Asymptotic data and Stokes data for the tt^{*}-Toda equations, and some relations with physics

Martin Guest

Department of Mathematics
Waseda University

INTRODUCTION

The tt^{*} equations were introduced by Cecotti and Vafa in the context of supersymmetric quantum field theory.
S. Cecotti and C. Vafa, Topological -anti-topological fusion, Nuclear Phys. B 1991

Mathematical explanation: the tt^{*} equations arise from Frobenius manifolds "with Hermitian metric" (or "with real structure"). (Example of a Frobenius manifold: quantum cohomology.) The $t t^{*}$ equations are the equations for this metric - the tt^{*} metric.

Dubrovin formulated the tt* equations (which are nonlinear equations) as an "integrable system" in two ways:
(i) the compatibility condition of a certain system of linear p.d.e. (a "zero curvature equation")
(ii) the condition that a certain linear o.d.e. is isomonodromic.
B. Dubrovin, Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 1993

Thus it is possible to apply various methods from the theory of integrable systems: conserved quantities, dressing actions (of infinite dimensional Lie groups), the Riemann-Hilbert Method,...

When the domain is 1-dimensional, the tt * equations are

$$
\frac{\partial}{\partial \bar{t}}\left(g \frac{\partial}{\partial t} g^{-1}\right)-\left[C, g C^{\dagger} g^{-1}\right]=0
$$

where

- $C=$ (holomorphic) chiral matrix of the theory
- $C^{\dagger}=$ conjugate-transpose of C,
- $g^{-1}=$ Hermitian matrix representing the tt^{*} metric

For quantum cohomology, C is the matrix of quantum multiplication by a generator
$b \in H^{2}(M ; \mathbb{C})$.
Eg: when $M=\mathbb{C} P^{3}, C=\left(\begin{array}{llll}0 & 0 & 0 & q \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$

For the quantum cohomology of $M=\mathbb{C} P^{n}$, the tt* metric can be written

$$
g=\operatorname{diag}\left(e^{-2 w_{0}}, \ldots, e^{-2 w_{n}}\right)
$$

where w_{0}, \ldots, w_{n} are real valued functions of q, \bar{q}. The homogeneity property of quantum cohomology implies that w_{i} depends only on $|q|$. In view of this, it is convenient to make a change of variable of the form $q=\alpha t^{\beta}$, and then the tt^{*} equations become
$2\left(w_{i}\right)_{t \bar{t}}=-e^{2\left(w_{i+1}-w_{i}\right)}+e^{2\left(w_{i}-w_{i-1}\right)}, i=0,1, \ldots, n$
together with the extra condition $w_{i}+w_{n-i}=0$. This is a version of the periodic Toda equations. We call it the tt^{*}-Toda equation.
(We interpret w_{n+1}, w_{-1} here as w_{0}, w_{n} respectively.)

Physically, a solution is a massive deformation of a conformal field theory, and the existence of such a deformation says something about that theory. Cecotti and Vafa made a series of conjectures about the solutions:

- there should exist (globally smooth) solutions $w=w(|t|)$ on \mathbb{C}^{*}
- these solutions should be characterized by asymptotic data at $t=0$ (the "ultra-violet point"; here the data is the chiral charges, essentially the holomorphic matrix C)
- these solutions should equally be characterized by asymptotic data at $t=\infty$, (the "infra-red point"; here the data is the soliton multiplicities s_{i}).

Note: We will say more about solitons later.

RESULTS

Theorem 1: (M. Guest - A. Its - C.-S. Lin, arXiv 2010-2017, T. Mochizuki, arXiv 2013)
For each $N>0$, there is a $1: 1$ correspondence between solutions of the tt^{*}-Toda equations on \mathbb{C}^{*} and 1-forms $\eta(z) d z$ on (the universal cover of) \mathbb{C}^{*}, where

$$
\eta(z)=\left(\begin{array}{l|l|l|l}
& & & z^{k_{0}} \\
\hline z^{k_{1}} & & & \\
\hline & \ddots & & \\
\hline & & z^{k_{n}} &
\end{array}\right)
$$

- $k_{i} \in[-1, \infty)$
- $n+1+\sum_{i=0}^{n} k_{i}=N$
- $k_{i}=k_{n-i+1}$ for $i=1, \ldots, n$

The variable z is related to the variable t of the tt*-Toda equations by $t=\frac{n+1}{N} z^{\frac{N}{n+1}}$.

