

Spinorial description of G_2 and SU(3)-manifolds

Prof. Dr. habil. Ilka Agricola Philipps-Universität Marburg

perspective=central; pmec_z=150.0; padluz=10.0;

Beijing-Novosibirsk seminar on geometry and mathematical physics, April 2021

– joint work with: Simon Chiossi, Giulia Dileo, Thomas Friedrich (†), and Jos Höll –

Relations between different objects on a Riemannian manifold (M^n, g) :

N.B. $\nabla^g :=$ Levi-Civita connection

Observation:

• \exists multitude of different spinorial field equations, related to different geometric structures and geometric questions

Goal:

- Uniform description of different types of spinor fields
- Applications

The Riemannian Dirac operator

 (M^n,g) : compact Riemannian spin mnfd, Σ : spin bdle (of dim. $2^{[n/2]}$)

Classical Riemannian Dirac operator D^g :

Dfn: $D^g: \Gamma(\Sigma) \longrightarrow \Gamma(\Sigma), \quad D^g \psi := \sum_{i=1}^n e_i \cdot \nabla^g_{e_i} \psi$

Properties:

• D^g is elliptic differential operator of first order, essentially self-adjoint on $L^2(\Sigma),$ pure point spectrum

- Of equal fundamental importance than the Laplacian
- In dimension 4: $index(D^g) = \sigma(M^4)/8$

[Atiyah-Singer, \sim 1963]

 $(D^g)^2 = \Delta + \frac{1}{4} \mathrm{Scal}^g$

 \sim "'root of the Laplacian"' for $\mathrm{Scal}^g=0$

Spinors and Riemannian eigenvalue estimates

SL formula \Rightarrow EV of $(D^g)^2$: $\lambda \geq \frac{1}{4} \operatorname{Scal}_{\min}^g$

• optimal only for spinors with $\langle \Delta \psi, \psi \rangle = \| \nabla^g \psi \|^2 = 0$, i.e. parallel spinors

Thm. (M,g) has parallel spinors iff $Hol_0(M) = SU(n), Sp(n), G_2, Spin(7)$, and then $Ric^g = 0$. [Wang, 1989]

Thm. Optimal EV estimate:
$$\lambda \ge \frac{n}{4(n-1)} \operatorname{Scal}_{\min}^g$$
 [Friedrich, 1980]

• "=" iff \exists a Killing spinor (KS) ψ : $\nabla^g_X \psi = \text{const} \cdot X \cdot \psi \quad \forall X$

Link to special geometries:

Thm. \exists KS \Leftrightarrow n = 5 : (M, g) is Sasaki-Einstein mnfd $\Leftrightarrow n = 6 : (M, g)$ nearly Kähler mnfd $\Leftrightarrow n = 7 : (M, g)$ nearly parallel G_2 mnfd

(similarly for other n)

[Friedrich, Grunewald, Kath, 1985-90] 4

Killing spinors and submanifolds

Thm. Suppose (M,g) is Sasaki-Einstein (n = 5), nearly Kähler (n = 6), or nearly parallel G_2 (n=7). Then the metric cone

$$(\bar{M}, \bar{g}) := (M \times \mathbb{R}^+, \frac{1}{4}r^2g^2 + dr^2)$$

has a ∇^g -parallel spinor; in particular, it is Ricci-flat of Riemannian holonomy $SU(3), G_2$, resp. Spin(7). [Bryant 1987 \rightsquigarrow B-Salamon 1989, Bär 1993 (+ Wang '89)]

Observe: Construction relies on existence of a Killing spinor

Thm. Let (M, g) be a spin manifold with a ∇^g -parallel spinor ψ , $N \subset M$ a codimension one hypersurface. Then $\varphi := \psi |_N$ is a *generalized Killing spinor* on N, i.e. $\nabla^g_X \varphi = A(X) \cdot \varphi$ for a symmetric endomorphism A (Weingarten map). [Friedrich 1998, Bär-Gauduchon-Moroianu 2005]

Observe: Generalizes the Weierstraß representation of minimal surfaces, based on ideas of Eisenhardt (1909)

Link to special geometries:

Thm. \exists gen. KS $\Leftrightarrow n = 5 : (M, g)$ is hypo SU(2) mnfd ($\not\subset$ contact metric mnfds) [Conti-Salamon, 2007] $\Leftrightarrow n = 6 : (M, g)$ half-flat SU(3) mnfd $\Leftrightarrow n = 7 : (M, g)$ cocalibrated G_2 mnfd

Spin structures and topology in dimension 6 and 7

Observation:

Any 8-dimensional real vector bundle over a n-dimensional manifold (n = 6, 7) admits a section of length one

 \Rightarrow a 6-dim. oriented Riemannian manifold admits a spin structure iff it admits a reduction from $Spin(6)\cong SU(4)$ to SU(3)

 \Rightarrow a 7-dim. oriented Riemannian manifold admits a spin structure iff it admits a reduction from Spin(7) to G_2

Use this section to give a uniform spinorial description of SU(3)-manifolds and G_2 -manifolds!

