Victor Batyrev
(joint work with Karin Schaller)

Eberhard Karls Universitat Tiibingen

Seminar on geometry and mathematical physics
Beijing-Novosibirsk
19 June 2020

«40O0>» «F»r» «E=>»

« =

Q>



B., K. Schaller, arXiv:2006.04465

To explain the combinatorial framework behind the Mirror

Symmetry construction for quasi-smooth Calabi-Yau hypersurfaces
in weighted projective spaces.
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Discrepancies

X a normal irreducible quasi-projective Q-Gorenstein algebraic
variety. Take a resolution of singularities of X

p:Y—=>X

with the exceptional locus |J;_; D; union of smooth irreducible
divisors with only normal crossings.
I={1,...,r}
Ky = p*Kx + Z a;D;,
i€l
The rational numbers a; € Q (i € /) are called discrepancies of
divisors D;.



Definition

Singularities of X are called at worst
» terminal if a; >0, Vi € [;

» canonical if a; > 0, Vi € I;

» log-terminal if a; > —1, Vi € I.
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Definition
A d-dimensional smooth projective normal variety X with at worst

Gorenstein canonical singularities is called canonical Calabi-Yau
variety if

» the canonical divisor Kx is trivial;
> h(X,0x)=0(0<i<d).

«O>» «Fr «=)r» « =)

DA



Non-degenerate hypersurfaces in torus

Let M = Z9 be a lattice of rank d. We consider M as the lattice of
characters of d-dimensional algebraic torus Ty = (C*)“.

Definition

A Laurent polynomial

ft)= > amt™ € CIM] = C[¢f, ..., 5]
meA

with Newton polytope A = conv(A) C Mg := M ® R is called
non-degenerate if for any face © < A the affine hypersurface

Zro = { Z amt™ = 0} C Ty.
meAN©

is smooth. The non-degeneracy of f(t) is a Zariski open condition
on its coefficients {a,} € CAMI,



Definition

A d-dimensional lattice polytope A C My is called canonical Fano
polytope, if it contain exactly one lattice point p in its interior A°.
For simplicity we assume that p =0 € M.
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Canonical Fano polytopes

Definition

A d-dimensional lattice polytope A C Mg is called canonical Fano
polytope, if it contain exactly one lattice point p in its interior A°.
For simplicity we assume that p =0 € M.

Theorem (Khovanskif, 1978)

The geometric genus pg of a non-degenerate toric hypersurface Z¢
defined by Laurent polynomial f with Newton polytope A equals
A° N M. In particular, p; = 1 (Calabi-Yau case) if and only if A is
a canonical Fano polytope.



Canonical Fano polytopes

Definition

A d-dimensional lattice polytope A C Mg is called canonical Fano
polytope, if it contain exactly one lattice point p in its interior A°.
For simplicity we assume that p =0 € M.

Theorem (Khovanskif, 1978)

The geometric genus pg of a non-degenerate toric hypersurface Z¢
defined by Laurent polynomial f with Newton polytope A equals
A° N M. In particular, p; = 1 (Calabi-Yau case) if and only if A is
a canonical Fano polytope.

Theorem

There exists a natural bijection between d-dimensional canonical
Fano polytopes A up to GL(d,Z)-isomorphism and d-dimensional
Q-Gorenstein toric Fano varieties Xa with at worst canonical
singularities up to isomorphism.



Canonical Fano polytopes

For any fixed dimension d there exist only finitely many
d-dimensional canonical Fano polytopes up to a
GL(d, Z)-isomorphism.

>

>

There exists exactly one canonical Fano polytope of dimension
1. A=[-1,1].

There exist exactly 16 canonical Fano polytopes of dimension

2.

There exist exactly 674,688 three-dimensional canonical Fano
polytopes (Kasprzyk, 2010)

The complete list of all 4-dimensional canonical Fano
polytopes is still unknown.
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Figure: 2-dimensional canonical Fano polytopes

Source: Karin Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart Karls Univ. Tiibingen, 2019.
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Reflexive polytopes

Denote N := Hom(M,Z), Mg := M®R, Ng := N® R, and
(x,%) : Mp x Ng = R

the natural pairing.

Definition
A d-dimensional canonical Fano polytope A C Mg is called
reflexive if the polar dual polytope

A" ={yeNr: (x,y) > -1, Vxe A}

is also a canonical Fano polytope.