This theorem has several interpretations:
(p.d.e.)

Asymptotics of the solution at $t=0$:
$w_{i} \sim-m_{i} \log |t|$ as $t \rightarrow 0$, where the m_{i} are defined by $m_{i-1}-m_{i}+1=\frac{n+1}{N}\left(k_{i}+1\right)$.
(harmonic maps)
$\frac{1}{\lambda} \eta(z) d z$ is a (normalized) DPW potential for the harmonic map corresponding to the solution ($\lambda=\hbar=$ loop parameter $)$.
(DPW=Dorfmeister-Pedit-Wu)
(harmonic bundles)
$\eta(z) d z$ is a Higgs field for the parabolic harmonic bundle corresponding to the solution.

(chiral ring)

$\eta(z)$ is the matrix of quantum multiplication by a generator in the chiral ring corresponding to the solution,
E.g. $\mathbb{C} P^{n}$:
$k_{0}=0, k_{1}=\cdots=k_{n}=-1$
$z=q$
$\eta(z) d z=C \frac{d q}{q}$

Using monodromy data (Stokes data), the solutions can also be characterized by their asymptotics at $t=\infty$:

Theorem 2: (M. Guest - A. Its - C.-S. Lin, arXiv 2010-2017)
There is a $1: 1$ correspondence between solutions of the tt^{*}-Toda equations on \mathbb{C}^{*} with n-tuples of "Stokes parameters" $s=\left(s_{1}, \ldots, s_{n}\right)$ where s_{i} is the i-th symmetric function of $e^{\left(2 m_{0}+n\right) \frac{\pi \sqrt{ }-1}{n+1}}$, $e^{\left(2 m_{1}+n-2\right) \frac{\pi \sqrt{ }-1}{n+1}}, \ldots e^{\left(2 m_{n}-n\right) \frac{\pi \sqrt{ }-1}{n+1}}$.

As $t \rightarrow \infty$ we have, for each $k=1, \ldots, n$,

$$
-\frac{4}{n+1} \sum_{p=0}^{\left[\frac{1}{2}(n-1)\right]} w_{p} \sin \frac{(2 p+1) k \pi}{n+1} \sim s_{k} F\left(L_{k}|t|\right)
$$

where $F(|t|)=\frac{1}{2}(\pi|t|)^{-\frac{1}{2}} e^{-2|t|}, L_{k}=2 \sin \frac{k}{n+1} \pi$.

Remark: The Stokes parameters determine a matrix $M^{(0)}$ (which will be described later). In turn, the matrix $M^{(0)}$ determines all "Stokes matrices" in the classical sense.

STRATEGY OF THE PROOFS (OF THEOREMS 1-2)

STEP 1: Construct solutions on $0<|t|<\epsilon$ such that $w_{i} \sim-m_{i} \log |t|$ as $t \rightarrow 0$.
(Banach Lie group factorization - can be done locally)

STEP 2: Construct solutions on $R<|t|<\infty$ (such that $w_{i} \sim 0$ as $t \rightarrow \infty$).
(Riemann-Hilbert problem - can be solved locally)

STEP 3: Characterize all global solutions on $0<|t|<\infty$ such that $w_{i} \sim-m_{i} \log |t|$ as $t \rightarrow 0$ and $w_{i} \sim 0$ as $t \rightarrow \infty$.
(p.d.e. existence/uniqueness theorem - method of subsolutions and supersolutions)

STEP 4: Match up the results of Steps 1-3.
(Steps 1 and 3 give Theorem 1; Step 2 is needed in order to compute Stokes data in Theorem 2, and will be needed for more precise asymptotics of solutions)

STEP 1: Given $k_{0}, \ldots, k_{n} \geq-1$, construct some solutions on intervals of the form $0<|t|<\epsilon$ such that $w_{i} \sim-m_{i} \log |t|$ as $t \rightarrow 0$.

