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INTRODUCTION
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The tt* equations were introduced by Cecotti and
Vafa in the context of supersymmetric quantum
field theory.

S. Cecotti and C. Vafa, Topological —
anti-topological fusion, Nuclear Phys. B 1991

Mathematical explanation: the tt* equations arise
from Frobenius manifolds “with Hermitian
metric” (or “with real structure”). (Example of a
Frobenius manifold: quantum cohomology.)

The tt* equations are the equations for this
metric — the tt* metric.
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Dubrovin formulated the tt* equations (which are
nonlinear equations) as an “integrable system” in
two ways:

(i) the compatibility condition of a certain system
of linear p.d.e. (a “zero curvature equation”)

(ii) the condition that a certain linear o.d.e. is
isomonodromic.

B. Dubrovin, Geometry and integrability of
topological-antitopological fusion, Comm. Math.
Phys. 1993

Thus it is possible to apply various methods from
the theory of integrable systems: conserved
quantities, dressing actions (of infinite
dimensional Lie groups), the Riemann-Hilbert
Method,...
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When the domain is 1-dimensional, the tt*
equations are

∂
∂t̄

(
g ∂

∂tg
−1

)
− [C, gC†g−1] = 0

where

• C = (holomorphic) chiral matrix of the theory

• C† = conjugate-transpose of C,

• g−1 = Hermitian matrix representing the tt*
metric

For quantum cohomology, C is the matrix of
quantum multiplication by a generator
b ∈ H2(M ; C).

Eg: when M = CP 3, C =


0 0 0 q

1 0 0 0

0 1 0 0

0 0 1 0
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For the quantum cohomology of M = CPn, the
tt* metric can be written

g = diag(e−2w0 , . . . , e−2wn)

where w0, . . . , wn are real valued functions of q, q̄.
The homogeneity property of quantum
cohomology implies that wi depends only on |q|.
In view of this, it is convenient to make a change
of variable of the form q = αtβ , and then the tt*
equations become

2(wi)tt̄ = −e2(wi+1−wi)+e2(wi−wi−1), i = 0, 1, . . . , n

together with the extra condition wi + wn−i = 0.
This is a version of the periodic Toda equations.
We call it the tt*-Toda equation.

(We interpret wn+1, w−1 here as w0, wn

respectively.)
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Physically, a solution is a massive deformation of
a conformal field theory, and the existence of such
a deformation says something about that theory.
Cecotti and Vafa made a series of conjectures
about the solutions:

• there should exist (globally smooth) solutions
w = w(|t|) on C∗

• these solutions should be characterized by
asymptotic data at t = 0 (the “ultra-violet
point”; here the data is the chiral charges,
essentially the holomorphic matrix C)

• these solutions should equally be
characterized by asymptotic data at t =∞,
(the “infra-red point”; here the data is the
soliton multiplicities si).

Note: We will say more about solitons later.
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RESULTS
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Theorem 1: (M. Guest - A. Its - C.-S. Lin,
arXiv 2010-2017, T. Mochizuki, arXiv 2013)
For each N > 0, there is a 1 : 1 correspondence
between solutions of the tt*-Toda equations on
C∗ and 1-forms η(z) dz on (the universal cover of)
C∗, where

η(z) =



zk0

zk1

. . .

zkn


.

• ki ∈ [−1,∞)

• n + 1 +
∑n

i=0 ki = N

• ki = kn−i+1 for i = 1, . . . , n

The variable z is related to the variable t of the
tt*-Toda equations by t = n+1

N z
N

n+1 .
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This theorem has several interpretations:

(p.d.e.)

Asymptotics of the solution at t = 0:
wi ∼ −mi log |t| as t→ 0, where the mi are
defined by mi−1 −mi + 1 = n+1

N (ki + 1).

(harmonic maps)
1
λη(z)dz is a (normalized) DPW potential for the
harmonic map corresponding to the solution
(λ = ~ = loop parameter).

(DPW=Dorfmeister-Pedit-Wu)
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(harmonic bundles)

η(z)dz is a Higgs field for the parabolic harmonic
bundle corresponding to the solution.

