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The purpose of the talk

B., K. Schaller, arXiv:2006.04465
To explain the combinatorial framework behind the Mirror
Symmetry construction for quasi-smooth Calabi-Yau hypersurfaces
in weighted projective spaces.



Discrepancies

X a normal irreducible quasi-projective Q-Gorenstein algebraic
variety. Take a resolution of singularities of X

ρ : Y → X

with the exceptional locus
⋃r

i=1 Di union of smooth irreducible
divisors with only normal crossings.
I := {1, . . . , r}

KY = ρ∗KX +
∑
i∈I

ai Di ,

The rational numbers ai ∈ Q (i ∈ I) are called discrepancies of
divisors Di .



Singularities in MMP

Definition
Singularities of X are called at worst
I terminal if ai > 0, ∀i ∈ I;
I canonical if ai ≥ 0, ∀i ∈ I;
I log-terminal if ai > −1, ∀i ∈ I.



Canonical Calabi-Yau varieties

Definition
A d-dimensional smooth projective normal variety X with at worst
Gorenstein canonical singularities is called canonical Calabi-Yau
variety if
I the canonical divisor KX is trivial;
I hi (X ,OX ) = 0 (0 < i < d).



Non-degenerate hypersurfaces in torus

Let M ∼= Zd be a lattice of rank d . We consider M as the lattice of
characters of d-dimensional algebraic torus Td ∼= (C∗)d .

Definition
A Laurent polynomial

f (t) =
∑
m∈A

amtm ∈ C[M] ∼= C[t±1
1 , . . . , t±1

d ]

with Newton polytope ∆ = conv(A) ⊂ MR := M ⊗ R is called
non-degenerate if for any face Θ � ∆ the affine hypersurface

Zf ,Θ := {
∑

m∈A∩Θ
amtm = 0} ⊂ Td .

is smooth. The non-degeneracy of f (t) is a Zariski open condition
on its coefficients {am} ∈ C|A∩M|.



Canonical Fano polytopes

Definition
A d-dimensional lattice polytope ∆ ⊂ MR is called canonical Fano
polytope, if it contain exactly one lattice point p in its interior ∆◦.
For simplicity we assume that p = 0 ∈ M.

Theorem (Khovanskîı, 1978)
The geometric genus pg of a non-degenerate toric hypersurface Zf
defined by Laurent polynomial f with Newton polytope ∆ equals
∆◦ ∩M. In particular, pg = 1 (Calabi-Yau case) if and only if ∆ is
a canonical Fano polytope.

Theorem
There exists a natural bijection between d-dimensional canonical
Fano polytopes ∆ up to GL(d ,Z)-isomorphism and d-dimensional
Q-Gorenstein toric Fano varieties X∆ with at worst canonical
singularities up to isomorphism.
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Canonical Fano polytopes

For any fixed dimension d there exist only finitely many
d-dimensional canonical Fano polytopes up to a
GL(d ,Z)-isomorphism.
I There exists exactly one canonical Fano polytope of dimension

1: ∆ = [−1, 1].
I There exist exactly 16 canonical Fano polytopes of dimension

2.
I There exist exactly 674, 688 three-dimensional canonical Fano

polytopes (Kasprzyk, 2010)
I The complete list of all 4-dimensional canonical Fano

polytopes is still unknown.



2-dimensional canonical Fano polytopes

Figure: 2-dimensional canonical Fano polytopes
Source: Karin Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart Karls Univ. Tübingen, 2019.



Reflexive polytopes

Denote N := Hom(M,Z), MR := M ⊗ R, NR := N ⊗ R, and

〈∗, ∗〉 : MR × NR → R

the natural pairing.

Definition
A d-dimensional canonical Fano polytope ∆ ⊂ MR is called
reflexive if the polar dual polytope

∆∗ := {y ∈ NR : 〈x , y〉 ≥ −1, ∀x ∈ ∆}

is also a canonical Fano polytope.



The combinatorial duality

If ∆ is reflexive, then ∆∗ is also reflexive and

(∆∗)∗ = ∆.