The combinatorial duality

If A is reflexive, then A* is also reflexive and

(A*)* = A.

There exists a natural 1-to-1 correspondence between k-dimensional
faces # < A and (d — k — 1)-dimensional faces 6* < A*:

0" :={y e A" : (x,y) = -1 ¥x € 0}.

The combinatorial duality A <> A* perfectly agrees with the
prediction of Mirror Symmetry for Calabi-Yau hypersurfaces in toric
varieties X C Pa and X* C Pa-x.



(a) Cube.

(b) Octahedron.

(c) 3-simplex.

Figure: Some Reflexive 3-polytopes.

(d) Tetrahedron.

Source: Karin Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart Karls Univ. Tiibingen,
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Topological mirror symmetry tests

The Hodge numbers of two d-dimensional smooth Calabi-Yau
varieties V and V* that are mirror symmetric to each other must
satisfy the equalities

hPI(V) = h?PI(V*)

for all p,q (0 < p,q < d). In particular, the Euler number
X = 2pq(—1)PTIhP9 must satisfy the equality

X(V) = (=1)Ix(V*).



The stringy Euler number xg.(X)

Definition
Let p : Y — X be a resolution and Ky = p*Kx + >,/ a;iD;.
Define for any subset J C [ :

Dy:=Y, Dy:=(\D; (0#JC).

jed

The stringy Euler number of X is the rational number

oo e

pCJCl =

= 3 VeI

pCJCl jed

(a product over () is assumed to be 1)



Some properties of Yyt (X)

General remarks

» The rational number xgt,(X) does not depend on the choice of
a desingularization p : Y — X. In particular, if X is smooth,
then

Xstr(X) = x(X)
(we can take p = id).

> If p: Y — X is a crepant desingularization (a; =0 Vi € /),
then

Xstr(X) = X( Y)

Examples: minimal desingularizations of ADE-singularities of
surfaces.

» If X and X' are birational K-equivalent, then

Xstr(X) = Xstr(X/)-



Combinatorial formula for st (X)

Theorem (B., Dais 1994)

Let A be a d-dimensional reflexive polytope. Then the stringy Euler
number of a general CY hypersurface X C Pa equals

Xstr(X) = g;%(—l)kil Z <A Vo/k(H) . VOId,kfl((g*).

dim(6)=k

If X* C P} is a CY hypersurface corresponding to the dual
polytope A*, then

Xstr(X) = (=1)7 Ixeu(X)- |




If A is a 3-dimensional reflexive polytope, then

Xstr(X) = > Voh(#) - Voh(8*) =
6<A

dim(6)=1

«O> «Fr «Er =)

DA



If A is a 4-dimensional reflexive polytope, then

dim(6)=1

Xstr(X) = D Voh(6) - Voh(6*) — > Voh() - Voh(6*).

dim(6)=2

6<A
For quintic 3-folds X in P*:

X(X) = veur(X) =10+ (5-1) — 10 - (25 - 1) = —200
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Weighted projective space P(wy, .. ., wy)

Weight vector w := (wp, ..., wy) € ZdH is called well-formed if
ng(Wg,...,W,',l,W,'Jrl,...,Wd) =1Vie {0,...,d}.

A weighted projective space P(W) is the quotient of C9+1\ {0} by
C*-action

(Zo, - 7Zd) — (/\WOZQ, .. .,)\Wdzd) Y\ e C*.

It is a d-dimensional toric variety which is a projective
compactification of the d-dimensional algebraic torus
Tw = (C*)9+1/C* whose group of characters is

d
Niw = {(wo, ..., uq) € YARE | Z wju; = 0}.
i=0



Quasi-smooth Calabi-Yau hypersurfaces

Definition

A weight vector w € Z‘fgl is called transverse if the weighted
projective space P(wp, wi, ..., wy) contains a quasi-smooth
Calabi-Yau hypersurface X, of degree w = Zflzo w; defined by a
transverse weighted homogeneous polynomial W € Clz, ..., z4],
i.e., all partial derivatives OW /0z; (0 < i < d) form a regular
sequence in Clzp, z1, . . ., z4].

A weighted homogeneous polynomial W € Clzy, z1, ..., z4] is
transverse if and only if 0 € C9*1 is the only singular point of the
d-dimensional affine hypersurface {W = 0} c C9+1.



Gorenstein weighted projective spaces

Definition

A weight vector w € Z‘i‘gl is called Gorenstein if w; divides
w=39,forallic{0,...,d}.

