенных HPKB-гипер-
графов будет иметь место равенство в неравенстве (5.3).

Покажем теперь, что сигнатурные средства, использованные
в третьей и четвертой главах для построения реализаций основ-
ных характеристик эренфойхтовых теорий, являются минималь-
ными при интерпретациях насыщенных моделей M в виде
HPKB-гиперграфов, задающих эти характеристики.
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Действительно, одноместные предикаты Coln(x), n ∈ ω, обес-
печивают наличие неглавных 1-типов, которые обязаны реали-
зовываться в модели Meq. Двухместный предикат Q(x, y) (та-
кой предикат в структуре может быть не один, а допускается
наличие счетного формульно независимого семейства Qn(x, y),
n ∈ ω) создает несимметричность отношения полуизолированно-
сти на множестве реализаций властного типа p∞(x), определяе-
мого множеством формул ¬Coln(x), n ∈ ω. Семейство двухмест-
ных предикатов {Rj | j ∈ ω} образует ядерные неорграфы на
множестве реализаций типа p∞(x), упорядоченные посредством
предиката Q в соответствии с теоремами 5.2.4 и 5.3.3, а предика-
ты RA(x, y) обеспечивают взаимореализуемость властного типа
p∞(x) с остальными властными типами.

Рассмотрим теперь произвольную теорию T , имеющую ров-
но три попарно неизоморфные счетные модели. Напомним, что
все неглавные типы теории T являются влаcтными и после пе-
рехода от насыщенной модели M к модели Meq зафиксируем
в качестве типа p∞(x) некоторый неглавный 1-тип, реализуемый
вMeq. Для определяющего тип p∞(x) множества формул ϕn(x),
n ∈ ω, где {ϕn(x) | n ∈ ω} ` p∞(x), в качестве формул Coln(x)
рассмотрим формулы ϕn(x) ∧ ¬ϕn+1(x), а в качестве Qn(x, y),
n ∈ ω — счетное семейство формул, каждая из которых свиде-
тельствует о несимметричности отношения полуизолированно-
сти SIp∞ и является главной после подстановки вместо первой
координаты любой реализации типа p∞. Более того, потребуем,
чтобы для любых двух реализаций a и b типа p∞(x) нашлась
реализация c этого же типа и формулы Qi(x, y), Qj(x, y), для
которых выполнялось |= Qi(c, a) ∧ Qj(c, b), и тем самым име-
ло место локальное свойство попарного пересечения. В качестве
предикатов Rj , j ∈ ω, рассмотрим всевозможные совместные
с p∞(x) ∪ p∞(y) двухместные формулы ψ(x, y), все реализации
которых на структуре типа p∞(x) являются главными ребрами
и образуют ядерные неорграфы. Наконец, в качестве предикатов
RA(x, y) рассмотрим для каждого реализуемого в Meq неглав-
ного 1-типа q(y) всевозможные совместные с p∞(x)∪q(y) форму-
лы χq(x, y), связывающие лишь главными ребрами реализации
типа p∞(x) с реализациями типа q(y). Добавив к гиперграфу
(M eq,H(Meq) указанные предикаты, а также структуру, обеспе-
чивающую единственность предельной модели, получаем трех-
модельный гиперграф.
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На основании следствия 1.1.15 справедлива следующая тео-
рема.

Теорема 5.5.2. Для любой малой теории T следующие усло-
вия эквивалентны:

(1) I(T, ω) = 3;
(2) теория T имеет трехмодельный гиперграф.
Как известно (см. теорему 1.1.13 и рис. 1.1, б), для теорий

с четырьмя счетными моделями возможны следующие три вза-
имоисключающие ситуации:

1) двухэлементный предпорядок Рудина — Кейслера и две
предельные модели над властными типами;

2) трехэлементный предпорядок Рудина — Кейслера с двумя
максимальными элементами и единственная предельная модель;

3) трехэлементная цепь, составляющая предпорядок Руди-
на — Кейслера, и единственная предельная модель.

Указанные ситуации также можно охарактеризовать на язы-
ке гиперграфов и представить в виде четырехмодельных гипер-
графов.

Продолжая в соответствии с теоремой 1.1.13 разбор возмож-
ных ситуаций относительно предпорядков Рудина — Кейслера
и функции распределения числа предельных моделей для тео-
рий, имеющих n счетных моделей, аналогично вышеизложенно-
му строятся n-модельные гиперграфы, дающие возможность оха-
рактеризовать теории T с условием I(T, ω) = n.