Spin linear algebra in dimension 6 and 7

• In n = 6, 7, the spin representations are real and $2^3 = 8$ -dimensional, they coincide as vector spaces, call it $\Delta := \mathbb{R}^8$.

$$\underline{n=6}$$
 [A-Fr-Chiossi-Höll, 2014]

- Δ admits a Spin(6)-invariant cplx structure j (because Spin(6) \cong SU(4))
- any real spinor $0 \neq \phi \in \Delta$ decomposes Δ into three pieces,

$$\Delta = \mathbb{R} \cdot \phi \oplus \mathbb{R} \cdot j(\phi) \oplus \underbrace{\{X \cdot \phi \, : \, X \in \mathbb{R}^6\}}_{\cong \mathbb{R}^6, \text{ the base space}} \tag{(*)}$$

• the following formula defines an orthogonal cplx str. on the last piece,

$$J_{\phi}(X) \cdot \phi := j(X \cdot \phi)$$

• the spinor defines a 3-form by $\psi_{\phi}(X, Y, Z) := -(X \cdot Y \cdot Z \cdot \phi, \phi).$

Exa. Consider $\phi = (0, 0, 0, 0, 0, 0, 0, 1) \in \Delta = \mathbb{R}^8$. Then:

$$J_{\phi} = -e_{12} + e_{34} + e_{56}, \quad \psi_{\phi} = e_{135} - e_{146} + e_{236} + e_{245}.$$

Spin linear algebra in dimension 6 and 7

Thm. The following is a 1-1 correspondence: (well-known)

• SU(3)-structures on $\mathbb{R}^6 \longleftrightarrow$ real spinors of length one $(\mathrm{mod}\mathbb{Z}_2)$,

 $SO(6)/SU(3) = {SU(3)-structures on \mathbb{R}^6} = \mathbb{P}(\Delta) = \mathbb{RP}^7.$

 $\underline{n=7}$

• any real spinor $0 \neq \phi \in \Delta$ decomposes Δ into two pieces,

$$\Delta = \mathbb{R} \cdot \phi \oplus \underbrace{\{X \cdot \phi \, : \, X \in \mathbb{R}^7\}}_{\cong \mathbb{R}^7, \text{ the base space}} \tag{**}$$

• the spinor defines again a 3-form ψ_{ϕ} , which turns out to be *stable* (i. e. open GL-orbit); but no analogue of neither j nor J_{ϕ}

Thm. The following is a 1-1 correspondence: (well-known) stable 3-forms ψ of fixed length, with isotropy $\subset SO(7) \longleftrightarrow \ldots$ (as above),

$$\operatorname{SO}(7)/G_2 = \mathbb{P}(\Delta) = \mathbb{RP}^7.$$

9

Special almost Hermitian geometry

• SU(3) manifold (M^6, g, ϕ) : Riemannian spin manifold (M^6, g) equipped with a global spinor ϕ of length one, j as before, J induced almost cplx str., ω its kähler form, ψ_{ϕ} induced 3-form, $\psi_{\phi}^J := J \circ \psi_{\phi}$.

Decomposition $(*) \Rightarrow \exists_1 \text{ 1-form } \eta \text{ and endomorphism } S \text{ s.t.}$

$$\nabla_X^g \phi = \eta(X) j(\phi) + S(X) \cdot \phi$$

 η : "intrinsic 1-form", S: "intr. endomorphism" (indeed: $\Gamma = S \lrcorner \psi_{\phi} - \frac{2}{3}\eta \otimes \omega$)

This equation summarizes all spinor eqs. previously known in dim.6!

Thm.
$$(\nabla^g_X \omega)(Y, Z) = 2\psi^J_\phi(S(X), Y, Z)$$
 (*)

This generalizes the classical nK condition $\nabla^g_X \omega(X,Y) = 0 \ \forall X,Y$.