Start from

$$
\eta(z)=\left(\begin{array}{l|l|l|l}
& & & z^{k_{0}} \\
\hline z^{k_{1}} & & & \\
\hline & \ddots & & \\
\hline & & z^{k_{n}} &
\end{array}\right)
$$

Solve the (complex) o.d.e.

$$
\frac{d L}{d z}=\frac{1}{\lambda} L \eta, \quad L(0)=I
$$

for matrix valued $L=L(z, \lambda)$ (near $z=0$).
Factorize: $L=L_{\mathbb{R}} L_{+}$near I (Iwasawa factorization, regarding L as a Banach loop group valued function).
Then $\alpha=\left(L_{\mathbb{R}}\right)^{-1} d L_{\mathbb{R}}$ satisfies $d \alpha+\alpha \wedge \alpha=0$, and this is the zero curvature form of the Toda equation.

STEP 2: Given $s_{1}, \ldots, s_{n} \in \mathbb{R}$, construct some solutions on intervals of the form $R<|t|<\infty$ such that
$-\frac{4}{n+1} \sum_{p=0}^{\left[\frac{1}{2}(n-1)\right]} w_{p} \sin \frac{(2 p+1) k \pi}{n+1} \sim s_{k} F\left(L_{k}|t|\right)$ as $t \rightarrow \infty$.

Start with the isomonodromic form of the Toda equation. This is a complex o.d.e. in λ (with poles of order 2 at $\lambda=0, \infty)$.

Calculate the monodromy data (Stokes matrices, connection matrices) of the solutions constructed in Step 1.

Pose a Riemann-Hilbert problem based on the above monodromy data. This is equivalent to a linear singular integral equation. It can be solved near $t=\infty$.

STEP 3: Characterize all global solutions on $0<|t|<\infty$ such that $w_{i} \sim-m_{i} \log |t|$ as $t \rightarrow 0$ and $w_{i} \sim 0$ as $t \rightarrow \infty$.
P.d.e. theorem: Assume $m_{i-1}-m_{i}+1 \geq 0$ (i.e.
$\left.k_{i} \geq-1\right)$. Then \exists ! solution on $0<|t|<\infty$ such that $w_{i} \sim-m_{i} \log |t|$ as $t \rightarrow 0$ and $w_{i} \sim 0$ as $t \rightarrow \infty$.

STEP 4: Match up the results of Steps 1-3.
This uses the actual values of the Stokes matrices and connection matrices which were computed in Step 2.

As a "bonus" (going beyond Theorems 1 and 2), we mention the more precise asymptotics of solutions (near $t=0$) which follow from that computation:

SAMPLE FOR THE GENERIC CASE

$\left(m_{i-1}-m_{i}+1>0\right)$:
$n=3 \quad w_{0}, w_{1} \quad\left(w_{2}=-w_{1}, w_{3}=-w_{0}\right)$
$w_{0} \sim-m_{0} \log |t|+\frac{1}{2} \rho_{0}+o(1)$
where
$\rho_{0}=$
$-\log 2^{-4 m_{0}} \frac{\Gamma\left(\frac{-m_{0}}{2}+\frac{1}{4}\right) \Gamma\left(\frac{-m_{0}-m_{1}}{4}+\frac{1}{2}\right) \Gamma\left(\frac{-m_{0}+m_{1}}{4}+\frac{3}{4}\right)}{\Gamma\left(\frac{-m_{1}+m_{0}}{4}+\frac{1}{4}\right) \Gamma\left(\frac{m_{0}+m_{1}}{4}+\frac{1}{2}\right) \Gamma\left(\frac{m_{0}}{2}+\frac{3}{4}\right)}$
$w_{1} \sim-m_{1} \log |t|+\frac{1}{2} \rho_{1}+o(1)$
where
$\rho_{1}=$
$-\log 2^{-4 m_{1}} \frac{\Gamma\left(\frac{-m_{1}+m_{0}}{4}+\frac{1}{4}\right) \Gamma\left(\frac{-m_{0}-m_{1}}{4}+\frac{1}{2}\right) \Gamma\left(\frac{-m_{1}}{2}+\frac{3}{4}\right)}{\Gamma\left(\frac{m_{1}}{2}+\frac{1}{4}\right) \Gamma\left(\frac{m_{0}+m_{1}}{4}+\frac{1}{2}\right) \Gamma\left(\frac{-m_{0}+m_{1}}{4}+\frac{3}{4}\right)}$