Процесс построения гиперграфов, сохраняющих данное чис-
ло попарно неизоморфных счетных моделей, можно продолжить
и для бесконечных мощностей. Это также достигается анало-
гично предложенным выше вводом в гиперграф (M eq,H(Meq)
формульно определимой информации о предпорядке Рудина —
Кейслера и о числе предельных моделей. Тем самым, определя-
ется понятие λ-модельного гиперграфа, позволяющее охаракте-
ризовать теории T с условием I(T, ω) = λ в виде следующего
обобщения теоремы 5.5.2.

Теорема 5.5.3. Для любой малой теории T следующие усло-
вия эквивалентны:

(1) I(T, ω) = λ;
(2) теория T имеет λ-модельный гиперграф.
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§ 5.6. Распределения простых и предельных моде-
лей

Напомним, что в главе 3 представлена классификация эле-
ментарных полных теорий с конечными предпорядками Руди-
на — Кейслера, а также описаны всевозможные предпорядки Ру-
дина — Кейслера в малых теориях. В настоящем разделе мы да-
дим описание возможностей для распределения числа предель-
ных (не обязательно над фиксированными типами) моделей ма-
лых теорий и, тем самым, представим структурные возможности
для числа счетных моделей малых теорий. Все рассматриваемые
ниже теории будут считаться малыми.

Определим аналоги счетной категоричности и эренфойхтово-
сти для предельных и простых над кортежами моделей.

Теория T называется p-категоричной (соответственно l-кате-
горичной, p-эренфойхтовой, l-эренфойхтовой), если Ip(T, ω) = 1
(соответственно Il(T ) = 1, 1 < Ip(T, ω) < ω, 1 < Il(T ) < ω).

Очевидно, что p-категоричность теории T равносильна ее счет-
ной категоричности, ее p-эренфойхтовость — конечности неод-
ноэлементной системы RK(T ), а p-эренфойхтовость и условие
1 ≤ Il(T ) < ω — эренфойхтовости теории.

Отметим, что именно отсутствие p-эренфойхтовости позволи-
ло в ряде статей доказать отсутствие эренфойхтовых теорий в
классах суперстабильных [141], 1-базируемых [169], псевдосупер-
стабильных [198], суперпростых [137] теорий, а также теорий, не
имеющих свойство строгого порядка и интерпретирующих бес-
конечные множества попарно различных констант [194].

Теорема 3.5.3 показывает, что для p-эренфойхтовых теорий
число счетных моделей определяется числом простых над кор-
тежами моделей, а также функцией распределения IL числа пре-
дельных над типами моделей.

Рассмотрим класс l-категоричных теорий. Очевидно, что все
такие теории не p-категоричны, а единственность предельной мо-
дели влечет ее насыщенность. Тем самым, объединение любой
элементарной цепи простых над кортежами моделей снова яв-
ляется простой моделью или образует предельную насыщенную
модель. Следовательно, по определению насыщенности модели l-
категоричность теории равносильна тому, что для любой элемен-
тарной цепи (Mai)i∈ω простых над кортежами ai моделей, объ-
единение которых образует предельную модель, и любого кор-
тежа b ∈ Mai любой тип q(x) ∈ S1(b) реализуется в некоторой
модели Maj , j ≥ i.
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Еще один критерий l-категоричности основан на невозможно-
сти построения предельной модели M как объединения элемен-
тарной цепи простых над типами qn моделей Mqn , qn ≤RK qn+1,
n ∈ ω, для которых существует тип q с условиями qn ≤RK q
и q 6≤RK qn, n ∈ ω. Отсутствие модели M вытекает из предель-
ности насыщенной модели, в которой реализуется тип q, в то
время как тип q опускается в модели M. Тем самым, при отсут-
ствии таких предельных моделей l-категоричность равносильна
единственности с точностью до изоморфизма непростой счетной
модели, в которой реализуются все типы данной теории.

Таким образом, справедлива следующая теорема, представ-
ляющая характеризации l-категоричности.

Теорема 5.6.1. Для любой малой не ω-категоричной тео-
рии T следующие условия эквивалентны:

(1) теория T l-категорична;
(2) любая предельная модель теории T насыщена;
(3) для любой элементарной цепи (Mi)i∈ω простых над кор-

тежами моделей теории T , объединение которых образует пре-
дельную модель, и любого кортежа b ∈ Mi любой тип q(x) ∈
S1(b) реализуется в некоторой модели Mj, j ≥ i;

(4) объединение любой элементарной цепи простых над ти-
пами qn моделей Mqn , n ∈ ω, является простой моделью над
некоторым типом или единственной с точностью до изомор-
физма предельной моделью, реализующей все типы теории T .