(chiral ring)

η(z) is the matrix of quantum multiplication by a
generator in the chiral ring corresponding to the
solution,

E.g. CPn:

k0 = 0, k1 = · · · = kn = −1

z = q

η(z)dz = C
dq

q
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Using monodromy data (Stokes data), the
solutions can also be characterized by their
asymptotics at t =∞:

Theorem 2: (M. Guest - A. Its - C.-S. Lin,
arXiv 2010-2017)
There is a 1 : 1 correspondence between solutions
of the tt*-Toda equations on C∗ with n-tuples of
“Stokes parameters” s = (s1, . . . , sn) where si is

the i-th symmetric function of e(2m0+n) π
√

−1
n+1 ,

e(2m1+n−2) π
√

−1
n+1 , ... e(2mn−n) π

√
−1

n+1 .

As t→∞ we have, for each k = 1, ..., n,

− 4
n+1

[ 12 (n−1)]∑
p=0

wp sin (2p+1)kπ
n+1 ∼ sk F (Lk|t|)

where F (|t|) = 1
2 (π|t|)− 1

2 e−2|t|, Lk = 2 sin k
n+1π.

Remark: The Stokes parameters determine a
matrix M (0) (which will be described later). In
turn, the matrix M (0) determines all “Stokes
matrices” in the classical sense.
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STRATEGY OF THE PROOFS

(OF THEOREMS 1-2)
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STEP 1: Construct solutions on 0 < |t| < ε such
that wi ∼ −mi log |t| as t→ 0.

(Banach Lie group factorization — can be done
locally)

STEP 2: Construct solutions on R < |t| <∞
(such that wi ∼ 0 as t→∞).

(Riemann-Hilbert problem — can be solved
locally)

STEP 3: Characterize all global solutions on
0 < |t| <∞ such that wi ∼ −mi log |t| as t→ 0
and wi ∼ 0 as t→∞.

(p.d.e. existence/uniqueness theorem — method
of subsolutions and supersolutions)

STEP 4: Match up the results of Steps 1-3.

(Steps 1 and 3 give Theorem 1; Step 2 is needed
in order to compute Stokes data in Theorem 2,
and will be needed for more precise asymptotics
of solutions)
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STEP 1: Given k0, . . . , kn ≥ −1, construct some
solutions on intervals of the form 0 < |t| < ε such
that wi ∼ −mi log |t| as t→ 0.

Start from

η(z) =



zk0

zk1

. . .

zkn


.

Solve the (complex) o.d.e.

dL

dz
=

1
λ

Lη, L(0) = I

for matrix valued L = L(z, λ) (near z = 0).

Factorize: L = LRL+ near I (Iwasawa
factorization, regarding L as a Banach loop group
valued function).

Then α = (LR)−1dLR satisfies dα + α ∧ α = 0,
and this is the zero curvature form of the Toda
equation.
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STEP 2: Given s1, . . . , sn ∈ R, construct some
solutions on intervals of the form R < |t| <∞
such that
− 4

n+1

∑[ 12 (n−1)]
p=0 wp sin (2p+1)kπ

n+1 ∼ sk F (Lk|t|) as
t→∞.

Start with the isomonodromic form of the Toda
equation. This is a complex o.d.e. in λ (with
poles of order 2 at λ = 0,∞).

Calculate the monodromy data (Stokes matrices,
connection matrices) of the solutions constructed
in Step 1.

Pose a Riemann-Hilbert problem based on the
above monodromy data. This is equivalent to a
linear singular integral equation. It can be solved
near t =∞.
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STEP 3: Characterize all global solutions on
0 < |t| <∞ such that wi ∼ −mi log |t| as t→ 0
and wi ∼ 0 as t→∞.

P.d.e. theorem: Assume mi−1 −mi + 1 ≥ 0 (i.e.
ki ≥ −1). Then ∃! solution on 0 < |t| <∞ such
that wi ∼ −mi log |t| as t→ 0 and wi ∼ 0 as
t→∞.

STEP 4: Match up the results of Steps 1-3.

This uses the actual values of the Stokes matrices
and connection matrices which were computed in
Step 2.