A classical example: Hypersurfaces in $\operatorname{Im} \mathbb{O}$

- M^6 a compact hypersurface in \mathbb{R}^7
- N: normal vector field
- K: shape operator (Weingarten map)
- Define $J \in \operatorname{End}(TM)$ by

 $J(Y) = N \times Y, \quad Y \in TM$

• $J^2 = -\text{Id}$ is a non integrable almost complex structure satisfying

for $S^2 \subset \mathbb{R}^3$:

$$\langle (\nabla^g_X J)(Y), Z \rangle = \langle K(X) \times Y, Z \rangle$$

This is exactly the more general eq. (*) cited before

• For $M^6 = S^6$, K = Id and J makes it a nearly Kähler manifold: $\nabla^g_X J(X) = 0 \implies \text{Einstein}$ There are 7 basic classes of SU(3)-structures, called $\chi_1, \chi_{\bar{1}}, \chi_2, \chi_{\bar{2}}, \chi_3, \chi_4, \chi_5$.

[Chiossi-Salamon, 2002]

They are a refinement of the classical Gray-Hervella classification of U(3)-structures. Write $\chi_{1\bar{2}4}$ for $\chi_1^+ \oplus \chi_2^- \oplus \chi_4$ etc.

Examples.

- nearly Kähler mnfds: class $\chi_{\bar{1}}$
- half-flat SU(3)-mnfds: class $\chi_{\bar{1}\bar{2}3}$

Next: express Niejenhuis tensor, $d\omega$, $\delta\omega$ through ψ^{j}_{ϕ} , η , S – for example:

• $\delta\omega(X) = 2[(D\phi, Xj(\phi)) - \eta(X)] (\chi_4 \text{ component})$

• $N(X, Y, Z) = -2[\psi_{\phi}^{J}((J_{\phi}S + SJ_{\phi})X, Y, Z) - \psi_{\phi}^{J}((J_{\phi}S + SJ_{\phi})Y, X, Z)]$ ($\chi_{1\bar{1}2\bar{2}}$ component)

Thm. The classes of $SU(3)$ str	. are determined as follows:
--	------------------------------

class	description	dimension
χ_1	$S=\lambda\cdot J_{\phi}$, $\eta=0$	1
$\chi_{\bar{1}}$	$S = \mu \cdot \operatorname{Id}, \ \eta = 0$	1
χ_2	$S\in\mathfrak{su}(3)$, $\eta=0$	8
$\chi_{ar{2}}$	$S\in\{A\in S^2_0(\mathbb{R}^6) AJ_\phi=J_\phi A\}$, $\eta=0$	8
χ_3	$S \in \{A \in S_0^2(\mathbb{R}^6) AJ_\phi = -J_\phi A\}, \ \eta = 0$	12
χ_4	$S \in \{A \in \Lambda^2(\mathbb{R}^6) AJ_\phi = -J_\phi A\}, \ \eta = 0$	6
χ_5	$S=0$, $\eta eq 0$	6

where $\lambda, \mu \in \mathbb{R}$. In particular S is symmetric and $\eta = 0$ if and only if the class is $\chi_{\bar{1}\bar{2}3}$.

The symmetries of S translate into a differential eq. for ϕ :

$$SJ_{\phi} = \pm J_{\phi}S \iff (J_{\phi}Y\nabla_X^g\phi, \phi) = \mp (Y\nabla_{J_{\phi}X}^g\phi, \phi),$$

$$S \text{ is } \pm \text{-symmetric} \iff (X\nabla_Y^g\phi, \phi) = \pm (Y\nabla_X^g\phi, \phi).$$

Thm. The classification of SU(3) str. in terms of ϕ is given by $(\lambda := \frac{1}{6}(D^g\phi, j(\phi)), \ \mu := -\frac{1}{6}(D^g\phi, \phi)):$ (... and similarly for mixed classes)

