Произведения топологических пространств и вполне регулярные пространства

(курс топологии, лектор — И.А. Тайманов)

Пусть задано семейство топологических пространств $X_{\alpha}, \alpha \in A$, параметризованное элементами множества A.

Построим прямое произведение множеств X_{α} , $\alpha \in A$:

$$X = \prod_{\alpha \in A} X_{\alpha},$$

точками которого являются все такие функции $f:A\to \cup_{\alpha} X_{\alpha}$, что $f(\alpha)\in X_{\alpha}$. Можно понимать это проще: точки пространства X— это такие наборы точек $(\ldots,x_{\alpha},x_{\beta},\ldots)$, параметризованных элементами из A, что каждая α -ая координата x_{α} принадлежит множеству X_{α} .

Для каждого индекса $\alpha \in A$ определена проекция отображение

$$\pi_{\alpha}: X \to X_{\alpha},$$

сопоставляющая точке из X ее α -ую координату:

$$f \in X \longrightarrow f(\alpha) \in X_{\alpha}$$
.

Введем на множестве X слабейшую топологию, по отношению к которой любая проекция π_{α} , где $\alpha \in A$, является непрерывным отображением. Предбазой этой топологии будут всевозможные множества вида

$$\pi_{\gamma}^{-1}(U) \subset X = \prod_{\alpha \in A} X_{\alpha},$$

где γ пробегает все множество индексов A, а U — все открытые множества из X_{γ} . Так определенное топологическое пространство X называется произведением топологических пространств $X_{\alpha}, \alpha \in A$.

Примеры.

1) Множество всех отображений (возможно разрывных) из X в Y является произведением копий пространства Y:

$$Y^X = \prod_{x \in X} Y_x, \quad Y_x = Y.$$

При этом каждое отображение $f:X\to Y$ однозначно отвечает такой точке $f\in Y^X,$ что ее x-ая координата f_x равна f(x). Рассмотрим на Y^X топологию

произведения и вложим в него множество C(X,Y), образованное всеми непрерывными отображениями. Индуцированная топология на C(X,Y) есть топология поточечной сходимости.

2) Пусть X — дискретное пространство, состоящее из двух точек: $X = \{0,1\}$, и A — счетное множество (например, $A = \mathbb{N}$). Рассмотрим топологическое произведение $\{0,1\}^\omega$ счетного числа копий пространства X. Полученное пространство гомеоморфно *канторову дисконтинууму*.

Теорема 1 (Тихонов) Произведение компактных топологических пространств $X_{\alpha}, \alpha \in A$, тоже является компактным топологическим пространством.

Прежде всего докажем один технический факт.

Пемма 1 Пусть X — топологическое пространство и A — такое максимальное (по включению) семейство открытых множеств в X, что оно покрывает X, но никакое его конечное подсемейство не образует покрытия пространства X. Тогда, если открытые множества U и V не принадлежат A, то и их пересечение $U \cap V$ не принадлежит A.

Доказательство. Так как A — максимальное семейство, не содержащее конечных покрытий X, то подмножество $W \subset X$ не принадлежит A, если и только если существует такое конечное подсемейство в A: $S_1, \ldots, S_n \in A$, что

$$W \cup S_1 \cup \cdots \cup S_n = X$$
.

Действительно, из существования такого покрытия следует, что $W \notin A$. Если $W \in A$, но такого покрытия не существует, то семейство $A \cup \{W\}$ не содержит конечных покрытий и включает в себя A, что противоречит условию максимальности A.

Заметим, что существование максимального семейства A с таким свойством, как обычно в таких случаях, вытекает из аксиомы выбора (точнее, в данном случае, из эквивалентной ей леммы Цорна).

Так как $U \notin A$ и $V \notin A$, то существуют такие множества $Y_1, \ldots, Y_k, Z_1, \ldots, Z_l \in A$, что

$$U \cup Y_1 \cup \cdots \cup Y_k = X,$$

$$V \cup Z_1 \cup \cdots \cup Z_l = X$$
.

Это очевидно влечет равенство

$$(U \cap V) \cup Y_1 \cup \cdots \cup Y_k \cup Z_1 \cup \cdots \cup Z_l = X,$$

из которого следует, что $U \cap V \notin A$. Лемма доказана.

Следствие 1 Пусть X имеет такую предбазу β , что из любого покрытия пространства X множествами из β можно выбрать конечное подпокрытие. Тогда X — компактное пространство.

ДОКАЗАТЕЛЬСТВО. Предположим противное: X — не является компактным, и рассмотрим A — максимальное семейство открытых множеств, не содержащее конечного покрытия пространства X и образующее покрытие X. Для любой точки x существует ее окрестность V из семейства A и, согласно определению предбазы, каждая такая окрестность V содержит окрестность вида $U = U_1 \cap \ldots \cap U_n$, где $U_k \in \beta, k = 1, \ldots, n$:

$$x \in U = U_1 \cap \ldots \cap U_n \subset V.$$

Так как семейство A максимально, то $U \in A$. Из предыдущей леммы следует, что, если все области $U_k, k=1,\ldots,n$, не принадлежат A, то $U \notin A$. Поэтому существует такая окрестность $U_x = U_i \in A$, что $x \in U_x$. Области $\{U_x\}_{x \in X}$ образуют покрытие пространства X открытыми множествами, которые одновременно принадлежат и предбазе β , и семейству A. Но, по исходному предположению, из этого покрытия можно выбрать конечное подпокрытие, и мы приходим к противоречию с определением семейства A. Следствие доказано.