There exists a natural 1-to-1 correspondence between k-dimensional
faces θ ≺ ∆ and (d − k − 1)-dimensional faces θ∗ ≺ ∆∗:

θ∗ := {y ∈ ∆∗ : 〈x , y〉 = −1 ∀x ∈ θ}.

The combinatorial duality ∆↔ ∆∗ perfectly agrees with the
prediction of Mirror Symmetry for Calabi-Yau hypersurfaces in toric
varieties X ⊂ P∆ and X ∗ ⊂ P∆∗ .



Some Reflexive 3-polytopes

Figure: Some Reflexive 3-polytopes.
Source: Karin Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart Karls Univ. Tübingen, 2019.



Topological mirror symmetry tests

The Hodge numbers of two d-dimensional smooth Calabi-Yau
varieties V and V ∗ that are mirror symmetric to each other must
satisfy the equalities

hp,q(V ) = hd−p,q(V ∗)

for all p, q (0 ≤ p, q ≤ d). In particular, the Euler number
χ =

∑
p,q(−1)p+qhp,q must satisfy the equality

χ(V ) = (−1)dχ(V ∗).



The stringy Euler number χstr(X )

Definition
Let ρ : Y → X be a resolution and KY = ρ∗KX +

∑
i∈I ai Di .

Define for any subset J ⊆ I :

D∅ := Y , DJ :=
⋂
j∈J

Dj (∅ 6= J ⊆ I).

The stringy Euler number of X is the rational number

χstr(X ) :=
∑
∅⊆J⊆I

χ(DJ)
∏
j∈J

(
1

aj + 1 − 1
)

=
∑
∅⊆J⊆I

(−1)|J|χ(DJ)
∏
j∈J

aj
aj + 1 .

(a product over ∅ is assumed to be 1)



Some properties of χstr(X )

General remarks
I The rational number χstr(X ) does not depend on the choice of

a desingularization ρ : Y → X . In particular, if X is smooth,
then

χstr(X ) = χ(X )

(we can take ρ = id).
I If ρ : Y → X is a crepant desingularization (ai = 0 ∀i ∈ I),

then
χstr(X ) = χ(Y ).

Examples: minimal desingularizations of ADE-singularities of
surfaces.

I If X and X ′ are birational K-equivalent, then

χstr(X ) = χstr(X ′).



Combinatorial formula for χstr(X )

Theorem (B., Dais 1994)
Let ∆ be a d-dimensional reflexive polytope. Then the stringy Euler
number of a general CY hypersurface X ⊂ P∆ equals

χstr(X ) =
∑d−2

k=1(−1)k−1∑
θ≺∆

dim(θ)=k
Volk(θ) · Vold−k−1(θ∗).

If X ∗ ⊂ P∗∆ is a CY hypersurface corresponding to the dual
polytope ∆∗, then

χstr(X ) = (−1)d−1χstr(X ∗). .



χstr(X ) for dim ∆ = 3

If ∆ is a 3-dimensional reflexive polytope, then

χstr(X ) =
∑
θ≺∆

dim(θ)=1

Vol1(θ) · Vol1(θ∗) = 24.



χstr(X ) for dim ∆ = 4

If ∆ is a 4-dimensional reflexive polytope, then

χstr(X ) =
∑
θ≺∆

dim(θ)=1

Vol1(θ) · Vol2(θ∗)−
∑
θ≺∆

dim(θ)=2

Vol1(θ) · Vol2(θ∗).

For quintic 3-folds X in P4:

χ(X ) = χstr(X ) = 10 · (5 · 1)− 10 · (25 · 1) = −200.



Weighted projective space P(w0, . . . ,wd)

Weight vector w := (w0, . . . ,wd ) ∈ Zd+1
>0 is called well-formed if

gcd(w0, . . . ,wi−1,wi+1, . . . ,wd ) = 1 ∀i ∈ {0, . . . , d}.

A weighted projective space P(w) is the quotient of Cd+1 \ {0} by
C∗-action

(z0, . . . , zd ) 7→ (λw0z0, . . . , λ
wd zd ) ∀λ ∈ C∗.

