
Spinorial description of G2 and SU(3)-manifolds

Prof. Dr. habil. Ilka Agricola
Philipps-Universität Marburg

Beijing-Novosibirsk seminar on geometry and mathematical physics,
April 2021

– joint work with: Simon Chiossi, Giulia Dileo, Thomas Friedrich (†),
and Jos Höll –
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Relations between different objects on a Riemannian manifold (Mn, g):

geometric
structures

curvature, contact str.,

almost complex str. . .

solutions of
field eqs.

Ric = λ · g

Einstein eq., twistor eq.,

Killing eq., parallel tensor / spinor. . .

new invariant connection
∇ and its holonomy

adapted connection,

Berger’s thm if ∇ = ∇g

Hol(M ;∇) ⊂ SO(n)

N.B. ∇g := Levi-Civita connection
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Observation:

• ∃ multitude of different spinorial field equations, related to different
geometric structures and geometric questions

Goal:

• Uniform description of different types of spinor fields

• Applications
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The Riemannian Dirac operator

(Mn, g): compact Riemannian spin mnfd, Σ: spin bdle (of dim. 2[n/2])

Classical Riemannian Dirac operator Dg:

Dfn : Dg : Γ(Σ) −→ Γ(Σ), Dgψ :=
∑n
i=1 ei · ∇geiψ

Properties:

• Dg is elliptic differential operator of first order, essentially self-adjoint on
L2(Σ), pure point spectrum

• Of equal fundamental importance than the Laplacian

• In dimension 4: index(Dg) = σ(M4)/8 [Atiyah-Singer, ∼ 1963]

• Schrödinger (1932), Lichnerowicz (1962): (Dg)2 = ∆+ 1
4Scal

g

∼ ”‘root of the Laplacian”’ for Scalg = 0
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Spinors and Riemannian eigenvalue estimates

SL formula ⇒ EV of (Dg)2: λ ≥ 1
4 Scal

g
min

• optimal only for spinors with 〈∆ψ, ψ〉 = ‖∇gψ‖2 = 0, i. e. parallel spinors

Thm. (M,g) has parallel spinors iff Hol0(M) = SU(n), Sp(n), G2,Spin(7),
and then Ricg = 0. [Wang, 1989]

Thm. Optimal EV estimate: λ ≥ n

4(n− 1)
Scalgmin [Friedrich, 1980]

• ”=” iff ∃ a Killing spinor (KS) ψ: ∇gXψ = const ·X · ψ ∀X

Link to special geometries:

Thm. ∃ KS ⇔ n = 5 : (M, g) is Sasaki-Einstein mnfd

⇔ n = 6 : (M, g) nearly Kähler mnfd

⇔ n = 7 : (M, g) nearly parallel G2 mnfd

(similarly for other n) [Friedrich, Grunewald, Kath, 1985-90]
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Killing spinors and submanifolds

Thm. Suppose (M,g) is Sasaki-Einstein (n = 5), nearly Kähler (n = 6), or
nearly parallel G2 (n=7). Then the metric cone

(M̄, ḡ) := (M × R+, 14 r
2g2 + dr2)

has a ∇g-parallel spinor; in particular, it is Ricci-flat of Riemannian holonomy
SU(3), G2, resp.Spin(7). [Bryant 1987  B-Salamon 1989, Bär 1993 (+ Wang ’89)]

Observe: Construction relies on existence of a Killing spinor

Thm. Let (M, g) be a spin manifold with a ∇g-parallel spinor ψ, N ⊂M a
codimension one hypersurface. Then ϕ := ψ

∣
∣
N

is a generalized Killing spinor
on N , i. e. ∇gXϕ = A(X) ·ϕ for a symmetric endomorphism A (Weingarten
map). [Friedrich 1998, Bär-Gauduchon-Moroianu 2005]

Observe: Generalizes the Weierstraß representation of minimal surfaces,
based on ideas of Eisenhardt (1909)
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Link to special geometries:

Thm. ∃ gen. KS ⇔ n = 5 : (M, g) is hypo SU(2) mnfd

( 6⊂ contact metric mnfds) [Conti-Salamon, 2007]

⇔ n = 6 : (M,g) half-flat SU(3) mnfd

⇔ n = 7 : (M,g) cocalibrated G2 mnfd
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Spin structures and topology in dimension 6 and 7

Observation:

Any 8-dimensional real vector bundle over a n-dimensional manifold (n =
6, 7) admits a section of length one

⇒ a 6-dim. oriented Riemannian manifold admits a spin structure iff it
admits a reduction from Spin(6) ∼= SU(4) to SU(3)

⇒ a 7-dim. oriented Riemannian manifold admits a spin structure iff it
admits a reduction from Spin(7) to G2

Use this section to give a uniform spinorial description of SU(3)-
manifolds and G2-manifolds!
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Spin linear algebra in dimension 6 and 7

• In n = 6, 7, the spin representations are real and 23 = 8-dimensional, they
coincide as vector spaces, call it ∆ := R

8.

n = 6 [A-Fr-Chiossi-Höll, 2014]

• ∆ admits a Spin(6)-invariant cplx structure j (because Spin(6) ∼= SU(4))

• any real spinor 0 6= φ ∈ ∆ decomposes ∆ into three pieces,

∆ = R · φ⊕ R · j(φ)⊕ {X · φ : X ∈ R
6}

︸ ︷︷ ︸
∼=R6, the base space

(∗)

• the following formula defines an orthogonal cplx str. on the last piece,

Jφ(X) · φ := j(X · φ)

• the spinor defines a 3-form by ψφ(X,Y,Z) := −(X · Y · Z · φ, φ).

Exa. Consider φ = (0, 0, 0, 0, 0, 0, 0, 1) ∈ ∆ = R8. Then:

Jφ = −e12 + e34 + e56, ψφ = e135 − e146 + e236 + e245.
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Spin linear algebra in dimension 6 and 7

Thm. The following is a 1-1 correspondence: (well-known)

• SU(3)-structures on R6 ←→ real spinors of length one (modZ2),

SO(6)/SU(3) = {SU(3)-structures on R
6} = P(∆) = RP

7.

n = 7

• any real spinor 0 6= φ ∈ ∆ decomposes ∆ into two pieces,

∆ = R · φ⊕ {X · φ : X ∈ R
7}

︸ ︷︷ ︸
∼=R7, the base space

(∗∗)

• the spinor defines again a 3-form ψφ, which turns out to be stable (i. e. open
GL-orbit); but no analogue of neither j nor Jφ

Thm. The following is a 1-1 correspondence: (well-known)

stable 3-forms ψ of fixed length, with isotropy ⊂ SO(7)←→ . . . (as above),

SO(7)/G2 = P(∆) = RP
7.
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Special almost Hermitian geometry

• SU(3) manifold (M6, g, φ): Riemannian spin manifold (M6, g) equipped
with a global spinor φ of length one, j as before, J induced almost cplx str.,
ω its kähler form, ψφ induced 3-form, ψJφ := J ◦ ψφ.

Decomposition (∗)⇒ ∃1 1-form η and endomorphism S s. t.

∇gXφ = η(X)j(φ) + S(X) · φ

η: ”intrinsic 1-form”, S: ”intr. endomorphism” (indeed: Γ = Syψφ − 2
3η ⊗ ω)

This equation summarizes all spinor eqs. previously known in dim.6!

