Spinorial description of G_{2} and $\mathrm{SU}(3)$-manifolds

Prof. Dr. habil. Ilka Agricola

Philipps-Universität Marburg

Beijing-Novosibirsk seminar on geometry and mathematical physics, April 2021

- joint work with: Simon Chiossi, Giulia Dileo, Thomas Friedrich (\dagger), and Jos Höll -

Relations between different objects on a Riemannian manifold $\left(M^{n}, g\right)$:

Killing eq., parallel tensor / spinor.
N.B. $\nabla^{g}:=$ Levi-Civita connection

Observation:

- \exists multitude of different spinorial field equations, related to different geometric structures and geometric questions

Goal:

- Uniform description of different types of spinor fields
- Applications

The Riemannian Dirac operator

$\left(M^{n}, g\right)$: compact Riemannian spin mnfd, Σ : spin bdle (of dim. $2^{[n / 2]}$)
Classical Riemannian Dirac operator D^{g} :
Dfn: $\quad D^{g}: \Gamma(\Sigma) \longrightarrow \Gamma(\Sigma), \quad D^{g} \psi:=\sum_{i=1}^{n} e_{i} \cdot \nabla_{e_{i}}^{g} \psi$
Properties:

- D^{g} is elliptic differential operator of first order, essentially self-adjoint on $L^{2}(\Sigma)$, pure point spectrum
- Of equal fundamental importance than the Laplacian
- In dimension 4: index $\left(D^{g}\right)=\sigma\left(M^{4}\right) / 8$
[Atiyah-Singer, ~ 1963]
- S_chrödinger (1932), Lichnerowicz (1962):
$\left(D^{g}\right)^{2}=\Delta+\frac{1}{4} \mathrm{Scal}^{g}$
\sim "'root of the Laplacian"' for $\mathrm{Scal}^{g}=0$

Spinors and Riemannian eigenvalue estimates

SL formula $\Rightarrow \mathrm{EV}$ of $\left(D^{g}\right)^{2}: \quad \lambda \geq \frac{1}{4} \mathrm{Scal}_{\mathrm{min}}^{g}$

- optimal only for spinors with $\langle\Delta \psi, \psi\rangle=\left\|\nabla^{g} \psi\right\|^{2}=0$, i. e. parallel spinors

Thm. (M, g) has parallel spinors iff $\operatorname{Hol}_{0}(M)=\mathrm{SU}(n), \operatorname{Sp}(n), G_{2}, \operatorname{Spin}(7)$, and then $\operatorname{Ric}^{g}=0$.
[Wang, 1989]
Thm. Optimal EV estimate: $\lambda \geq \frac{n}{4(n-1)}$ Scal $_{\text {min }}^{g}$

- " =" iff \exists a Killing spinor $(\mathrm{KS}) \psi: \quad \nabla_{X}^{g} \psi=\mathrm{const} \cdot X \cdot \psi \quad \forall X$

Link to special geometries:
Thm. $\exists \mathrm{KS} \Leftrightarrow n=5:(M, g)$ is Sasaki-Einstein mnfd
$\Leftrightarrow n=6:(M, g)$ nearly Kähler mnfd
$\Leftrightarrow n=7:(M, g)$ nearly parallel $G_{2} \mathrm{mnfd}$
(similarly for other n)
[Friedrich, Grunewald, Kath, 1985-90] 4

Killing spinors and submanifolds

Thm. Suppose (M, g) is Sasaki-Einstein $(n=5)$, nearly Kähler $(n=6)$, or nearly parallel $G_{2}(\mathrm{n}=7)$. Then the metric cone

$$
(\bar{M}, \bar{g}):=\left(M \times \mathbb{R}^{+}, \frac{1}{4} r^{2} g^{2}+d r^{2}\right)
$$

has a ∇^{g}-parallel spinor; in particular, it is Ricci-flat of Riemannian holonomy $\mathrm{SU}(3), G_{2}$, resp. Spin(7). [Bryant $1987 \rightsquigarrow$ B-Salamon 1989, Bär 1993 (+ Wang '89)]