Отметим, что l-категоричными являются все теории T
с I(T, ω) = 3. Также l-категорична любая теория, у которой ти-
пы изоморфизмов счетных моделей определяются их размерно-
стями из ω ∪ {∞}, конечные значения которых соответствуют
простым над кортежами моделям. В частности, согласно [68] l-
категорична любая не ω-категоричная ω1-категоричная теория.
В силу отсутствия в l-категоричных теориях неодноэлементных
∼RK-классов, отличных от ≤RK-наибольшего ∼RK-класса (см.
следствие 1.1.10), классы теорий с тремя счетными моделями,
а также теории с размерностями представляют две взаимоис-
ключающие возможности для предпорядков Рудина — Кейслера
в l-категоричных теориях:

1) конечный или счетный предпорядок Рудина — Кейслера
с ограниченными длинами≤RK-цепей на∼RK-классах, в котором
все ∼RK-классы, отличные от наибольшего, одноэлементны;
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2) счетный предпорядок Рудина — Кейслера с неограничен-
ными длинами ≤RK-цепей на ∼RK-классах, каждый из которых
одноэлементен, и при этом каждый элемент из M ∈ RK(T ) на-
ходится в отношении M ≤RK M′ с некоторым элементом M′
каждой бесконечной ≤RK-цепи.

Заметим также, что поскольку все простые и счетные на-
сыщенные модели однородны, l-категоричные теории являются
почти однородными, т. е. однородны все их счетные модели, по-
сле обогащения каждой из них некоторым конечным множеством
констант.

Для дальнейшего изучения произвольной малой теории T
и определения числа ее счетных моделей (в частности, для ис-
следования l-эренфойхтовости) будем считать, что предупорядо-
ченное множество RK(T ) счетно и при этом, согласно теореме
3.6.1, направлено вверх и имеет наименьший элемент. Посколь-
ку в теореме 3.5.3 описано возможное число λ предельных над
типами моделей (λ ∈ {ω, ω1, 2ω}), рассмотрим возможное число
предельных моделей, которые не являются предельными ни над
одним из типов.

По определению каждая предельная модель M представля-
ется в виде объединения элементарной цепи (Mi)i∈ω простых над
типами qi моделей Mi. При этом один и тот же тип может по-
вторяться бесконечное число раз (что соответствует предельной
модели над типом), или из цепи (Mi)i∈ω можно извлечь беско-
нечную подцепь попарно неизоморфных моделей Mij , которые
просты над попарно различными типами qij , и эта подцепь не
уплотняется до элементарной цепи (Nk)k∈ω (где M =

⋃
k∈ω

Nk)

простых над кортежами моделей, среди которых имеется беско-
нечное число простых моделей над одним и тем же типом.

Каждая ≤RK-последовательность, т. е. последовательность
неглавных типов (qn)n∈ω с условиями qn ≤RK qn+1, n ∈ ω, может
определять некоторое число λ((qn)n∈ω) ∈ {ω, ω1, 2ω} предельных
моделей M =

⋃
n∈ω

Mqn , где (Mqn)n∈ω — элементарная цепь про-

стых моделей над реализациями типов qn. При этом зависимость
между числами λ((qn)n∈ω) для различных ≤RK-последователь-
ностей (qn)n∈ω обусловливается следующим отношением экви-
валентности. ≤RK-Последовательности (qn)n∈ω и (q′n)n∈ω назы-
ваются эквивалентными ((qn)n∈ω ∼ (q′n)n∈ω), если найдется их
общая ≤RK-подпоследовательность (q′′n)n∈ω.
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Заметим, что прямой зависимости между числами λ((qn)n∈ω)
и λ((q′n)n∈ω) для эквивалентных≤RK-последовательностей (qn)n∈ω

и (q′n)n∈ω, вообще говоря, нет, поскольку предельные модели, за-
даваемые ≤RK-последовательностью (qn)n∈ω, могут не задавать-
ся ≤RK-последовательностью (q′n)n∈ω и наоборот. Справедливы
лишь следующие соотношения:

1) λ((qn)n∈ω) ≤ λ((q′n)n∈ω), где (q′n)n∈ω — ≤RK-подпоследова-
тельность последовательности (qn)n∈ω;

2) λ((qn)n∈ω) = λ((q′n)n∈ω), где для (qn)n∈ω и (q′n)n∈ω найдутся
такие числа k и m, чтоMqk+n

'Mq′m+n
, начиная с некоторого n.