It is a d-dimensional toric variety which is a projective
compactification of the d-dimensional algebraic torus
Tw ∼= (C∗)d+1/C∗ whose group of characters is

Nw = {(u0, . . . , ud ) ∈ Zd+1 |
d∑

i=0
wi ui = 0}.



Quasi-smooth Calabi-Yau hypersurfaces

Definition
A weight vector w ∈ Zd+1

>0 is called transverse if the weighted
projective space P(w0,w1, . . . ,wd ) contains a quasi-smooth
Calabi-Yau hypersurface Xw of degree w =

∑d
i=0 wi defined by a

transverse weighted homogeneous polynomial W ∈ C[z0, . . . , zd ],
i.e., all partial derivatives ∂W /∂zi (0 ≤ i ≤ d) form a regular
sequence in C[z0, z1, . . . , zd ].
A weighted homogeneous polynomial W ∈ C[z0, z1, . . . , zd ] is
transverse if and only if 0 ∈ Cd+1 is the only singular point of the
d-dimensional affine hypersurface {W = 0} ⊂ Cd+1.



Gorenstein weighted projective spaces

Definition
A weight vector w ∈ Zd+1

>0 is called Gorenstein if wi divides
w =

∑d
i=0 for all i ∈ {0, . . . , d}.

Every Gorenstein weight vector w ∈ Zd+1
>0 is transverse, because one

can choose a transverse weighted polynomial W in Fermat form:

W =
d∑

i=0
zw/wi

i .



Weight vectors with IP-property

Definition
A weight vector w ∈ Zd+1

>0 is called to have IP-property if

conv{(u0, . . . , ud ) ∈ Zd+1
≥0 |

d∑
i=0

wi ui = w}

is a d-dimensional lattice polytope ∆(w) containing the lattice
point 1 := (1, . . . , 1) in its interior.
Any transverse weight vector w ∈ Zd+1

>0 has IP-property (Skarke).
Moreover, if w ∈ Zd+1

>0 is an arbitrary weight vector with
IP-property, then a general hypersurface Xw ⊂ P(w) is a canonical
Calabi-Yau variety.



Classification of weight vectors for d ≤ 5

For any fixed dimension d = dimP(w), there exist only finitely
many IP(d) weight vectors w ∈ Zd+1

>0 with IP-property. In
particular, there exist only finitely many T (d) transverse weight
vectors and finitely many G(d) Gorenstein weight vectors.

d = 2 3 4 5
G(d) 3 14 147 3, 462
T (d) 3 95 7, 555 1, 100, 055
IP(d) 3 95 184, 026 322, 383, 760, 930



Vafa’s formula (1989)

Let w ∈ Zd+1 be a transvers weight vector and let Xw ⊂ P(w) be a
quasi-smooth hypersurface defined by a transverse polynomial
W ∈ C[z0, . . . , zd ]. Then

χorb(Xw ) = 1
w

w−1∑
l ,r=0

∏
0≤i≤d

lqi ,rqi∈Z

(
1− 1

qi

)
.

In this formula, one denotes qi := wi
w (0 ≤ i ≤ d), and one assumes

∏
0≤i≤d

lqi ,rqi∈Z

(
1− 1

qi

)
= 1

if lqi , rqi 6∈ Z for all i ∈ {0, . . . , d}.



Orbifold Euler number

Theorem,( Ono and Roan 1993)
Let Xw ⊂ P(w) be a quasi-smooth Calabi-Yau hypersurface Xw of
degree w =

∑d
i=0 wi defined by a general transverse polynomial W

and let S2d+1 ⊆ Cd+1 \ {0} be the unit sphere. Consider the
compact smooth (2d − 1)-dimensional real manifold
Sw := S2d+1 ∩ {W = 0} together with the S1-fibration Sw → Xw
obtained from the Seifert S1-fibration S2d+1 → P(w0,w1, . . . ,wd ).
Then the S1-equivariant K -groups K i

S1(Sw ) (i = 0, 1) have finite
rank and

rank K 0
S1(Sw )− rank K 1

S1(Sw ) = 1
w

w−1∑
l ,r=0

∏
0≤i≤d

lqi ,rqi∈Z

(
1− 1

qi

)
.