Observe: Construction relies on existence of a Killing spinor
Thm. Let (M, g) be a spin manifold with a ∇^{g}-parallel spinor $\psi, N \subset M$ a codimension one hypersurface. Then $\varphi:=\left.\psi\right|_{N}$ is a generalized Killing spinor on N, i. e. $\quad \nabla_{X}^{g} \varphi=A(X) \cdot \varphi$ for a symmetric endomorphism A (Weingarten map). [Friedrich 1998, Bär-Gauduchon-Moroianu 2005]

Observe: Generalizes the Weierstraß representation of minimal surfaces, based on ideas of Eisenhardt (1909)

Link to special geometries:

Thm. \exists gen. $\mathrm{KS} \Leftrightarrow n=5:(M, g)$ is hypo $\mathrm{SU}(2) \mathrm{mnfd}$ ($\not \subset$ contact metric mnfds) [Conti-Salamon, 2007]
$\Leftrightarrow n=6:(M, g)$ half-flat $\mathrm{SU}(3) \mathrm{mnfd}$
$\Leftrightarrow n=7:(M, g)$ cocalibrated $G_{2} \mathrm{mnfd}$

Spin structures and topology in dimension 6 and 7

Observation:

Any 8 -dimensional real vector bundle over a n-dimensional manifold ($n=$ 6,7) admits a section of length one
\Rightarrow a 6-dim. oriented Riemannian manifold admits a spin structure iff it admits a reduction from $\operatorname{Spin}(6) \cong \mathrm{SU}(4)$ to $\mathrm{SU}(3)$
\Rightarrow a 7-dim. oriented Riemannian manifold admits a spin structure iff it admits a reduction from $\operatorname{Spin}(7)$ to G_{2}

Use this section to give a uniform spinorial description of $\mathrm{SU}(3)$ manifolds and G_{2}-manifolds!

Spin linear algebra in dimension 6 and 7

- In $n=6,7$, the spin representations are real and $2^{3}=8$-dimensional, they coincide as vector spaces, call it $\Delta:=\mathbb{R}^{8}$.

$$
\begin{equation*}
\underline{n=6} \tag{A-Fr-Chiossi-Höll,2014}
\end{equation*}
$$

- Δ admits a $\operatorname{Spin}(6)$-invariant cplx structure j (because $\operatorname{Spin}(6) \cong \mathrm{SU}(4)$)
- any real spinor $0 \neq \phi \in \Delta$ decomposes Δ into three pieces,

$$
\begin{equation*}
\Delta=\mathbb{R} \cdot \phi \oplus \mathbb{R} \cdot j(\phi) \oplus \underbrace{\left\{X \cdot \phi: X \in \mathbb{R}^{6}\right\}}_{\cong \mathbb{R}^{6}, \text { the base space }} \tag{*}
\end{equation*}
$$

- the following formula defines an orthogonal cplx str. on the last piece,

$$
J_{\phi}(X) \cdot \phi:=j(X \cdot \phi)
$$

- the spinor defines a 3 -form by $\psi_{\phi}(X, Y, Z):=-(X \cdot Y \cdot Z \cdot \phi, \phi)$.

Exa. Consider $\phi=(0,0,0,0,0,0,0,1) \in \Delta=\mathbb{R}^{8}$. Then:

$$
J_{\phi}=-e_{12}+e_{34}+e_{56}, \quad \psi_{\phi}=e_{135}-e_{146}+e_{236}+e_{245}
$$

Spin linear algebra in dimension 6 and 7

Thm. The following is a $1-1$ correspondence:

- $\mathrm{SU}(3)$-structures on $\mathbb{R}^{6} \longleftrightarrow$ real spinors of length one $\left(\bmod \mathbb{Z}_{2}\right)$,

$$
\mathrm{SO}(6) / \mathrm{SU}(3)=\left\{\mathrm{SU}(3) \text {-structures on } \mathbb{R}^{6}\right\}=\mathbb{P}(\Delta)=\mathbb{R} \mathbb{P}^{7}
$$

$$
\underline{n=7}
$$

- any real spinor $0 \neq \phi \in \Delta$ decomposes Δ into two pieces,

$$
\begin{equation*}
\Delta=\mathbb{R} \cdot \phi \oplus \underbrace{\left\{X \cdot \phi: X \in \mathbb{R}^{7}\right\}}_{\cong \mathbb{R}^{7}, \text { the base space }} \tag{**}
\end{equation*}
$$