As a “bonus” (going beyond Theorems 1 and 2),
we mention the more precise asymptotics of
solutions (near t = 0) which follow from that
computation:
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SAMPLE FOR THE GENERIC CASE
(mi−1 −mi + 1 > 0):

n = 3 w0, w1 (w2 = −w1, w3 = −w0)

w0 ∼ −m0 log |t|+ 1
2ρ0 + o(1)

where

ρ0 =

− log 2−4m0 Γ(
−m0

2 + 1
4 )Γ(

−m0−m1
4 + 1

2 )Γ(
−m0+m1

4 + 3
4 )

Γ(
−m1+m0

4 + 1
4 )Γ(

m0+m1
4 + 1

2 )Γ(
m0
2 + 3

4 )

w1 ∼ −m1 log |t|+ 1
2ρ1 + o(1)

where

ρ1 =

− log 2−4m1 Γ(
−m1+m0

4 + 1
4 )Γ(

−m0−m1
4 + 1

2 )Γ(
−m1

2 + 3
4 )

Γ(
m1
2 + 1

4 )Γ(
m0+m1

4 + 1
2 )Γ(

−m0+m1
4 + 3

4 )
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SAMPLE FOR THE NON-GENERIC CASE:

n = 3 w0, w1 (w2 = −w1, w3 = −w0)

m0 = − 3
2 , m1 = − 1

2 (here m0 −m1 + 1 = 0)

w0(t) =
3
2 log |t|+ 1

2 log
(
− 1

24ζ(3)− 4
3γ3

eu − 4γ2
eu log |t|

4

−4γeu log2 |t|
4 −

4
3 log3 |t|

4

)
+ O(|t|4 log6 |t|)

w0(t) + w1(t) =

2 log |t|+ 1
2 log

(
− 1

12γeuζ(3) + 4
3γ4

eu + (− 1
12ζ(3)

+16
3 γ3

eu) log |t|
4 +8γ2

eu log2 |t|
4 + 16

3 γeu log3 |t|
4 + 4

3 log4 |t|
4

)
+

O(|t|4 log6 |t|)

(γeu = Euler constant, ζ(3) =
∑∞

k=1 k−3)
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SOME APPLICATIONS
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Application 1 (Lie theory): The Coxeter Plane

Let g be a complex simple Lie algebra, with
corresponding simply-connected Lie group G.

Let α1, . . . , αl ∈ h∗ be a choice of simple roots of
g with respect to the Cartan subalgebra h. Let ∆
be the set of all roots.

(in this talk g = sln+1C )
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The Weyl group W is the finite group generated
by the reflections rα in all root planes kerα,
α ∈ ∆.

The Coxeter element is the element γ = rα1 . . . rαl

of W . Its order is called the Coxeter number of g,
and we denote it by s.

Fact (Kostant): The Coxeter element γ acts on
the set of roots ∆ with l orbits, each containing s

elements.

(if g = sln+1C then l = n, s = n + 1, and W is the
permutation group on n + 1 objects)
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The Coxeter Plane is the result of projecting ∆
orthogonally onto a certain real plane in h∗.

E.g. the Coxeter Plane for g = sl5C:

41

32

40

21

34

10
23

04

12

43

01

31

30

20

24

14

13

03

02

42

(there are 20 roots xi − xj , 0 ≤ i 6= j ≤ 4, and the
Coxeter element acts by the permutation (43210);
there are l = 4 orbits, each containing s = 5
elements)
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Theorem: (M. Guest - N.-K. Ho, arXiv 2018)

(i) The Coxeter Plane is a diagram of the Stokes
sectors for the tt*-Toda equation.

(ii) The Stokes matrices can be computed
Lie-theoretically in terms of a Lie group element

M (0) = C(s1, . . . , sl) ∈ SLn+1C

where C is a “Steinberg cross-section” of the set
of regular conjugacy classes of SLn+1C.

Remark: A ∈ SLn+1C is regular iff it satisfies
“minimal poly. of A = characteristic poly. of A”.
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Moreover, the space of solutions also has a
Lie-theoretic interpretation:

Recall that the solutions are parametrized by
(n + 1)-tuples (m0, . . . , mn) satisfying

(*) mi−1 −mi + 1 ≥ 0 (i.e. ki ≥ −1)

(**) mi + mn−i = 0 (i.e. ki = kn−i+1)

The inequalities (*) define a convex polytope.