In particular, the right hand side of the above equality is an integer.



The Laurent polynomial of Givental-Hori-Vafa

The dual to Tw is the d-dimensional algebraic torus:

T∗w := {(x0, x1, . . . , xd ) ∈ (C∗)d+1 |
d∏

i=0
xwi

i = 1} ⊂ (C∗)d+1

with the lattice of characters

Mw = Zd+1/Z(w).

If xi (0 ≤ i ≤ d) is the standard basis of characters of (C∗)d+1, the
the sum

∑d
i=0 xi is a regular function on T∗w , a Laurent polynomial

f 0
w (t) that we call Givental-Hori-Vafa polynomial of the weighted

projective space P(w0,w1, . . . ,wd ).



The Newton polytope of f 0
w (t)

The Newton polytope of fw (t) is a d-dimensional simplex
∆ := conv(v0, v1, . . . , vd ) with lattice vertices v0, v1, . . . , vd
spanning the lattice Nw and satisfying the relation

∑d
i=0 wi vi = 0.

Example
Let w be a sequence of weights w0,w1, . . . ,wd such that w0 = 1.
Then there is an isomorphism Mw ∼= Zd such that the lattice
vectors v1, . . . , vd ∈ Zd can be chosen as the standard Z-basis and
v0 = (−w1, . . . ,−wd ). Then the Laurent polynomial
f 0
w ∈ C[t±1

1 , . . . , t±1
d ] has the form

f 0
w (t) =

d∑
i=0

tvi = 1
tw1
1 · · · t

wd
d

+ t1 + · · ·+ td .



The Laurent polynomial of Givental-Hori-Vafa

Example
If all weights wi are equal 1, we obtain the well-known polynomial

f 0(t) = 1
t1 · · · td

+ t1 + · · ·+ td

for usual d-dimensional projective space. It describes
Landau-Ginzburg mirror of Pd .



The Newton polytope of f 0
w (t)

The Newton polytope of the Giventatl-Hori-Vafa polynomial fw (t)
is the lattice simplex ∆w with lattice vertices v0, v1, . . . , vd ∈ Mw
generating the lattice Mw and satisfying the relation

d∑
i=0

wi vi = 0.

The origin 0 ∈ M is an interior lattice point of ∆w . It is easy to
show that the Laurent polynomial f 0

w (t) is non-degenerate.



Main theorem

Theorem (B., Schaller, 2020)
Let w = (w0,w1, . . . ,wd ) be a weight vector with IP-property. Let
Tw be d-dimensional algebraic torus with the lattice of characters
Mw := Zd+1/Zw . Denote by v0, v1, . . . , vd in the lattice points Mw
obtained from the standard basis of Zd+1. Then any
non-degenerate affine hypersurface Zw ⊆ Tw defined by a Laurent
polynomial with Newton polytope ∆∗w = conv(v0, . . . , vd ) admits a
Calabi-Yau compactification X ∗w and its stringy Euler number equals

χstr(X ∗w ) = (−1)d−1 1
w

w−1∑
l ,r=0

∏
0≤i≤d

lqi ,rqi∈Z

(
1− 1

qi

)
,

where qi = wi
w (i ∈ I). In particular,

χstr(X ∗w ) = (−1)d−1χorb(Xw ),

if w is transverse.



Mirror construction for quasi-smooth CY hypersurfaces

The above theorem supports the following:

Mirror Construction
Let w ∈ Zd+1

>0 be a transverse weight vector. Then mirrors of
quasi-smooth Calabi-Yau hypersurfaces Xw ⊂ P(w0,w1, . . . ,wd )
can be obtained as Calabi-Yau compactifications of non-degenerate
affine hypersurfaces Zw ⊂ T∗w defined by Laurent polynomials f
with the Newton polytope

∆∗w = conv(v0, v1, . . . , vd ).