- the spinor defines again a 3 -form ψ_{ϕ}, which turns out to be stable (i. e. open GL-orbit); but no analogue of neither j nor J_{ϕ}

Thm. The following is a 1-1 correspondence:
stable 3-forms ψ of fixed length, with isotropy $\subset \mathrm{SO}(7) \longleftrightarrow \ldots$ (as above),

$$
\mathrm{SO}(7) / G_{2}=\mathbb{P}(\Delta)=\mathbb{R} \mathbb{P}^{7}
$$

Special almost Hermitian geometry

- $\mathrm{SU}(3)$ manifold $\left(M^{6}, g, \phi\right)$: Riemannian spin manifold $\left(M^{6}, g\right)$ equipped with a global spinor ϕ of length one, j as before, J induced almost cplx str., ω its kähler form, ψ_{ϕ} induced 3 -form, $\psi_{\phi}^{J}:=J \circ \psi_{\phi}$.

Decomposition $(*) \Rightarrow \exists_{1} 1$-form η and endomorphism S s.t.

$$
\nabla_{X}^{g} \phi=\eta(X) j(\phi)+S(X) \cdot \phi
$$

η : "intrinsic 1-form", S : "intr. endomorphism" (indeed: $\Gamma=S\lrcorner \psi_{\phi}-\frac{2}{3} \eta \otimes \omega$)

This equation summarizes all spinor eqs. previously known in dim.6!

Thm. $\quad\left(\nabla_{X}^{g} \omega\right)(Y, Z)=2 \psi_{\phi}^{J}(S(X), Y, Z)$
This generalizes the classical nK condition $\nabla_{X}^{g} \omega(X, Y)=0 \forall X, Y$.

- M^{6} a compact hypersurface in \mathbb{R}^{7}
for $S^{2} \subset \mathbb{R}^{3}$:
- N : normal vector field
- K : shape operator (Weingarten map)
- Define $J \in \operatorname{End}(T M)$ by

$$
J(Y)=N \times Y, \quad Y \in T M
$$

- $J^{2}=-\mathrm{Id}$ is a non integrable almost complex structure satisfying

$$
\left\langle\left(\nabla_{X}^{g} J\right)(Y), Z\right\rangle=\langle K(X) \times Y, Z\rangle
$$

This is exactly the more general eq. (*) cited before

- For $M^{6}=S^{6}, K=I d$ and J makes it a nearly Kähler manifold: $\nabla_{X}^{g} J(X)=0(\Rightarrow$ Einstein $)$

There are 7 basic classes of $\mathrm{SU}(3)$-structures, called $\chi_{1}, \chi_{\overline{1}}, \chi_{2}, \chi_{\overline{2}}, \chi_{3}, \chi_{4}, \chi_{5}$.
[Chiossi-Salamon, 2002]
They are a refinement of the classical Gray-Hervella classification of $U(3)$ structures. Write $\chi_{1 \overline{2} 4}$ for $\chi_{1}^{+} \oplus \chi_{2}^{-} \oplus \chi_{4}$ etc.

Examples.

- nearly Kähler mnfds: class $\chi_{\overline{1}}$
- half-flat $\mathrm{SU}(3)$-mnfds: class $\chi_{\overline{1} \overline{2} 3}$

Next: express Niejenhuis tensor, $d \omega, \delta \omega$ through ψ_{ϕ}^{j}, η, S - for example:

- $\delta \omega(X)=2[(D \phi, X j(\phi))-\eta(X)]$ (χ_{4} component)
- $N(X, Y, Z)=-2\left[\psi_{\phi}^{J}\left(\left(J_{\phi} S+S J_{\phi}\right) X, Y, Z\right)-\psi_{\phi}^{J}\left(\left(J_{\phi} S+S J_{\phi}\right) Y, X, Z\right)\right]$ ($\chi_{1 \overline{1} 2 \overline{2}}$ component)