Every Gorenstein weight vector w € Z‘fgl is transverse, because one
can choose a transverse weighted polynomial W in Fermat form:

d
W= Z z,-W/Wi.
i=0



Weight vectors with /P-property

Definition

A weight vector w € Z<{?

is called to have IP-property if

conv{(up, ..., Zd+1 | Z wiup = w}

is a d-dimensional lattice polytope A(W) containing the lattice
point 1 :=(1,...,1) in its interior.

Any transverse weight vector w € ZdH has IP-property (Skarke).
Moreover, if w € ZdH is an arbltrary weight vector with
IP-property, then a general hypersurface X,, C P(w) is a canonical

Calabi-Yau variety.



Classification of weight vectors for d < 5

For any fixed dimension d = dim P(w), there exist only finitely
many IP(d) weight vectors w € Z<§* with IP-property. In
particular, there exist only finitely many T(d) transverse weight
vectors and finitely many G(d) Gorenstein weight vectors.

| d=[2]3] 4 | 5 |
G(d) [ 3]14] 147 3,462
T(d) | 3] 95| 7,555 1,100, 055
IP(d) | 3] 95 | 184,026 | 322,383,760, 930




Vafa's formula (1989)

Let w € Z9*! be a transvers weight vector and let Xi; C P(W) be a
quasi-smooth hypersurface defined by a transverse polynomial
W € Clzo, ..., zq4]. Then

Yorb(X z 11 (1)

/I’ 0 o0<i<d
Iq;,rq; €Z

In this formula, one denotes g; := % (0 < i < d), and one assumes
1
1 (-2)-
0<i<d qi
lgj,rq; €Z

if Ig;, rq; ¢ Z for all i € {0,...,d}.



Orbifold Euler number

Theorem,( Ono and Roan 1993)

Let X,, C P(W) be a quasi-smooth Calabi-Yau hypersurface X, of
degree w = 27:0 w; defined by a general transverse polynomial W
and let §29+1 C C9*t1\ {0} be the unit sphere. Consider the
compact smooth (2d — 1)-dimensional real manifold

Sy i= S?91 N {W = 0} together with the S'-fibration S,, — X,,
obtained from the Seifert S-fibration S29+1 — P(wp, wi, ..., wy).
Then the S'-equivariant K-groups K& (Sw) (i = 0,1) have finite
rank and

rank K& (Sw) — rank K& (Sw Z 11 (1)

=0 0<:<d
lgj,rq; €

In particular, the right hand side of the above equality is an integer.



The Laurent polynomial of Givental-Hori-Vafa

The dual to Ty is the d-dimensional algebraic torus:

d
T := {(x0. x1, ..., xa) € (CH)ITH [ x™ = 1} C (C*)4*!
i=0

with the lattice of characters
My = 291 ) 7(w).

If x; (0 < i< d) is the standard basis of characters of (C*)9*!, the
the sum E?:o x; is a regular function on T3, a Laurent polynomial
£9(t) that we call Givental-Hori-Vafa polynomial of the weighted
projective space P(wo, wy, ..., wy).



The Newton polytope of £3(t)

The Newton polytope of fz(t) is a d-dimensional simplex
A = conv(vp, vi, ..., vg) with lattice vertices vp, vi, ..., vg
spanning the lattice Ny and satisfying the relation Z,d:o w;v; = 0.

Example

Let W be a sequence of weights wg, wy, ..., wy such that wy = 1.
Then there is an isomorphism M,, = Z9 such that the lattice
vectors v, ..., vy € Z9 can be chosen as the standard Z-basis and
vo = (—wa,...,—wy). Then the Laurent polynomial

fO € C[ti, ..., t5] has the form



Example

If all weights w; are equal 1, we obtain the well-known polynomial
fO(t) = ttttty
ty -ty

for usual d-dimensional projective space. It describes
Landau-Ginzburg mirror of P9,
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The Newton polytope of £9(t)

The Newton polytope of the Giventatl-Hori-Vafa polynomial f,,(t)
is the lattice simplex Ay with lattice vertices vg, vi,...,vqg € M,
generating the lattice M,, and satisfying the relation

The origin 0 € M is an interior lattice point of Aw. It is easy to
show that the Laurent polynomial fO(t) is non-degenerate.