Let us write

m = diag(m0,m1, . . . ,mn)

ρ = diag(n
2 , n

2 − 1, . . . ,−n
2 )

Then the convex polytope given by the points

2π√
−1

n + 1
(m + ρ)

is the Fundamental Weyl Alcove of the Lie
algebra.
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Application 2 (physics): Particles and polytopes

In this section we show how the Coxeter Plane
and the tt*-Toda equations give a mathematical
foundation for certain field theory models
proposed by physicists in the 1990’s.
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The Coxeter Plane has appeared (implicitly) in
articles on Toda field theory:

M. Freeman, On the mass spectrum of affine Toda
field theory, Phys. Lett. B 1991

P. Dorey, Root systems and purely elastic
S-matrices I,II, Nuclear Phys. B 1991,1992

In this “toy model” the authors proposed
(amongst other things) the correspondence

particle ↔ orbit of root in Coxeter Plane

mass of particle ↔ distance of root from origin

(if g = sln+1C the mass of the particle
corresponding to the orbit of the root xi − xj is
2 sin |i− j| π

n+1 )

They checked that these proposals (as well as the
other things) were consistent with the expected
properties of a field theory.
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A variant of this proposal was made in

P. Fendley, W. Lerche, S. Mathur, and N.
Warner, N = 2 supersymmetric integrable models
from affine Toda theories, Nuclear Phys. B 1991

W. Lerche and N. Warner, Polytopes and solitons
in integrable N = 2 supersymmetric
Landau-Ginzburg theories, Nuclear Phys. B 1991

In these “polytopic models”, a finite-dimensional
representation θ of the Lie algebra g on a vector
space V is chosen, and the “polytope” is the
polytope in h∗ spanned by the weights of the
representation. The weight vectors (in V ) are
taken to be the vacua of the theory. In this
theory, “solitonic particles” tunnel between vacua:
a soliton connects two vacua vi, vj if and only if
the corresponding weights λi, λj differ by a single
root, i.e. λi − λj ∈ ∆. The physical characteristics
of the particle are those of that root.
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This discussion is purely algebraic (there is no
differential equation). However, the polytopic
models include certain Landau-Ginzburg models.
The quantum cohomology of CPn is of this type,
with: θ = λn+1 (standard representation of
sln+1C). Thus we can expect a role for solitons in
the quantum cohomology of CPn.

The solitons are illustrated below for sl4C.

3

2

1

0

The first part shows the projections of the
weights x0, x1, x2, x3. The second part shows (as
heavy lines) the four solitons of type [01] (with
mass 2 sin π

4 =
√

2). The third part shows the two
solitons of type [02] (with mass 2 sin π

2 = 2). In
this example, any two vacua are connected by a
soliton.
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In the above example we chose θ = λn+1. If we
choose

θ = ∧kλn+1

we obtain a different polytopic model. It turns
out that the quantum cohomology of the
Grassmannian Grk(Cn+1) is of this type.

The solitons are illustrated below for sl4C. The
first part shows the projections of the weights
xi + xj with 0 ≤ i 6= j ≤ 3. The second part
shows the four solitons of type [01] (with mass√

2). The third part shows the four solitons of
type [02] (with mass 2).

0+3 2+3

0+2,1+3

0+1 1+2
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Each solution of the tt*-Toda equation (e.g. that
with m = −ρ) is associated to a field theory.
That theory fits into this framework as follows.

Corollary: (of the proof of Theorem 2 on the
asymptotics at t =∞)
The linear combination on the left hand side of

− 4
n+1

[ 12 (n−1)]∑
p=0

wp sin (2p+1)kπ
n+1 ∼ sk F (Lk|t|)

corresponds to a certain† basis vector of h (or h∗)
associated to an orbit of the Coxeter group.

Thus we can say that the Stokes parameter sk is
naturally associated to the k-th orbit, or particle.
Physicists call sk the soliton multiplicity.

†Reference: M. Guest, arXiv 2020
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Cecotti and Vafa used this to give a physical
argument for an “equivalence”

∧kQH∗(CPn) ≈ QH∗(Grk(Cn+1))

(more precisely, an equivalence of underlying field
theories). This tt* argument was explained in

M. Bourdeau, Grassmannian σ-models and
topological–anti-topological fusion, Nuclear Phys.
B 1995

Later, mathematicians gave proofs of versions of
this isomorphism (which they regard as a special
case of the quantum Satake isomorphism, or
abelian-nonabelian correspondence). E.g.