SAMPLE FOR THE NON-GENERIC CASE:

$$
\begin{aligned}
& n=3 \quad w_{0}, w_{1} \quad\left(w_{2}=-w_{1}, w_{3}=-w_{0}\right) \\
& m_{0}=-\frac{3}{2}, m_{1}=-\frac{1}{2} \quad\left(\text { here } m_{0}-m_{1}+1=0\right)
\end{aligned}
$$

$$
w_{0}(t)=
$$

$$
\frac{3}{2} \log |t|+\frac{1}{2} \log \left(-\frac{1}{24} \zeta(3)-\frac{4}{3} \gamma_{\mathrm{eu}}^{3}-4 \gamma_{\mathrm{eu}}^{2} \log \frac{|t|}{4}\right.
$$

$$
\left.-4 \gamma_{\mathrm{eu}} \log ^{2} \frac{|t|}{4}-\frac{4}{3} \log ^{3} \frac{|t|}{4}\right)+O\left(|t|^{4} \log ^{6}|t|\right)
$$

$$
w_{0}(t)+w_{1}(t)=
$$

$$
2 \log |t|+\frac{1}{2} \log \left(-\frac{1}{12} \gamma_{\mathrm{eu}} \zeta(3)+\frac{4}{3} \gamma_{\mathrm{eu}}^{4}+\left(-\frac{1}{12} \zeta(3)\right.\right.
$$

$$
\left.\left.+\frac{16}{3} \gamma_{\mathrm{eu}}^{3}\right) \log \frac{|t|}{4}+8 \gamma_{\mathrm{eu}}^{2} \log ^{2} \frac{|t|}{4}+\frac{16}{3} \gamma_{\mathrm{eu}} \log ^{3} \frac{|t|}{4}+\frac{4}{3} \log ^{4} \frac{|t|}{4}\right)+
$$

$$
O\left(|t|^{4} \log ^{6}|t|\right)
$$

$\left(\gamma_{\mathrm{eu}}=\right.$ Euler constant, $\left.\zeta(3)=\sum_{k=1}^{\infty} k^{-3}\right)$

SOME APPLICATIONS

Application 1 (Lie theory): The Coxeter Plane

Let \mathfrak{g} be a complex simple Lie algebra, with corresponding simply-connected Lie group G.

Let $\alpha_{1}, \ldots, \alpha_{l} \in \mathfrak{h}^{*}$ be a choice of simple roots of \mathfrak{g} with respect to the Cartan subalgebra \mathfrak{h}. Let Δ be the set of all roots.
(in this talk $\mathfrak{g}=\mathfrak{s l}_{n+1} \mathbb{C}$)

The Weyl group W is the finite group generated by the reflections r_{α} in all root planes $\operatorname{ker} \alpha$, $\alpha \in \Delta$.

The Coxeter element is the element $\gamma=r_{\alpha_{1}} \ldots r_{\alpha_{l}}$ of W. Its order is called the Coxeter number of \mathfrak{g}, and we denote it by s.

Fact (Kostant): The Coxeter element γ acts on the set of roots Δ with l orbits, each containing s elements.
(if $\mathfrak{g}=\mathfrak{s l}_{n+1} \mathbb{C}$ then $l=n, s=n+1$, and W is the permutation group on $n+1$ objects)

The Coxeter Plane is the result of projecting Δ orthogonally onto a certain real plane in \mathfrak{h}^{*}.
E.g. the Coxeter Plane for $\mathfrak{g}=\mathfrak{s l}_{5} \mathbb{C}$:

(there are 20 roots $x_{i}-x_{j}, 0 \leq i \neq j \leq 4$, and the Coxeter element acts by the permutation (43210); there are $l=4$ orbits, each containing $s=5$ elements)

Theorem: (M. Guest - N.-K. Ho, arXiv 2018)
(i) The Coxeter Plane is a diagram of the Stokes sectors for the tt^{*}-Toda equation.
(ii) The Stokes matrices can be computed

Lie-theoretically in terms of a Lie group element

$$
M^{(0)}=C\left(s_{1}, \ldots, s_{l}\right) \in \mathrm{SL}_{n+1} \mathbb{C}
$$

where C is a "Steinberg cross-section" of the set of regular conjugacy classes of $\mathrm{SL}_{n+1} \mathbb{C}$.

Remark: $A \in \mathrm{SL}_{n+1} \mathbb{C}$ is regular iff it satisfies "minimal poly. of $A=$ characteristic poly. of A ".