Thm. (∇gXω)(Y,Z) = 2ψJφ(S(X), Y, Z) (∗)

This generalizes the classical nK condition ∇gXω(X,Y ) = 0 ∀X,Y .
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A classical example: Hypersurfaces in ImO [Calabi, 1958]

• M6 a compact hypersurface in R7

• N : normal vector field
• K: shape operator (Weingarten map)
• Define J ∈ End(TM) by

J(Y ) = N × Y, Y ∈ TM
• J2 = −Id is a non integrable almost
complex structure satisfying

x TxS
2

y
J(y) := x× y

S2

for S2 ⊂ R3:

〈(∇gXJ)(Y ), Z〉 = 〈K(X)× Y,Z〉

This is exactly the more general eq. (∗) cited before

• For M6 = S6, K = Id and J makes it a nearly Kähler manifold:
∇gXJ(X) = 0 (⇒ Einstein)
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There are 7 basic classes of SU(3)-structures, called χ1, χ1̄, χ2, χ2̄, χ3, χ4, χ5.

[Chiossi-Salamon, 2002]

They are a refinement of the classical Gray-Hervella classification of U(3)-
structures. Write χ12̄4 for χ+

1 ⊕ χ−
2 ⊕ χ4 etc.

Examples.

• nearly Kähler mnfds: class χ1̄

• half-flat SU(3)-mnfds: class χ1̄2̄3

Next: express Niejenhuis tensor, dω, δω through ψjφ, η, S – for example:

• δω(X) = 2[(Dφ,Xj(φ))− η(X)] (χ4 component)

• N(X,Y,Z) = −2[ψJφ((JφS +SJφ)X,Y,Z)−ψJφ((JφS +SJφ)Y,X,Z)]
(χ11̄22̄ component)
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Thm. The classes of SU(3) str. are determined as follows:

class description dimension

χ1 S = λ · Jφ, η = 0 1

χ1̄ S = µ · Id, η = 0 1

χ2 S ∈ su(3), η = 0 8

χ2̄ S ∈ {A ∈ S2
0(R

6)|AJφ = JφA}, η = 0 8

χ3 S ∈ {A ∈ S2
0(R

6)|AJφ = −JφA}, η = 0 12

χ4 S ∈ {A ∈ Λ2(R6)|AJφ = −JφA}, η = 0 6

χ5 S = 0, η 6= 0 6

where λ, µ ∈ R. In particular S is symmetric and η = 0 if and only if the
class is χ1̄2̄3.

The symmetries of S translate into a differential eq. for φ:

SJφ = ±JφS ⇐⇒ (JφY∇gXφ, φ) = ∓(Y∇
g
JφX

φ, φ),

S is ±-symmetric ⇐⇒ (X∇gY φ, φ) = ±(Y∇
g
Xφ, φ).
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Thm. The classification of SU(3) str. in terms of φ is given by
(λ := 1

6(D
gφ, j(φ)), µ := −1

6(D
gφ, φ)): (. . . and similarly for mixed classes)

class spinorial equation

χ1 ∇gXφ = λXj(φ) for λ ∈ R

χ1̄ ∇gXφ = µXφ for µ ∈ R (Killing sp.)

χ2 (JφY∇gXφ, φ) = −(Y∇
g
JφX

φ, φ),

(Y∇gXφ, j(φ)) = +(X∇gY φ, j(φ)), λ = η = 0

χ2̄ (JφY∇gXφ, φ) = +(Y∇gJφXφ, φ),
(Y∇gXφ, j(φ)) = −(X∇

g
Y φ, j(φ)), µ = η = 0

χ3 (JφY∇gXφ, φ) = +(Y∇gJφXφ, φ),
(Y∇gXφ, j(φ)) = +(X∇gY φ, j(φ)), and η = 0

χ4 (JφY∇gXφ, φ) = −(Y∇
g
JφX

φ, φ),

(Y∇gXφ, j(φ)) = −(X∇
g
Y φ, j(φ)) and η = 0

χ5 ∇gXφ = (∇gXφ, j(φ)) j(φ)
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Corollary. On a 6-dim spin mnfd, ∃ spinor of constant length s. t.