Thm. The classes of $\mathrm{SU}(3)$ str. are determined as follows:

class	description	dimension
χ_{1}	$S=\lambda \cdot J_{\phi}, \eta=0$	1
$\chi_{\overline{1}}$	$S=\mu \cdot \mathrm{Id}, \eta=0$	1
χ_{2}	$S \in \mathfrak{s u}(3), \eta=0$	8
$\chi_{\overline{2}}$	$S \in\left\{A \in S_{0}^{2}\left(\mathbb{R}^{6}\right) \mid A J_{\phi}=J_{\phi} A\right\}, \eta=0$	8
χ_{3}	$S \in\left\{A \in S_{0}^{2}\left(\mathbb{R}^{6}\right) \mid A J_{\phi}=-J_{\phi} A\right\}, \eta=0$	12
χ_{4}	$S \in\left\{A \in \Lambda^{2}\left(\mathbb{R}^{6}\right) \mid A J_{\phi}=-J_{\phi} A\right\}, \eta=0$	6
χ_{5}	$S=0, \eta \neq 0$	6

where $\lambda, \mu \in \mathbb{R}$. In particular S is symmetric and $\eta=0$ if and only if the class is $\chi_{\overline{1} \overline{2} 3}$.

The symmetries of S translate into a differential eq. for ϕ :

$$
\begin{aligned}
S J_{\phi}= \pm J_{\phi} S & \Longleftrightarrow\left(J_{\phi} Y \nabla_{X}^{g} \phi, \phi\right)=\mp\left(Y \nabla_{J_{\phi} X}^{g} \phi, \phi\right), \\
S \text { is } \pm \text {-symmetric } & \Longleftrightarrow\left(X \nabla_{Y}^{g} \phi, \phi\right)= \pm\left(Y \nabla_{X}^{g} \phi, \phi\right) .
\end{aligned}
$$

Thm. The classification of $\operatorname{SU}(3)$ str. in terms of ϕ is given by $\left(\lambda:=\frac{1}{6}\left(D^{g} \phi, j(\phi)\right), \mu:=-\frac{1}{6}\left(D^{g} \phi, \phi\right)\right): \quad(\ldots$ and similarly for mixed classes $)$

class	spinorial equation
χ_{1}	$\nabla_{X}^{g} \phi=\lambda X j(\phi)$ for $\lambda \in \mathbb{R}$
$\chi_{\overline{1}}$	$\nabla_{X}^{g} \phi=\mu X \phi$ for $\mu \in \mathbb{R} \quad($ Killing sp. $)$
χ_{2}	$\left(J_{\phi} Y \nabla_{X}^{g} \phi, \phi\right)=-\left(Y \nabla_{J_{\phi} X}^{g} \phi, \phi\right)$, $\left(Y \nabla_{X}^{g} \phi, j(\phi)\right)=+\left(X \nabla_{Y}^{g} \phi, j(\phi)\right), \lambda=\eta=0$
$\chi_{\overline{2}}$	$\left(J_{\phi} Y \nabla_{X}^{g} \phi, \phi\right)=+\left(Y \nabla_{J_{\phi} X}^{g} \phi, \phi\right)$, $\left(Y \nabla_{X}^{g} \phi, j(\phi)\right)=-\left(X \nabla_{Y}^{g} \phi, j(\phi)\right), \mu=\eta=0$
χ_{3}	$\left(J_{\phi} Y \nabla_{X}^{g} \phi, \phi\right)=+\left(Y \nabla_{J_{\phi} X}^{g} \phi, \phi\right)$, $\left(Y \nabla_{X}^{g} \phi, j(\phi)\right)=+\left(X \nabla_{Y}^{g} \phi, j(\phi)\right)$, and $\eta=0$
χ_{4}	$\left(J_{\phi} Y \nabla_{X}^{g} \phi, \phi\right)=-\left(Y \nabla_{J_{\phi} X}^{g} \phi, \phi\right)$, $\left(Y \nabla_{X}^{g} \phi, j(\phi)\right)=-\left(X \nabla_{Y}^{g} \phi, j(\phi)\right)$ and $\eta=0$
χ_{5}	$\nabla_{X}^{g} \phi=\left(\nabla_{X}^{g} \phi, j(\phi)\right) j(\phi)$

Corollary. On a 6 -dim spin mnfd, \exists spinor of constant length s.t.

$$
D^{g} \phi=0
$$

iff admits a $\mathrm{SU}(3)$ structure of class $\chi_{2 \overline{2} 345}$ with $\delta \omega=-2 \eta$.