Moreover, the space of solutions also has a Lie-theoretic interpretation:

Recall that the solutions are parametrized by $(n+1)$-tuples $\left(m_{0}, \ldots, m_{n}\right)$ satisfying
(*) $m_{i-1}-m_{i}+1 \geq 0 \quad$ (i.e. $\left.k_{i} \geq-1\right)$
$\left(^{* *}\right) m_{i}+m_{n-i}=0 \quad$ (i.e. $\left.k_{i}=k_{n-i+1}\right)$
The inequalities $\left(^{*}\right)$ define a convex polytope.
Let us write

$$
\begin{aligned}
& m=\operatorname{diag}\left(m_{0}, m_{1}, \ldots, m_{n}\right) \\
& \rho=\operatorname{diag}\left(\frac{n}{2}, \frac{n}{2}-1, \ldots,-\frac{n}{2}\right)
\end{aligned}
$$

Then the convex polytope given by the points

$$
\frac{2 \pi \sqrt{-1}}{n+1}(m+\rho)
$$

is the Fundamental Weyl Alcove of the Lie algebra.

Application 2 (physics): Particles and polytopes

In this section we show how the Coxeter Plane and the tt^{*}-Toda equations give a mathematical foundation for certain field theory models proposed by physicists in the 1990's.

The Coxeter Plane has appeared (implicitly) in articles on Toda field theory:
M. Freeman, On the mass spectrum of affine Toda field theory, Phys. Lett. B 1991
P. Dorey, Root systems and purely elastic S-matrices I,II, Nuclear Phys. B 1991,1992

In this "toy model" the authors proposed (amongst other things) the correspondence
particle \leftrightarrow orbit of root in Coxeter Plane mass of particle \leftrightarrow distance of root from origin
(if $\mathfrak{g}=\mathfrak{s l}_{n+1} \mathbb{C}$ the mass of the particle corresponding to the orbit of the root $x_{i}-x_{j}$ is $\left.2 \sin |i-j| \frac{\pi}{n+1}\right)$

They checked that these proposals (as well as the other things) were consistent with the expected properties of a field theory.

A variant of this proposal was made in
P. Fendley, W. Lerche, S. Mathur, and N.

Warner, $N=2$ supersymmetric integrable models from affine Toda theories, Nuclear Phys. B 1991 W. Lerche and N. Warner, Polytopes and solitons in integrable $N=2$ supersymmetric Landau-Ginzburg theories, Nuclear Phys. B 1991 In these "polytopic models", a finite-dimensional representation θ of the Lie algebra \mathfrak{g} on a vector space V is chosen, and the "polytope" is the polytope in \mathfrak{h}^{*} spanned by the weights of the representation. The weight vectors (in V) are taken to be the vacua of the theory. In this theory, "solitonic particles" tunnel between vacua: a soliton connects two vacua v_{i}, v_{j} if and only if the corresponding weights λ_{i}, λ_{j} differ by a single root, i.e. $\lambda_{i}-\lambda_{j} \in \Delta$. The physical characteristics of the particle are those of that root.

This discussion is purely algebraic (there is no differential equation). However, the polytopic models include certain Landau-Ginzburg models. The quantum cohomology of $\mathbb{C} P^{n}$ is of this type, with: $\theta=\lambda_{n+1}$ (standard representation of $\mathfrak{s l}_{n+1} \mathbb{C}$). Thus we can expect a role for solitons in the quantum cohomology of $\mathbb{C} P^{n}$.

The solitons are illustrated below for $\mathfrak{s l}_{4} \mathbb{C}$.

The first part shows the projections of the weights $x_{0}, x_{1}, x_{2}, x_{3}$. The second part shows (as heavy lines) the four solitons of type [01] (with mass $\left.2 \sin \frac{\pi}{4}=\sqrt{2}\right)$. The third part shows the two solitons of type [02] (with mass $2 \sin \frac{\pi}{2}=2$). In this example, any two vacua are connected by a soliton.

In the above example we chose $\theta=\lambda_{n+1}$. If we choose

$$
\theta=\wedge^{k} \lambda_{n+1}
$$

we obtain a different polytopic model. It turns out that the quantum cohomology of the Grassmannian $G r_{k}\left(\mathbb{C}^{n+1}\right)$ is of this type. The solitons are illustrated below for $\mathfrak{s l} \mathbb{C}_{4}$. The first part shows the projections of the weights $x_{i}+x_{j}$ with $0 \leq i \neq j \leq 3$. The second part shows the four solitons of type [01] (with mass $\sqrt{2}$). The third part shows the four solitons of type [02] (with mass 2).