Действительно, по определению любая предельная модель
над≤RK-последовательностью (qn)n∈ω предельна над любой под-
последовательностью (q′n)n∈ω, но не наоборот. Кроме того, если
для последовательностей (qn)n∈ω и (q′n)n∈ω найдутся такие числа
k и m, что Mqk+n

' Mq′m+n
, начиная с некоторого n, то любая

предельная модель над ≤RK-последовательностью (qn)n∈ω пре-
дельна над ≤RK-последовательностью (q′n)n∈ω и наоборот, по-
скольку элементарная цепь простых над кортежами моделей
(Man)n∈ω расширяется до элементарной цепи (Mbn

)n∈ω, где
Man = Mbn+l

, n ∈ ω, tp(bi) ≤RK tp(bi+1), i = 0, . . . , l − 1.
Из первого соотношения следует, что континуальное число

≤RK-последовательностей (qn)n∈ω, каждая из которых не явля-
ется собственной подпоследовательностью остальных и задает
некоторую предельную модель, не являющуюся предельной над
остальными последовательностями, влечет континуум числа по-
парно неизоморфных предельных моделей.

Следующее понятие позволяет сформулировать достаточное
условие для континуального числа предельных моделей.

Теория T называется l-богатой, если существуют неглавные
типы qn, n ∈ ω, над которыми простые модели Mqn попар-
но неизоморфны, и такие, что для каждой последовательности
(nk)k∈ω существует элементарная цепь моделей Mnk

, изоморф-
ных Mqnk

, объединение которой образует предельную модель.
Заметим, что все типы qn, участвующие в определении l-

богатой теории, RK-эквивалентны, а соответствующий∼RK-класс
в RK(T ) является счетным.

Предложение 5.6.2. Если T — l-богатая теория, то
Il(T ) = 2ω.
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Д о к а з а т е л ь с т в о. По определению l-богатой теории
достаточно доказать, что имеется континуум попарно неэквива-
лентных ≤RK-последовательностей, составленных из типов qn.
Разобьем множество натуральных чисел, индексирующих ти-
пы qn, на две бесконечные части X0 и X1, а затем каждую из
этих частей на счетное множество счетных частей Xj,k

i , i = 0, 1,
j, k ∈ ω. Теперь, рассмотрев последовательности типов qn, индек-
сы которых принадлежат множествам X0,k0

i0
, X1,k1

i1
, . . ., Xm,km

im
, . . .

таким, что разным последовательностям qn соответствуют раз-
ные множества Xm,km

im
, замечаем, что эти последовательности по-

парно не пересекаются, а нижние индексы кодируют всевозмож-
ные двоичные последовательности. Тем самым, число неэквива-
лентных ≤RK-последовательностей типов qn континуально. ¤

Отметим, что на основании теоремы 3.5.3 и предложения 5.6.2
имеются три вида порождения континуального числа предель-
ных моделей над ∼RK-классами:

1) континуум предельных моделей над некоторым типом
из данного ∼RK-класса;

2) континуум предельных моделей над некоторой ≤RK-после-
довательностью попарно различных типов из данного ∼RK-
класса;

3) континуум предельных моделей над попарно различными
≤RK-последовательностями попарно различных типов из данно-
го ∼RK-класса.

В силу теоремы Морли [158] числа предельных моделей над
данными ≤RK-последовательностями неглавных типов q (состо-
ящих из одних и тех же, либо попарно различных типов) могут
варьироваться в пределах множества ω ∪ {ω, ω1, 2ω}. Тем самым
число Il(T ) представляется в виде суммы

∑
q

ILq, где ILq — число

предельных моделей, относящихся к ≤RK-последовательности q
и не относящихся к расширениям и сужениям последовательно-
сти q, участвующим в подсчете значения Il(T ).

Аналогично следствию 1.1.10 c использованием доказатель-
ства предложения 1.1.8 устанавливается следующая лемма.

Лемма 5.6.3. Если q — ≤RK-последовательность ти-
пов qn, n ∈ ω, и (Mqn)n∈ω — элементарная цепь, никакая ко-
конечная подцепь которой не состоит из попарно изоморфных
моделей, то ILq ≥ 1.