Example: twistor spaces as $\mathrm{SU}(3)$-manifolds

- $M^{6}=\mathbb{C P}^{3}, \mathrm{U}(3) / \mathrm{U}(1)^{3}$: twistor spaces of S^{4} and $\mathbb{C P}^{2}$. Both carry metrics $g_{t}(t>0)$ and two almost complex structures $\Omega^{\mathrm{K}}, \Omega^{\mathrm{nK}}$ such that
- $\left(M^{6}, g_{1 / 2}, \Omega^{\mathrm{nK}}\right)$ is a nearly Kähler manifold
- $\left(M^{6}, g_{1}, \Omega^{\mathrm{K}}\right)$ is a Kähler manifold
- \exists two real linearly indep. global spinors ϕ_{ε} in $\Delta_{6}(\varepsilon= \pm 1)$. Both spinors induce the same almost cplx structure $J_{\phi}\left(\Leftrightarrow \Omega^{\mathrm{nK}}\right)$!
- For $t=1 / 2, \phi_{\varepsilon}$ are Riemannian Killing spinors. For general t, define $S_{\varepsilon}: T M^{6} \rightarrow T M^{6}$ by $S_{\varepsilon}=\varepsilon \sqrt{c} \cdot \operatorname{diag}\left(\frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{1-t}{2 \sqrt{t}}, \frac{1-t}{2 \sqrt{t}}\right)$.
Verify: $\nabla_{X}^{g} \phi_{\varepsilon}=S_{\varepsilon}(X) \phi_{\varepsilon}$, hence S_{ε} is the intr. endom. and $\eta=0$.
- Class: $\chi_{\overline{1} \overline{2}}$ for $t \neq 1 / 2, \chi_{\overline{1}}$ for $t=1 / 2$.
- For $t=1, \phi_{\varepsilon}$ are Kählerian Killing spinors, but they do not induce the Kählerian cplx str. Ω^{K} ! Thus, the Kählerian structure cannot be recovered from the pair of Kählerian Killing spinors (only a $U(3)$-reduction).

Characteristic connections

For all classes, an adapted metric connection ∇ can be defined.

$$
\text { torsion: } T(X, Y, Z):=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)
$$

Special case: require $T \in \Lambda^{3}\left(M^{n}\right)\left(\Leftrightarrow\right.$ same geodesics as $\left.\nabla^{g}\right)$

$$
\Rightarrow g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

- If existent, such a connection is unique and called the 'characteristic connection'
[Fr-Ivanov 2002, A-Fr-Höll 2013]
Thm. A spin manifold $\left(M^{6}, g, \phi\right)$ admits a characteristic connection ∇ iff it is of class $\chi_{1 \overline{1} 345}$ and $\eta=\frac{1}{4} \delta \omega$. It satisfies $\nabla \phi=0$.

Corollary. Whenever ∇ exists,
$\phi \in \operatorname{ker} D^{g} \Longleftrightarrow T \phi=0 \Longleftrightarrow$ the $\mathrm{SU}(3)$-class is χ_{3} (almost Hermitian).

G_{2} geometry

- G_{2} manifold $\left(M^{7}, g, \phi\right)$: Riemannian spin manifold $\left(M^{7}, g\right)$ equipped with a global spinor ϕ of length one, ψ_{ϕ} induced 3 -form.

Decomposition $(* *) \Rightarrow \exists_{1}$ endomorphism S s.t.

$$
\nabla_{X}^{g} \phi=S(X) \cdot \phi
$$

S : "intrinsic endomorphism" (indeed: $\left.\Gamma=-\frac{2}{3} S\right\lrcorner \psi_{\phi}$)
Thm. $\quad\left(\nabla_{V}^{g} \psi_{\phi}\right)(X, Y, Z)=2 * \psi_{\phi}(S(V), X, Y, Z)$.
This generalizes the nearly parallel G_{2} condition $\nabla \psi_{\phi}=d \psi_{\phi}=c * \psi_{\phi}$!
There are 4 basic classes of G_{2}-structures, called $\mathcal{W}_{1}, \ldots, \mathcal{W}_{4}$.
[Fernandez-Gray, 1982]

Thm. The classes of G_{2} structures are determined as follows:

class	description	dimension
\mathcal{W}_{1}	$S=\lambda \mathrm{Id}$	1
\mathcal{W}_{2}	$S \in \mathfrak{g}_{2}$	14
\mathcal{W}_{3}	$S \in S_{0}^{2} \mathbb{R}^{7}$	27
\mathcal{W}_{4}	$\left.S \in\{V\lrcorner \Psi_{\phi} \mid V \in \mathbb{R}^{7}\right\}$	7

In particular, S is symmetric if and only if $S \in \mathcal{W}_{13}$ and skew iff it belongs to \mathcal{W}_{24}.