Each solution of the tt^{*}-Toda equation (e.g. that with $m=-\rho$) is associated to a field theory. That theory fits into this framework as follows.

Corollary: (of the proof of Theorem 2 on the asymptotics at $t=\infty$)
The linear combination on the left hand side of

$$
-\frac{4}{n+1} \sum_{p=0}^{\left[\frac{1}{2}(n-1)\right]} w_{p} \sin \frac{(2 p+1) k \pi}{n+1} \sim s_{k} F\left(L_{k}|t|\right)
$$

corresponds to a certain ${ }^{\dagger}$ basis vector of $\mathfrak{h}\left(\right.$ or $\left.\mathfrak{h}^{*}\right)$ associated to an orbit of the Coxeter group.

Thus we can say that the Stokes parameter s_{k} is naturally associated to the k-th orbit, or particle. Physicists call s_{k} the soliton multiplicity.
${ }^{\dagger}$ Reference: M. Guest, arXiv 2020

Cecotti and Vafa used this to give a physical argument for an "equivalence"

$$
\wedge^{k} Q H^{*}\left(\mathbb{C} P^{n}\right) \approx Q H^{*}\left(G r_{k}\left(\mathbb{C}^{n+1}\right)\right)
$$

(more precisely, an equivalence of underlying field theories). This tt* argument was explained in
M. Bourdeau, Grassmannian σ-models and topological-anti-topological fusion, Nuclear Phys. B 1995

Later, mathematicians gave proofs of versions of this isomorphism (which they regard as a special case of the quantum Satake isomorphism, or abelian-nonabelian correspondence). E.g.
V. Golyshev and L. Manivel, Quantum cohomology and the Satake isomorphism, arXiv:1106.3120

Our Lie-theoretic description of the solutions of the tt *-Toda equations supports the original physics argument, because
solution with $m=-\rho \stackrel{\theta=\lambda_{n+1}}{\longleftrightarrow} Q H^{*}\left(\mathbb{C} P^{n}\right)$ solution with $m=-\rho \quad \stackrel{\theta=\wedge^{k} \lambda_{n+1}}{\longleftrightarrow} Q H^{*}\left(G r_{k}\left(\mathbb{C}^{n+1}\right)\right)$
i.e. the same solution of the tt^{*}-Toda equations gives both $Q H^{*}\left(\mathbb{C} P^{n}\right)$ and $Q H^{*}\left(G r_{k}\left(\mathbb{C}^{n+1}\right)\right)$

The Stokes matrices of the respective quantum differential equations are different (they can be read off from $M^{(0)}$ and $\wedge^{k} M^{(0)}$ respectively). But the Stokes parameters $s_{k}=\binom{n+1}{k}$ are the same for $Q H^{*}\left(\mathbb{C} P^{n}\right)$ and $Q H^{*}\left(G r_{k}\left(\mathbb{C}^{n+1}\right)\right)$.

Application 3 (physics): Minimal models

Recall that the "Higgs fields"

$$
\eta(z)=\left(\begin{array}{c|c|c|c}
& & & z^{k_{0}} \\
\hline z^{k_{1}} & & & \\
\hline & \ddots & & \\
\hline & & z^{k_{n}} &
\end{array}\right)
$$

(with $k_{i} \in[-1, \infty), n+1+\sum_{i=0}^{n} k_{i}=N$,
$k_{i}=k_{n-i+1}$ for $i=1, \ldots, n$) parametrize
solutions of the tt^{*}-Toda equations.
In this section we consider $\eta d z$ with $k_{i} \in \mathbb{Z}_{\geq 0}$ and assume that N is coprime to $k=\sum_{i=0}^{n} k_{i}$.

Thus we move away from the tt *-Toda equations (but we note that the Higgs fields with $k_{i}=k_{n-i+1}$ for $i=1, \ldots, n$ form a dense subset of solutions of the tt^{*}-Toda equations).