class	spinorial equation
χ_1	$\nabla^g_X \phi = \lambda X j(\phi) \text{ for } \lambda \in \mathbb{R}$
$\chi_{\bar{1}}$	$ abla^g_X \phi = \mu X \phi ext{ for } \mu \in \mathbb{R}$ (Killing sp.)
χ_2	$(J_{\phi}Y \nabla^g_X \phi, \phi) = -(Y \nabla^g_{J_{\phi}X} \phi, \phi),$
	$(Y \nabla^g_X \phi, j(\phi)) = + (X \nabla^g_Y \phi, j(\phi)), \ \lambda = \eta = 0$
$\chi_{ar{2}}$	$(J_{\phi}Y \nabla^g_X \phi, \phi) = + (Y \nabla^g_{J_{\phi}X} \phi, \phi),$
	$(Y \nabla^g_X \phi, j(\phi)) = -(X \nabla^g_Y \phi, j(\phi)), \ \mu = \eta = 0$
χ_3	$(J_{\phi}Y \nabla^g_X \phi, \phi) = + (Y \nabla^g_{J_{\phi}X} \phi, \phi),$
	$(Y \nabla^g_X \phi, j(\phi)) = + (X \nabla^g_Y \phi, j(\phi))$, and $\eta = 0$
χ_4	$(J_{\phi}Y \nabla^g_X \phi, \phi) = -(Y \nabla^g_{J_{\phi}X} \phi, \phi),$
	$(Y abla^g_X \phi, j(\phi)) = -(X abla^g_Y \phi, j(\phi))$ and $\eta = 0$
χ_5	$\nabla^g_X \phi = (\nabla^g_X \phi, j(\phi)) j(\phi)$

Corollary. On a 6-dim spin mnfd, \exists spinor of constant length s.t.

$$D^g \phi = 0$$

iff admits a SU(3) structure of class $\chi_{2\bar{2}345}$ with $\delta \omega = -2\eta$.

Example: twistor spaces as SU(3)-manifolds

• $M^6 = \mathbb{CP}^3$, $U(3)/U(1)^3$: twistor spaces of S^4 and \mathbb{CP}^2 . Both carry metrics $g_t(t > 0)$ and two almost complex structures $\Omega^{\mathrm{K}}, \Omega^{\mathrm{nK}}$ such that

- $(M^6, g_{1/2}, \Omega^{\rm nK})$ is a nearly Kähler manifold
- $(M^6,g_1,\Omega^{\rm K})$ is a Kähler manifold

• \exists two real linearly indep. global spinors ϕ_{ε} in Δ_6 ($\varepsilon = \pm 1$). **Both spinors** induce the same almost cplx structure J_{ϕ} ($\Leftrightarrow \Omega^{nK}$)!

• For t = 1/2, ϕ_{ε} are Riemannian Killing spinors. For general t, define $S_{\varepsilon}: TM^6 \to TM^6$ by $S_{\varepsilon} = \varepsilon \sqrt{c} \cdot \operatorname{diag}\left(\frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{1-t}{2\sqrt{t}}, \frac{1-t}{2\sqrt{t}}\right).$

Verify: $\nabla_X^g \phi_{\varepsilon} = S_{\varepsilon}(X)\phi_{\varepsilon}$, hence S_{ε} is the intr. endom. and $\eta = 0$.

• Class:
$$\chi_{\bar{1}\bar{2}}$$
 for $t \neq 1/2$, $\chi_{\bar{1}}$ for $t = 1/2$.

• For t = 1, ϕ_{ε} are Kählerian Killing spinors, but they *do not* induce the Kählerian cplx str. Ω^{K} ! Thus, the Kählerian structure cannot be recovered from the pair of Kählerian Killing spinors (only a U(3)-reduction).

Characteristic connections

For all classes, an adapted metric connection ∇ can be defined.

torsion:
$$T(X, Y, Z) := g(\nabla_X Y - \nabla_Y X - [X, Y], Z)$$

Special case: require $T \in \Lambda^3(M^n)$ (\Leftrightarrow same geodesics as ∇^g)

$$\Rightarrow g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2}T(X, Y, Z)$$

• If existent, such a connection is unique and called the *'characteristic connection'* [Fr-Ivanov 2002, A-Fr-Höll 2013]

Thm. A spin manifold (M^6, g, ϕ) admits a characteristic connection ∇ iff it is of class $\chi_{1\bar{1}345}$ and $\eta = \frac{1}{4} \delta \omega$. It satisfies $\nabla \phi = 0$.

Corollary. Whenever ∇ exists,

 $\phi \in \ker D^g \iff T\phi = 0 \iff \text{the SU}(3)\text{-class is } \chi_3(\text{almost Hermitian}).$

G_2 geometry

• G_2 manifold (M^7, g, ϕ) : Riemannian spin manifold (M^7, g) equipped with a global spinor ϕ of length one, ψ_{ϕ} induced 3-form.