Corollary. Let $\left(M^{7}, g, \phi\right)$ be a Riemannian spin manifold with unit spinor ϕ. Then ϕ is harmonic

$$
D^{g} \phi=0
$$

iff the underlying G_{2}-structure is of class \mathcal{W}_{23}.

Thm. The basic classes of G_{2}-manifolds described in terms of ϕ :
$\left(\lambda:=-\frac{1}{7}\left(D^{g} \phi, \phi\right): M \rightarrow \mathbb{R}\right.$ is a real function and \times the cross product relative to Ψ_{ϕ})

class	spinorial equation
\mathcal{W}_{1}	$\nabla_{X}^{g} \phi=\lambda X \phi \quad$ (Killing spinor)
\mathcal{W}_{2}	$\nabla_{X \times Y}^{g} \phi=Y \nabla_{X}^{g} \phi-X \nabla_{Y}^{g} \phi+2 g(Y, S(X)) \phi$
\mathcal{W}_{3}	$\left(X \nabla_{Y}^{g} \phi, \phi\right)=\left(Y \nabla_{X}^{g} \phi, \phi\right)$ and $\lambda=0$
\mathcal{W}_{4}	$\nabla_{X}^{g} \phi=X V \phi+g(V, X) \phi \quad$ for some $V \in T M^{7}$
\mathcal{W}_{12}	$\nabla_{X \times Y}^{g} \phi=Y \nabla_{X}^{g} \phi-X \nabla_{Y}^{g} \phi+g(Y, S(X)) \phi-g(X, S(Y)) \phi-\lambda(X \times Y) \phi$
\mathcal{W}_{13}	$\left(X \nabla_{Y}^{g} \phi, \phi\right)=\left(Y \nabla_{X}^{g} \phi, \phi\right)$
\mathcal{W}_{14}	$\exists V, W \in T M^{7}: \nabla_{X}^{g} \phi=X V W \phi-(X V W \phi, \phi)$
\mathcal{W}_{23}	$S \phi=0$ and $\lambda=0$, or $D^{g} \phi=0$
\mathcal{W}_{24}	$\left(X \nabla_{Y}^{g} \phi, \phi\right)=-\left(Y \nabla_{X}^{g} \phi, \phi\right)$

Example: 7-dim. $3(\alpha, \delta)$-Sasaki mnfds

Dfn. An almost 3-contact metric manifold is a Riemannian manifold $\left(M^{4 n+3}, g\right)$ endowed with 3 almost contact structures $\left(\phi_{i}, \xi_{i}, \eta_{i}\right), i=1,2,3$ s.t. g is compatible with each a.c.str. and

$$
\begin{gather*}
\varphi_{k}=\varphi_{i} \varphi_{j}-\eta_{j} \otimes \xi_{i}=-\varphi_{j} \varphi_{i}+\eta_{i} \otimes \xi_{j}, \tag{1}\\
\xi_{k}=\varphi_{i} \xi_{j}=-\varphi_{j} \xi_{i}, \quad \eta_{k}=\eta_{i} \circ \varphi_{j}=-\eta_{j} \circ \varphi_{i}
\end{gather*}
$$

for any even permutation (i, j, k) of $(1,2,3)$.

- $T M=\mathcal{H} \oplus \mathcal{V}$, where $\quad \mathcal{H}:=\bigcap_{i=1}^{3} \operatorname{Ker}\left(\eta_{i}\right), \quad \mathcal{V}:=\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$.

Dfn. An a. 3-c. m. m. M will be called a $3-(\alpha, \delta)$-Sasaki manifold if

$$
d \eta_{i}=2 \alpha \Phi_{i}+2(\alpha-\delta) \eta_{j} \wedge \eta_{k}
$$

for every even permutation (i, j, k) of $(1,2,3)$, where $\alpha \in \mathbb{R}^{*}, \delta \in \mathbb{R}$.