243



Будем говорить, что семейство Q ≤RK-последовательностей
типов q представляет ≤RK-последовательность типов q′, если
любая предельная модель над q′ является предельной над неко-
торой последовательностью q ∈ Q.

На основании вышеизложенного справедлива следующая тео-
рема для теорий с произвольными предпорядками Рудина — Кей-
слера, описывающая всевозможные распределения числа счет-
ных моделей теории в зависимости от заданных последователь-
ностей неглавных типов и являющаяся обобщением теоремы 3.5.3.

Теорема 5.6.4. Любая малая теория T удовлетворяет сле-
дующим условиям:

(а) система RK(T ) направлена вверх и имеет наименьший
элемент M0 (тип изоморфизма простой модели теории),
IL(M̃0) = 0;

(б) если q — ≤RK-последовательность неглавных типов qn,
n ∈ ω, такая, что каждый тип q теории T находится в отно-
шении q ≤RK qn для некоторого n, то существует предельная
модель над q; в частности, при наличии q справедливо Il(T ) ≥ 1
и предельной над последовательностью q является счетная на-
сыщенная модель теории;

(в) если q — ≤RK-последовательность типов qn, n ∈ ω,
и (Mqn)n∈ω — элементарная цепь, никакая коконечная подцепь
которой не состоит из попарно изоморфных моделей, то суще-
ствует предельная модель над q;

(г) если q′ = (q′n)n∈ω — подпоследовательность ≤RK-последо-
вательности q, то любая предельная модель над последователь-
ностью q предельна над q′;

(д) если q = (qn)n∈ω и q′ = (q′n)n∈ω — ≤RK-последовательнос-
ти типов такие, что для некоторых чисел k, m ∈ ω, начиная
с некоторого n, каждый тип qk+n находится с типом q′m+n
в отношении Mqk+n

' Mq′m+n
, то каждая модель M предель-

на над последовательностью q тогда и только тогда, когда
M предельна над последовательностью q′.

Более того, справедлива следующая декомпозиционная фор-
мула:

I(T, ω) = |RK(T )|+
∑

q∈Q

ILq,

где ILq ∈ ω ∪ {ω, ω1, 2ω} — число предельных моделей, относя-
щихся к ≤RK-последовательности q и не относящихся к рас-
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ширениям и сужениям последовательности q, участвующим
в подсчете значения Il(T ), и семейство ≤RK-последовательнос-
тей типов Q представляет все ≤RK-последовательности, над
которыми существуют предельные модели.

Согласно теореме 5.6.4 конечные значения
∑

q∈Q

ILq характе-

ризуют класс l-эренфойхтовых теорий.
В силу теоремы 5.6.4, как и для теорий с конечными предпо-

рядками Рудина — Кейслера, малые теории классифицируются
по предпорядкам Рудина — Кейслера и функциям распределе-
ния числа предельных (не обязательно над фиксированными ти-
пами) моделей.

Напомним, что теорема 3.5.1 представляет всевозможные ре-
ализации теорий с конечными предпорядками Рудина — Кейсле-
ра относительно этих предпорядков, а также функций распреде-
ления числа предельных моделей со значениями из множества
ω ∪ {ω, 2ω}.

Обобщением теоремы 3.5.1 для произвольных предпорядков
Рудина — Кейслера и соответствующих функций распределения
числа предельных моделей, принимающих значения из множе-
ства ω ∪ {ω, 2ω}, является следующая теорема.

Теорема 5.6.5. Пусть 〈X,≤〉 — не более чем счетное на-
правленное вверх предупорядоченное множество с наименьшим
элементом x0, f : Y → ω ∪ {ω, 2ω} — функция, у которой Y —
множество всех ≤0-последовательностей, т. е. последователь-
ностей в X \ {x0}, образующих всевозможные ≤-цепи, и выпол-
няются следующие условия:

(а) f(y) ≥ 1, если для каждого элемента x ∈ X найдется
элемент x′ из последовательности y с условием x ≤ x′;

(б) f(y) ≥ 1, если никакая коконечная подпоследователь-
ность последовательности y не состоит из одинаковых элемен-
тов;

(в) f(y) ≤ f(y′), если y′ — подпоследовательность последо-
вательности y;

(г) f(y) = f(y′), если y = (yn)n∈ω и y′ = (y′n)n∈ω — последова-
тельности, для которых найдутся такие числа k, m ∈ ω, что
yk+n = y′m+n, начиная с некоторого n.