Invertible polynomials

Definition
A transverse polynomial W ∈ C[z0, . . . , zd ] is called invertible if its
Newton polytope is a d-dimensional simplex with vertices

ν0, ν1, . . . , νd ∈ {Zd+1
≥0 ∩

d∑
i=0

wi ui = w}

and

W (z) =
d∑

i=0
zνi .



Bergulnd-Huebsch-Krawitz mirror construction

If a transverse weight vector w admits an invertible polynomial W ,
then the Bergulnd-Huebsch-Krawitz mirror construction suggests an
invertible homogenization W ′ of the Givental-Hori-Vafa Laurent
polynomial f 0

w as a G-invariant transverse Calabi-Yau hypersurface
in another weighted projective space P(w ′), where G is a finite
abelian diagonal group G . The quotient {W ′ = 0}/G is a mirror
Calabi-Yau compactification of the affine Givental-Hori-Vafa
hypersurface Z 0

w . We remark that the choice of an invertible
polynomial W is not unique. Different choices of W define different
Calabi-Yau compactification of the same affine hypersurface Z 0

w .

It is easy to see that the above mirror constuction is a generalization
of Berglund-Huebsch-Krawitz mirror construction for quasi-smooth
Calabi-Yau varieties defined by arbitrary transverse polynomials W .



Connection to reflexive polytopes

The proposed mirror construction for quasi-smooth Calabi-Yau
hypersurfaces in weighted projective spaces is different from the one
based on the duality for reflexive polytopes.



Reflexive Simplex ∆1 and its dual ∆∗1 = [∆∗1]

(−1,−1,−1)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1) ∆1

(a)

(−1,−1, 3)

(−1, 3,−1)

(−1,−1,−1)

(3,−1,−1)

∆∗
1 = [∆∗

1]

(b)

Figure: Reflexive Simplex ∆1 and its dual ∆∗
1 = [∆∗

1 ].
Source: Karin Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart Karls Univ. Tübingen, 2019.



Almost Reflexive Simplex ∆2 and its dual ∆∗2 > [∆∗2]

(−1,−1,−2)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1) ∆2

(a)

(−1,−1, 3/2)

(−1, 4,−1)

(−1,−1,−1)

(4,−1,−1)

∆∗
2

[∆∗
2]

(b)

Figure: Almost Reflexive Simplex ∆2 and its dual ∆∗
2 > [∆∗

2 ].
Source: Karin Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart Karls Univ. Tübingen, 2019.



Two examples of Skarke

Example 1
Take the weight vector w := (1, 1, 6, 14, 21). It has IP-property, but
it is not transverse. A general hypersurface X43 ⊆ P(1, 1, 6, 14, 21)
is a canonical Calabi-Yau variety, but it is not quasi-smooth. The
Newton polytope of X43 ⊂ P(1, 1, 6, 14, 21) is reflexive. Therefore,
X43 is birational to a smooth CY 3-fold Y with h1,1(Y ) = 21,
h2,1(Y ) = 273, and χ(Y ) = −504.
On the other hand, the affine hypersurface Zw ⊆ (C∗)4

1
t1t6

2 t14
3 t21

4
+ t1 + t2 + t3 + t4 = 0.

admits a Calabi-Yau compactification X ∗w with the stringy Euler
number

χstr(X ∗w ) = 506 6= 504 = −χstr(X43) = −χ(Y ).

Therefore, X ∗w is not a mirror of X43.



Two examples of Skarke

Example 2
Take the weight vector w := (1, 1, 2, 4, 5). It has IP-property, but it
is not transverse. A general hypersurface X13 ⊆ P(1, 1, 2, 4, 5) is a
canonical Calabi-Yau variety, but it is not quasi-smooth. Consider
the affine hypersurface Zw ⊆ (C∗)4

1
t1t2

2 t4
3 t5

4
+ t1 + t2 + t3 + t4 = 0.

It admits a Calabi-Yau compactification X ∗w . However, the stringy
Euler number

χstr(X ∗w ) = 1032
5 6∈ Z.

Therefore, X ∗w has no mirror at all.



Thank you !