V. Golyshev and L. Manivel, Quantum
cohomology and the Satake isomorphism,
arXiv:1106.3120
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Our Lie-theoretic description of the solutions of
the tt*-Toda equations supports the original
physics argument, because

solution with m = −ρ
θ=λn+1←→ QH∗(CPn)

solution with m = −ρ
θ=∧kλn+1←→ QH∗(Grk(Cn+1))

i.e. the same solution of the tt*-Toda equations
gives both QH∗(CPn) and QH∗(Grk(Cn+1))

The Stokes matrices of the respective quantum
differential equations are different (they can be
read off from M (0) and ∧kM (0) respectively). But
the Stokes parameters sk =

(
n+1

k

)
are the same

for QH∗(CPn) and QH∗(Grk(Cn+1)).
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Application 3 (physics): Minimal models

Recall that the “Higgs fields”

η(z) =



zk0

zk1

. . .

zkn


(with ki ∈ [−1,∞), n + 1 +

∑n
i=0 ki = N ,

ki = kn−i+1 for i = 1, . . . , n) parametrize
solutions of the tt*-Toda equations.

In this section we consider ηdz with ki ∈ Z≥0 and
assume that N is coprime to k =

∑n
i=0 ki.

Thus we move away from the tt*-Toda equations
(but we note that the Higgs fields with
ki = kn−i+1 for i = 1, . . . , n form a dense subset
of solutions of the tt*-Toda equations).
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The authors of

L. Fredrickson and A. Neitzke, From S1-fixed
points to W-algebra representations,
arXiv:1709.06142

study a certain moduli space MK,N of Higgs fields
with a C∗-action whose fixed points are all the
ηdz with K, N fixed (a finite number). Quoting
from this article:

“We ... exhibit a curious 1-1 correspondence
between these fixed points and certain
representations of the vertex algebra WK ; in
particular we have 12µ = K − 1− ceff , where 12µ

is a ... norm of the Higgs field, and ceff is the
effective Virasoro central charge.”

“The formula 12µ = K − 1− ceff is puzzling.
Why should WK and MK,N have anything to do
with one another?”
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As an application of our Lie-theoretic Stokes
formula

M (0) = C(s1, . . . , sl) ∈ SLn+1C

we shall give a mathematical explanation — a
direct path from the Higgs field ηdz to the
representation.

Reference: M. Guest and T. Otofuji, arXiv 2021
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Recall that the irreducible positive energy
representations of the affine Kac-Moody algebra
ŝln+1C of level k (∈ N) are parametrized by
dominant weights (Λ, k), where Λ is a dominant
weight of sln+1C of level k.

Let P+ be the set of dominant weights of sln+1C,
and Pk = { dominant weights of level k}.

It is well known that Pk + ρ = P+ ∩ (k + n + 1)Å
where Å denotes the interior of the Weyl alcove A.

Let Åk =
(

1
k+n+1P+

)
∩ Å. Let θ : Åk → Pk + ρ

be the identification given by
θ(v) = (k + n + 1)v ∈ P+ ∩ (k + n + 1)Å = Pk + ρ.
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Recall that the Stokes data (of the Higgs field
ηdz) is represented by the matrix M (0). It follows
from the assumption ki ∈ Z≥0 that M (0) is
semisimple; in fact it is conjugate to the diagonal
matrix

e
2π

√
−1

n+1 (m+ρ)

(recall that 2π
√

−1
n+1 (m + ρ) is in the Fundamental

Weyl Alcove of sln+1C).

Lemma: Let 2π√
−1 ε1, . . . , 2π√

−1 εn denote the
basic weights of sln+1C. Then:

N
n+1 (m + ρ) = ρ +

∑n
i=1 kiεi.

Proof: This is equivalent to the relation
mi−1 −mi + 1 = n+1

N (ki + 1) which defines the mi

in terms of the ki.

It follows that θ( 1
n+1 (m + ρ)) = ρ +

∑n
i=1 kiεi.

Thus, from the Stokes data M (0) we obtain the
positive energy representation with dominant
weight (

∑n
i=1 2π√

−1 kiεi, k).
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It is well known (Bouwknegt and Schoutens) that
the W -algebra Wn+1 intertwines with any such
representation, and that the effective central
charge is given by the formula

ceff = n− 12n+1
N |

∑n
i=1 kiεi − k

n+1ρ|2.

By the lemma we have
∑n

i=1 kiεi − k
n+1ρ = N

n+1m

so
ceff = n− 12 N

n+1 |m|
2.

This is the formula of Fredrickson and Neitzke
which Higgs fields and representations of Wn+1.
Our construction shows that the Stokes data of
the Higgs field is responsible for the relation.

Remark: For fixed n + 1 and N the finite number
of Higgs fields give a finite number of
representations. These constitute the “(n + 1, N)
Wn+1 minimal model”.
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Thank you !
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