The authors of
L. Fredrickson and A. Neitzke, From S^{1}-fixed points to W-algebra representations, arXiv:1709.06142
study a certain moduli space $M_{K, N}$ of Higgs fields with a \mathbb{C}^{*}-action whose fixed points are all the $\eta d z$ with K, N fixed (a finite number). Quoting from this article:
"We ... exhibit a curious 1-1 correspondence between these fixed points and certain representations of the vertex algebra W_{K}; in particular we have $12 \mu=K-1-c_{e f f}$, where 12μ is a ... norm of the Higgs field, and $c_{e f f}$ is the effective Virasoro central charge."
"The formula $12 \mu=K-1-c_{e f f}$ is puzzling. Why should W_{K} and $M_{K, N}$ have anything to do with one another?"

As an application of our Lie-theoretic Stokes formula

$$
M^{(0)}=C\left(s_{1}, \ldots, s_{l}\right) \in \mathrm{SL}_{n+1} \mathbb{C}
$$

we shall give a mathematical explanation - a direct path from the Higgs field $\eta d z$ to the representation.

Reference: M. Guest and T. Otofuji, arXiv 2021

Recall that the irreducible positive energy representations of the affine Kac-Moody algebra $\widehat{\mathfrak{s l}}_{n+1} \mathbb{C}$ of level $k(\in \mathbb{N})$ are parametrized by dominant weights (Λ, k), where Λ is a dominant weight of $\mathfrak{s l}_{n+1} \mathbb{C}$ of level k.

Let P_{+}be the set of dominant weights of $\mathfrak{s l}_{n+1} \mathbb{C}$, and $P_{k}=\{$ dominant weights of level $k\}$.
It is well known that $P_{k}+\rho=P_{+} \cap(k+n+1) \AA$ where \AA denotes the interior of the Weyl alcove A.
Let $\AA_{k}=\left(\frac{1}{k+n+1} P_{+}\right) \cap \AA$. Let $\theta: \AA_{k} \rightarrow P_{k}+\rho$ be the identification given by
$\theta(v)=(k+n+1) v \in P_{+} \cap(k+n+1) \AA=P_{k}+\rho$.

Recall that the Stokes data (of the Higgs field $\eta d z)$ is represented by the matrix $M^{(0)}$. It follows from the assumption $k_{i} \in \mathbb{Z}_{\geq 0}$ that $M^{(0)}$ is
semisimple; in fact it is conjugate to the diagonal matrix

$$
e^{\frac{2 \pi \sqrt{-1}}{n+1}(m+\rho)}
$$

(recall that $\frac{2 \pi \sqrt{-1}}{n+1}(m+\rho)$ is in the Fundamental Weyl Alcove of $\mathfrak{s l}_{n+1} \mathbb{C}$).

Lemma: Let $2 \pi_{\sqrt{-1}} \epsilon_{1}, \ldots, 2 \pi_{\sqrt{-1}} \epsilon_{n}$ denote the basic weights of $\mathfrak{s l}_{n+1} \mathbb{C}$. Then:
$\frac{N}{n+1}(m+\rho)=\rho+\sum_{i=1}^{n} k_{i} \epsilon_{i}$.
Proof: This is equivalent to the relation $m_{i-1}-m_{i}+1=\frac{n+1}{N}\left(k_{i}+1\right)$ which defines the m_{i} in terms of the k_{i}.
It follows that $\theta\left(\frac{1}{n+1}(m+\rho)\right)=\rho+\sum_{i=1}^{n} k_{i} \epsilon_{i}$. Thus, from the Stokes data $M^{(0)}$ we obtain the positive energy representation with dominant weight ($\sum_{i=1}^{n} 2 \pi_{\sqrt{-1}} k_{i} \epsilon_{i}, k$).

It is well known (Bouwknegt and Schoutens) that the W-algebra W_{n+1} intertwines with any such representation, and that the effective central charge is given by the formula

$$
c_{e f f}=n-12 \frac{n+1}{N}\left|\sum_{i=1}^{n} k_{i} \epsilon_{i}-\frac{k}{n+1} \rho\right|^{2} .
$$

By the lemma we have $\sum_{i=1}^{n} k_{i} \epsilon_{i}-\frac{k}{n+1} \rho=\frac{N}{n+1} m$ so

$$
c_{e f f}=n-12 \frac{N}{n+1}|m|^{2} .
$$

This is the formula of Fredrickson and Neitzke which Higgs fields and representations of W_{n+1}. Our construction shows that the Stokes data of the Higgs field is responsible for the relation.

Remark: For fixed $n+1$ and N the finite number of Higgs fields give a finite number of representations. These constitute the " $n+1, N)$ W_{n+1} minimal model".

Thank you!