- When $\alpha=\delta=1$, we have a 3 -contact metric manifold, and hence a 3-Sasaki manifold by a theorem of Kashiwada
- Quat. Heisenberg groups are examples with $\delta=0$
- Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian Killing spinors
- each a.c. structure η_{i} induces a characteristic connection ∇^{i}, but $\nabla^{1} \neq$ $\nabla^{2} \neq \nabla^{3} ?!?$

Thm. Let ${ }^{7}$ be a $3-(\alpha, \delta)$-Sasaki manifold. There exists a cocalibrated $G_{2^{-}}$ structure with char. connection ∇ with parallel spinor ψ with the properties:

- ∇ preserves \mathcal{V} and \mathcal{H}, and $\nabla T=0$
- ψ and $\xi_{i} \cdot \psi$ are generalized Riemannian Killing spinors on M^{7}
[A-Dileo, 2019]
Observe: Only known example of gKS where endom. has three different eigenvalues

Application: cone constructions

- How to construct G_{2}-str. of any class on cones over $\mathrm{SU}(3)$-manifolds?

Start with $\left(M^{6}, g, \phi\right)$ with intrinsic torsion (S, η). Choose a function $h=$ $h_{1}+i h_{2}: I \rightarrow S^{1}$ and define by

$$
\phi_{t}:=h(t) \phi:=h_{1}(t) \phi+h_{2}(t) j(\phi)
$$

a new family of $\mathrm{SU}(3)$-structures on M^{6} depending on $t \in I$.
Conformally rescale the metric by some function $f: I \rightarrow \mathbb{R}_{+}$and consider $M_{t}^{6}:=\left(M^{6}, f(t)^{2} g, \phi_{t}\right)$. Intrinsic torsion of $M_{t}^{6}:\left(\frac{h^{2}}{f} S, \eta\right)$.
Dfn. spin cone over $M^{6}:\left(\bar{M}^{7}, \bar{g}\right)=\left(M^{6} \times I, f^{2}(t) g+d t^{2}\right)$ with spinor ϕ_{t}.
Exa. Suppose we want \bar{M}^{7} to be a nearly parallel G_{2}-manifold: need h^{\prime} / h constant, so $h(t)=\exp (i(c t+d)), \quad c, d \in \mathbb{R}$. Easiest: sine cone $\left(M^{6} \times(0, \pi), \sin (t)^{2} g+d t^{2}, e^{i t / 2} \phi\right) \quad$ [Fernández-Ivanov-Muñoz-Ugarte, 2008; Stock, 2009]

- Similarly, we can construct G_{2}-manifolds of any desired pure class (construction really uses the spinor!).

To conclude:

Obtained a uniform description of all possible defining spinorial differential eqs. on 6 -dim. $\mathrm{SU}(3)$-manifolds and G_{2}-manifolds, generalizing Killing spinors, generalized Killing spinors, quasi-Killing spinors [Friedrich-Kim, 2000]. . .

So far, all spinors encountered are generalized Killing spinor with torsion (gKST), i.e.

$$
\nabla \phi=A(X) \cdot \phi
$$

for some endomorphism $A: T M^{6} \rightarrow T M^{6}$; but the same eq. can be expressed in different ways.

- Not the differential eq. is the basic object, but rather the G-structure!

References

Ilka Agricola, Simon G. Chiossi, Thomas Friedrich, Jos Höll, Spinorial description of SU(3)and G_{2}-manifolds, J. Geom. Phys. 98 (2015), 535-555.

Ilka Agricola, Jos Höll, Cones of G-manifolds and Killing spinors with skew torsion, Ann. Mat. Pura Appl. 194 (2015), 673-718.

Ilka Agricola, Thomas Friedrich, 3-Sasakian manifolds in dimension seven, their spinors and G_{2}-Structures, J. Geom. Phys. 60 (2010), 326-332.

IIka Agricola, Giulia Dileo, Generalizations of 3-Sasakian manifolds and skew torsion, Adv. Geom. 20 (2020), 331-374.

Another application:

Ilka Agricola, Julia Becker-Bender, Hwajeong Kim, Twistorial eigenvalue estimates for generalized Dirac operators with torsion, Adv. Math. 243 (2013), 296-329.

$$
* * *
$$

Ilka Agricola, The Srní lectures on non-integrable geometries with torsion with an appendix by Mario Kassuba [pdf-file], Arch. Math. 42 (2006), 5-84.