Main theorem

Theorem (B., Schaller, 2020)

Let w = (wp, wa, ..., wy) be a weight vector with /P-property. Let
Tyw be d-dimensional algebraic torus with the lattice of characters
My, := 7911 /Zw. Denote by vg, v1, ..., vq in the lattice points My,
obtained from the standard basis of Z9t1. Then any
non-degenerate affine hypersurface Z,, C Ty defined by a Laurent
polynomial with Newton polytope A = conv(v, ..., v4) admits a
Calabi-Yau compactification X and its stringy Euler number equals

) = LS (1>

1,r=0 0<I<d
lgj,rq; €

where g; = ¥ (i € I). In particular,

Xstr (X)) = (—1)d_1Xorb(XW)»

if W is transverse.



Mirror construction for quasi-smooth CY hypersurfaces

The above theorem supports the following:

Mirror Construction

Let w € Zd;gl be a transverse weight vector. Then mirrors of
quasi-smooth Calabi-Yau hypersurfaces X,, C P(wop, wi, ..., wy)
can be obtained as Calabi-Yau compactifications of non-degenerate
affine hypersurfaces Zz C Ty, defined by Laurent polynomials f

with the Newton polytope

AL = conv(vp, vi, ..., Vq).



Definition

A transverse polynomial W € C|z, ..., z4] is called invertible if its
Newton polytope is a d-dimensional simplex with vertices

d
Vo, ULy Vg € {Zdz'gl N Z wiu; = w}
i=0
and
d
W(z) =) 2.
i=0
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Bergulnd-Huebsch-Krawitz mirror construction

If a transverse weight vector W admits an invertible polynomial W/,
then the Bergulnd-Huebsch-Krawitz mirror construction suggests an
invertible homogenization W'’ of the Givental-Hori-Vafa Laurent
polynomial fg as a G-invariant transverse Calabi-Yau hypersurface
in another weighted projective space P(w’), where G is a finite
abelian diagonal group G. The quotient {W’ = 0}/G is a mirror
Calabi-Yau compactification of the affine Givental-Hori-Vafa
hypersurface Z2. We remark that the choice of an invertible
polynomial W is not unique. Different choices of W define different
Calabi-Yau compactification of the same affine hypersurface Z2.

It is easy to see that the above mirror constuction is a generalization
of Berglund-Huebsch-Krawitz mirror construction for quasi-smooth
Calabi-Yau varieties defined by arbitrary transverse polynomials W.



The proposed mirror construction for quasi-smooth Calabi-Yau

hypersurfaces in weighted projective spaces is different from the one
based on the duality for reflexive polytopes.
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(=1,-1,3)

(=1,-1,-1)

(a)

(b)
Figure: Reflexive Simplex A; and its dual A} = [Af].

Source: Karin Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart Karls Univ. Tiibingen, 2019.
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(4,-1,-1)

(=1,-1,-2)

(a)

(b)
Figure: Almost Reflexive Simplex A, and its dual A > [Aj].

Source: Karin Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart Karls Univ. Tiibingen,
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Two examples of Skarke

Example 1

Take the weight vector w := (1,1,6,14,21). It has /P-property, but
it is not transverse. A general hypersurface Xy3 C P(1,1,6,14,21)
is a canonical Calabi-Yau variety, but it is not quasi-smooth. The
Newton polytope of X43 C P(1,1,6,14,21) is reflexive. Therefore,
Xa3 is birational to a smooth CY 3-fold Y with hb1(Y) = 21,
h%1(Y) =273, and x(Y) = —504.

On the other hand, the affine hypersurface Zz C (C*)*

—————+t+t+t3+ 1t =0.
1 t9e14 2! R

admits a Calabi-Yau compactification X with the stringy Euler
number

Xstr (X)) = 506 # 504 = —xetr(Xa3) = —x(Y).

Therefore, X is not a mirror of X3.



Two examples of Skarke

Example 2

Take the weight vector w := (1,1,2,4,5). It has /P-property, but it
is not transverse. A general hypersurface Xi3 C P(1,1,2,4,5) is a
canonical Calabi-Yau variety, but it is not quasi-smooth. Consider
the affine hypersurface Z; C (C*)*

——— ettt t+t3+ty=0.
n 2t 1+ h+t3+ 1
It admits a Calabi-Yau compactification X. However, the stringy

Euler number 1032
Xstr(X*) e ¢ Z.

Therefore, X has no mirror at all.



Thank you !