Тогда существует малая теория T и изоморфизм

g : 〈X,≤〉 →̃ RK(T )
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такой, что каждое значение f(y) равно числу предельных моде-
лей над ≤RK-последовательностью (qn)n∈ω, соответствующей
≤0-последовательности y = (yn)n∈ω, где g(yn) — тип изомор-
физма модели Mqn , n ∈ ω.

Д о к а з а т е л ь с т в о теоремы состоит в модификации
генерической конструкции из доказательства теорем 3.4.1 и 3.6.1,
при которой выполняются следующие условия:

1) каждый элемент x ∈ X \ {x0} представляется 1-типом qx,
определяемым бесконечным цветом, а также одноместным пре-
дикатом Px;

2) каждая простая над некоторым кортежом модель проста,
либо изоморфна некоторой модели Mqx ;

3) заданная ≤RK-взаимосвязь между типами определяется
счетным набором двухместных предикатов;

4) заданное распределение числа предельных моделей опре-
деляется последовательностями двухместных предикатов, отож-
дествляемых посредством исчисления тождеств из параграфа 3.5
с помощью амальгам взаимореализуемости.

Поскольку число предельных моделей может варьироваться
в зависимости от последовательностей попарно различных ти-
пов q = (qn)n∈ω, при рассмотрении тождеств из параграфа 3.5,
приводящих к заданному числу предельных моделей над q, тре-
буется использовать лишь тождества, связывающие слова оди-
наковой длины.

Для достижения n счетных моделей достаточно использовать
систему тождеств

n− 1 ≈ m,

m ≥ n, и
n0n1 . . . ns ≈ ns . . . ns︸ ︷︷ ︸

s+1 раз

,

max{n0, n1, . . . , ns−1} < ns, сводящую все последовательности из
ωω к n константным последовательностям.

Рассмотрение системы тождеств

n0n1 . . . ns ≈ ns . . . ns︸ ︷︷ ︸
s+1 раз

,

max{n0, n1, . . . , ns−1} < ns,

n0n1 . . . ns ≈ n0(n0 + 1) . . . (n0 + s),
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n0 + s ≤ ns,

n0n1 . . . ns ≈ n0(n0 + 1) . . . (n0 + t) (n0 + t) . . . (n0 + t)︸ ︷︷ ︸
s−t раз

,

n0 + t = ns, t > 0, s > t, приводит к построению теории с ω
счетными моделями над q, для которой все последовательности
из ωω сводятся к константным или диагональной последователь-
ностям. ¤

Конструкции из главы 4 позволяют провести построения для
доказательства теоремы 5.6.5 в классе стабильных теорий.
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nombres rationnels // C.R. Acad. Sci. Paris. 1953. V. 237. P. 540–542.

[103] Goode J.B. Hrushovski’s geometries / Seminarberichte, Humbolt
Universitat zu Berlin, 104. 1989. P. 106–117.

254



[104] Harnik V., Harrington L. Fundamentals of forking // Ann. Pure and
Appl. Logic. 1984. V. 26. No. 3. P. 245–286.

[105] Hart B., Starchenko S., Valeriote M. Vaught’s conjecture for
varieties // Trans. Amer. Math. Soc. 1994. V. 342. P. 173–196.

[106] Hart B., Hrushovski E., Laskowski M.S. The uncountable spectra of
countable theories // Ann Math. 2000. V. 152, No. 1. P. 207–257.

[107] Hasson A. Interpreting Structures of Finite Morely Rank in Strongly
Minimal Structures / Preprint. Einstein Institute of Mathematics.
Jerusalem, 2004.

[108] Hasson A. Collapsing structure and a theory of envelopes / Preprint.
Einstein Institute of Mathematics. Jerusalem, 2004.

[109] Hasson A., Hils M. Fusion over sublanguages // J. Symbolic Logic.
2006. V. 71, No. 2. P. 361–398.

[110] Hasson A., Hrushovski E. DMP in strongly minimal structures /
Preprint. Einstein Institute of Mathematics. Jerusalem, 2005.

[111] Hasson A. Interpreting structures of finite morley rank in
strongly minimal sets / Preprint. Einstein Institute of Mathematics.
Jerusalem, 2005.

[112] Herwig B., Loveys J., Pillay A., Tanović P., Wagner F. Stable
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