Decomposition $(**) \Rightarrow \exists_1$ endomorphism S s.t.

$$\nabla^g_X \phi = S(X) \cdot \phi$$

S: "intrinsic endomorphism" (indeed: $\Gamma = -\frac{2}{3}S \lrcorner \psi_{\phi}$)

Thm. $(\nabla_V^g \psi_\phi)(X, Y, Z) = 2 * \psi_\phi(S(V), X, Y, Z).$

This generalizes the nearly parallel G_2 condition $\nabla \psi_{\phi} = d\psi_{\phi} = c * \psi_{\phi}!$

There are 4 basic classes of G_2 -structures, called $\mathcal{W}_1, \ldots, \mathcal{W}_4$.

[Fernandez-Gray, 1982]

Thm. The classes of G_2 structures are determined as follows:

class	description	dimension
\mathcal{W}_1	$S = \lambda \operatorname{Id}$	1
\mathcal{W}_2	$S \in \mathfrak{g}_2$	14
\mathcal{W}_3	$S\in S_0^2\mathbb{R}^7$	27
\mathcal{W}_4	$S \in \{ V \lrcorner \Psi_{\phi} \mid V \in \mathbb{R}^7 \}$	7

In particular, S is symmetric if and only if $S \in W_{13}$ and skew iff it belongs to W_{24} .

Corollary. Let (M^7, g, ϕ) be a Riemannian spin manifold with unit spinor ϕ . Then ϕ is harmonic

$$D^g \phi = 0$$

iff the underlying G_2 -structure is of class \mathcal{W}_{23} .

Thm. The basic classes of G_2 -manifolds described in terms of ϕ :

 $(\lambda := -\frac{1}{7}(D^g\phi,\phi) : M \to \mathbb{R}$ is a real function and \times the cross product relative to Ψ_{ϕ})

class	spinorial equation
\mathcal{W}_1	$ abla^g_X \phi = \lambda X \phi$ (Killing spinor)
\mathcal{W}_2	$\nabla^g_{X \times Y} \phi = Y \nabla^g_X \phi - X \nabla^g_Y \phi + 2g(Y, S(X))\phi$
\mathcal{W}_3	$(X \nabla^g_Y \phi, \phi) = (Y \nabla^g_X \phi, \phi) \text{ and } \lambda = 0$
\mathcal{W}_4	$\nabla^g_X \phi = XV\phi + g(V,X)\phi \text{for some } V \in TM^7$
\mathcal{W}_{12}	$\nabla_{X \times Y}^{g} \phi = Y \nabla_{X}^{g} \phi - X \nabla_{Y}^{g} \phi + g(Y, S(X))\phi - g(X, S(Y))\phi - \lambda(X \times Y)\phi$
\mathcal{W}_{13}	$(X\nabla_Y^g \phi, \phi) = (Y\nabla_X^g \phi, \phi)$
\mathcal{W}_{14}	$\exists V, W \in TM^7: \ \nabla^g_X \phi = XVW\phi - (XVW\phi, \phi)$
\mathcal{W}_{23}	$S\phi=0$ and $\lambda=0$, or $D^g\phi=0$
\mathcal{W}_{24}	$(X\nabla_Y^g \phi, \phi) = -(Y\nabla_X^g \phi, \phi)$

Example: 7-dim. $3(\alpha, \delta)$ -Sasaki mnfds

Dfn. An almost 3-contact metric manifold is a Riemannian manifold (M^{4n+3}, g) endowed with 3 almost contact structures (ϕ_i, ξ_i, η_i) , i = 1, 2, 3 s.t. g is compatible with each a.c.str. and

$$\varphi_{k} = \varphi_{i}\varphi_{j} - \eta_{j} \otimes \xi_{i} = -\varphi_{j}\varphi_{i} + \eta_{i} \otimes \xi_{j},$$

$$\xi_{k} = \varphi_{i}\xi_{j} = -\varphi_{j}\xi_{i}, \quad \eta_{k} = \eta_{i} \circ \varphi_{j} = -\eta_{j} \circ \varphi_{i},$$
(1)

for any even permutation (i, j, k) of (1, 2, 3).