Dgφ = 0

iff admits a SU(3) structure of class χ22̄345 with δω = −2η.
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Example: twistor spaces as SU(3)-manifolds

• M6 = CP
3, U(3)/U(1)3: twistor spaces of S4 and CP

2. Both carry
metrics gt(t > 0) and two almost complex structures ΩK,ΩnK such that

- (M6, g1/2,Ω
nK) is a nearly Kähler manifold

- (M6, g1,Ω
K) is a Kähler manifold

• ∃ two real linearly indep. global spinors φε in ∆6 (ε = ±1).
Both spinors induce the same almost cplx structure Jφ (⇔ ΩnK)!

• For t = 1/2, φε are Riemannian Killing spinors. For general t, define

Sε : TM
6→ TM6 by Sε = ε

√
c · diag

(√
t

2 ,
√
t

2 ,
√
t

2 ,
√
t

2 ,
1−t
2
√
t
, 1−t
2
√
t

)

.

Verify: ∇gXφε = Sε(X)φε, hence Sε is the intr. endom. and η = 0.

• Class: χ1̄2̄ for t 6= 1/2, χ1̄ for t = 1/2.

• For t = 1, φε are Kählerian Killing spinors, but they do not induce the
Kählerian cplx str. ΩK! Thus, the Kählerian structure cannot be recovered
from the pair of Kählerian Killing spinors (only a U(3)-reduction).
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Characteristic connections

For all classes, an adapted metric connection ∇ can be defined.

torsion: T (X,Y,Z) := g(∇XY −∇YX − [X,Y ], Z)

Special case: require T ∈ Λ3(Mn) (⇔ same geodesics as ∇g)

⇒ g(∇XY,Z) = g(∇gXY,Z) + 1
2 T (X,Y,Z)

• If existent, such a connection is unique and called the ‘characteristic
connection’ [Fr-Ivanov 2002, A-Fr-Höll 2013]

Thm. A spin manifold (M6, g, φ) admits a characteristic connection ∇ iff it
is of class χ11̄345 and η = 1

4 δ ω. It satisfies ∇φ = 0.

Corollary. Whenever ∇ exists,

φ ∈ kerDg ⇐⇒ Tφ = 0 ⇐⇒ the SU(3)-class is χ3(almost Hermitian).
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G2 geometry

• G2 manifold (M7, g, φ): Riemannian spin manifold (M7, g) equipped with
a global spinor φ of length one, ψφ induced 3-form.

Decomposition (∗∗)⇒ ∃1 endomorphism S s. t.

∇gXφ = S(X) · φ

S: ”intrinsic endomorphism” (indeed: Γ = −2
3Syψφ)

Thm. (∇gV ψφ)(X,Y,Z) = 2 ∗ ψφ(S(V ),X, Y, Z).

This generalizes the nearly parallel G2 condition ∇ψφ = dψφ = c ∗ ψφ!

There are 4 basic classes of G2-structures, called W1, . . . ,W4.

[Fernandez-Gray, 1982]
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Thm. The classes of G2 structures are determined as follows:

class description dimension

W1 S = λ Id 1

W2 S ∈ g2 14

W3 S ∈ S2
0R

7 27

W4 S ∈ {V yΨφ | V ∈ R7} 7

In particular, S is symmetric if and only if S ∈ W13 and skew iff it belongs
to W24.

Corollary. Let (M7, g, φ) be a Riemannian spin manifold with unit spinor φ.
Then φ is harmonic

Dgφ = 0

iff the underlying G2-structure is of class W23.
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Thm. The basic classes of G2-manifolds described in terms of φ:

(λ := −1
7(D

gφ, φ) : M → R is a real function and × the cross product
relative to Ψφ)

class spinorial equation

W1 ∇gXφ = λXφ (Killing spinor)