•
$$TM = \mathcal{H} \oplus \mathcal{V}$$
, where $\mathcal{H} := \bigcap_{i=1}^{3} \operatorname{Ker}(\eta_{i}), \quad \mathcal{V} := \langle \xi_{1}, \xi_{2}, \xi_{3} \rangle.$

Dfn. An a. 3-c. m. m. M will be called a $3-(\alpha, \delta)$ -Sasaki manifold if

$$d\eta_i = 2\alpha \Phi_i + 2(\alpha - \delta)\eta_j \wedge \eta_k$$

for every even permutation (i, j, k) of (1, 2, 3), where $\alpha \in \mathbb{R}^*, \delta \in \mathbb{R}$.

• When $\alpha = \delta = 1$, we have a 3-contact metric manifold, and hence a 3-Sasaki manifold by a theorem of Kashiwada

• Quat. Heisenberg groups are examples with $\delta=0$

• Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian Killing spinors

• each a.c. structure η_i induces a characteristic connection ∇^i , but $\nabla^1 \neq \nabla^2 \neq \nabla^3$?!?

Thm. Let ⁷ be a 3- (α, δ) -Sasaki manifold. There exists a cocalibrated G_2 -structure with char. connection ∇ with parallel spinor ψ with the properties:

•
$$\nabla$$
 preserves $\mathcal V$ and $\mathcal H$, and $\nabla T=0$

• ψ and $\xi_i \cdot \psi$ are generalized Riemannian Killing spinors on M^7

[A-Dileo, 2019]

Observe: Only known example of gKS where endom. has three different eigenvalues

Application: cone constructions

• How to construct G_2 -str. of any class on cones over SU(3)-manifolds?

Start with (M^6, g, ϕ) with intrinsic torsion (S, η) . Choose a function $h = h_1 + ih_2 : I \to S^1$ and define by

$$\phi_t := h(t)\phi := h_1(t)\phi + h_2(t)j(\phi)$$

a new family of SU(3)-structures on M^6 depending on $t \in I$.

Conformally rescale the metric by some function $f: I \to \mathbb{R}_+$ and consider $M_t^6 := (M^6, f(t)^2 g, \phi_t)$. Intrinsic torsion of $M_t^6 : (\frac{h^2}{f}S, \eta)$.

Dfn. spin cone over M^6 : $(\overline{M}^7, \overline{g}) = (M^6 \times I, f^2(t)g + dt^2)$ with spinor ϕ_t .

Exa. Suppose we want \overline{M}^7 to be a nearly parallel G_2 -manifold: need h'/h constant, so $h(t) = \exp(i(ct + d)), c, d \in \mathbb{R}$. Easiest: sine cone $(M^6 \times (0, \pi), \sin(t)^2 g + dt^2, e^{it/2}\phi)$ [Fernández-Ivanov-Muñoz-Ugarte, 2008; Stock, 2009]

• Similarly, we can construct G_2 -manifolds of any desired pure class (construction really uses the spinor!).

To conclude:

Obtained a uniform description of all possible defining spinorial differential eqs. on 6-dim. SU(3)-manifolds and G_2 -manifolds, generalizing Killing spinors, generalized Killing spinors, quasi-Killing spinors [Friedrich-Kim, 2000]...

So far, all spinors encountered are *generalized Killing spinor with torsion* (gKST), i.e.

$$\nabla \phi = A(X) \cdot \phi$$

for some endomorphism $A: TM^6 \to TM^6$; but the same eq. can be expressed in different ways.

• Not the differential eq. is the basic object, but rather the *G*-structure!

References

Ilka Agricola, Simon G. Chiossi, Thomas Friedrich, Jos Höll, *Spinorial description of* SU(3)and G_2 -manifolds, J. Geom. Phys. 98 (2015), 535-555.

Ilka Agricola, Jos Höll, *Cones of G-manifolds and Killing spinors with skew torsion*, Ann. Mat. Pura Appl. 194 (2015), 673-718.

Ilka Agricola, Thomas Friedrich, 3-Sasakian manifolds in dimension seven, their spinors and G_2 -Structures, J. Geom. Phys. 60 (2010), 326-332.

Ilka Agricola, Giulia Dileo, *Generalizations of 3-Sasakian manifolds and skew torsion*, Adv. Geom. 20 (2020), 331-374.

Another application:

Ilka Agricola, Julia Becker-Bender, Hwajeong Kim, *Twistorial eigenvalue estimates for generalized Dirac operators with torsion*, Adv. Math. 243 (2013), 296-329.

* * *

Ilka Agricola, *The Srní lectures on non-integrable geometries with torsion* with an appendix by Mario Kassuba [pdf-file], Arch. Math. 42 (2006), 5-84.