W2 ∇gX×Y φ = Y∇gXφ−X∇
g
Y φ+ 2g(Y, S(X))φ

W3 (X∇gY φ, φ) = (Y∇gXφ, φ) and λ = 0

W4 ∇gXφ = XV φ+ g(V,X)φ for some V ∈ TM7

W12 ∇gX×Y φ = Y∇gXφ−X∇
g
Y φ+ g(Y, S(X))φ− g(X,S(Y ))φ− λ(X × Y )φ

W13 (X∇gY φ, φ) = (Y∇gXφ, φ)
W14 ∃V,W ∈ TM7 : ∇gXφ = XVWφ− (XVWφ, φ)

W23 Sφ = 0 and λ = 0, or Dgφ = 0

W24 (X∇gY φ, φ) = −(Y∇
g
Xφ, φ)
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Example: 7-dim. 3(α, δ)-Sasaki mnfds

Dfn. An almost 3-contact metric manifold is a Riemannian manifold
(M4n+3, g) endowed with 3 almost contact structures (φi, ξi, ηi), i = 1, 2, 3
s.t. g is compatible with each a.c.str. and

ϕk = ϕiϕj − ηj ⊗ ξi = −ϕjϕi + ηi ⊗ ξj,
ξk = ϕiξj = −ϕjξi, ηk = ηi ◦ ϕj = −ηj ◦ ϕi,

(1)

for any even permutation (i, j, k) of (1, 2, 3).

• TM = H⊕ V , where H :=
⋂3
i=1Ker(ηi), V := 〈ξ1, ξ2, ξ3〉.

Dfn. An a. 3-c. m.m. M will be called a 3-(α, δ)-Sasaki manifold if

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk

for every even permutation (i, j, k) of (1, 2, 3), where α ∈ R
∗, δ ∈ R.
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• When α = δ = 1, we have a 3-contact metric manifold, and hence a
3-Sasaki manifold by a theorem of Kashiwada

• Quat. Heisenberg groups are examples with δ = 0

• Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian Killing
spinors

• each a.c. structure ηi induces a characteristic connection ∇i, but ∇1 6=
∇2 6= ∇3?!?

Thm. Let 7 be a 3-(α, δ)-Sasaki manifold. There exists a cocalibrated G2-
structure with char. connection ∇ with parallel spinor ψ with the properties:

• ∇ preserves V and H, and ∇T = 0

• ψ and ξi · ψ are generalized Riemannian Killing spinors on M7

[A-Dileo, 2019]

Observe: Only known example of gKS where endom. has three different
eigenvalues
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Application: cone constructions

• How to construct G2-str. of any class on cones over SU(3)-manifolds?

Start with (M6, g, φ) with intrinsic torsion (S, η). Choose a function h =
h1 + ih2 : I → S1 and define by

φt := h(t)φ := h1(t)φ+ h2(t)j(φ)

a new family of SU(3)-structures on M6 depending on t ∈ I .

Conformally rescale the metric by some function f : I → R+ and consider

M6
t := (M6, f(t)2g, φt). Intrinsic torsion of M6

t : (h
2

f S, η).

Dfn. spin cone over M6: (M̄7, ḡ) = (M6 × I, f2(t)g + dt2) with spinor φt.

Exa. Suppose we want M̄7 to be a nearly parallel G2-manifold:
need h′/h constant, so h(t) = exp(i(ct + d)), c, d ∈ R.
Easiest: sine cone (M6 × (0, π), sin(t)2g + dt2, eit/2φ) [Fernández-Ivanov-

Muñoz-Ugarte, 2008; Stock, 2009]

• Similarly, we can construct G2-manifolds of any desired pure class
(construction really uses the spinor!).
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To conclude:

Obtained a uniform description of all possible defining spinorial differential
eqs. on 6-dim. SU(3)-manifolds and G2-manifolds, generalizing Killing
spinors, generalized Killing spinors, quasi-Killing spinors [Friedrich-Kim,

2000]. . .

So far, all spinors encountered are generalized Killing spinor with torsion
(gKST), i. e.

∇φ = A(X) · φ

for some endomorphism A : TM6 → TM6; but the same eq. can be
expressed in different ways.

• Not the differential eq. is the basic object, but rather the G-structure!
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