Теперь мы можем непосредственно перейти к доказательству теоремы. Доказательство теоремы 1. Пусть $\mathcal{U}=\{U_{\alpha}\}_{\alpha\in A}$ — покрытие X элементами предбазы. Предположим, что оно не содержит конечного подпокрытия.

Для каждого значения индекса $\alpha \in A$ рассмотрим совокупность тех множеств из \mathcal{U} , которые имеют вид $\pi_{\alpha}^{-1}(V_{\alpha\beta})$, где $V_{\alpha\beta}$ — открытые множества в сомножителе X_{α} . Очевидно, что множества $V_{\alpha\beta}$ не образуют покрытие пространства X_{α} , потому что иначе из него бы выделялось конечное покрытие $V_{\alpha 1}, \ldots, V_{\alpha n}$ компактного пространства X_{α} , а, следовательно, \mathcal{U} содержало бы конечное подпокрытие $\pi_{\alpha}^{-1}(V_{\alpha 1}), \ldots, \pi_{\alpha}^{-1}(V_{\alpha n})$ всего пространства X. Выберем теперь x_{α} точку так, что

$$x_{\alpha} \notin \bigcup_{\beta} V_{\alpha\beta}$$
.

Теперь легко заметить, что точка $\hat{x} \in X$, у которой каждая α -ая координата равна x_{α} , не содержится ни в одном множестве из \mathcal{U} . Мы приходим к противоречию с тем, что \mathcal{U} — покрытие пространства X. Теорема доказана.

Следствие 2 Для любого кардинала τ произведение τ экземпляров отрезка [0,1] — пространство $[0,1]^{\tau}$ — компактно.

Подпространства пространств $[0,1]^{\tau}$, как сейчас будет показано, допускают очень красивую характеризацию в терминах отделимости.

Топологическое пространство X называется вполне регулярным, если оно является T_1 -пространством (т.е. все одноточечные подмножества замкнуты) и удовлетворяет следующей аксиоме отделимости:

Аксиома $T_{3\frac{1}{2}}$. Для любой точки $x \in X$ и любой ее окрестности U существует такая непрерывная функция $f: X \to [0,1]$, что f(x) = 0 и $f \equiv 1$ вне области U.

Эта аксиома означает, что любая точка x и любое не содержащее ее замкнутое множество $A = X \setminus U$ функционально отделимы.

Имеет место несложная

Лемма 2 Eсли два множества A и B функционально отделимы, то они отделимы.

ДОКАЗАТЕЛЬСТВО. Пусть $f: X \to [0,1]$ — непрерывная функция, которая тождественно равна нулю на A и единице — на B. Тогда открытые множества $U = f^{-1}([0,1/3))$ и $V = f^{-1}((2/3,1])$ разделяют A и B:

$$A \in U$$
, $B \subset V$, $U \cap V = \emptyset$.

Лемма доказана.

Следствие 3 1) Каждое вполне регулярное пространство регулярно и, тем более, хаусдорфово.

2) Каждое нормальное пространство (а тем самым и каждое компактное хаусдорфово пространство) вполне регулярно.

Первое утверждение этого следствия очевидно, а второе вытекает из теоремы Титце–Урысона. Заметим, что эта теорема утверждает, что, если в хаусдорфовом пространстве любые два непересекающихся замкнутых множества отделимы, то они и функционально отделимы.

В случае регулярных пространств аналог этого утверждения не верен: существуют регулярные, но не вполне регулярные, пространства. Также

существуют вполне регулярные, но не нормальные, пространства.

Как показывает следующая лемма условие вполне регулярности наследуется подпространствами и сохраняется при произведениях.

Пемма 3 1) Если X — вполне регулярное пространство и Y — его подпространство (с индуцированной топологией), то Y — тоже вполне регулярно.

2) Произведение вполне регулярных пространств — вполне регулярно.

Доказательство. 1) Пусть $y \in Y$ и U — ее окрестность в Y. По определению индуцированной топологии, $U = V \cap Y$, где V — открытое множество в X. Пусть $f: X \to [0,1]$ — функция, равную единице в точке y и нулю вне V. Ограничим f на Y и получим функцию со свойствами, указанными в аксиоме $T_{3\frac{1}{2}}$, что, вследствие произвольности выбора x и U, влечет вполне регулярность пространства Y.

2) Пусть $x'=(\dots,x'_{\alpha},\dots)\in X$, где $X=\prod_{\alpha\in A}X_{\alpha}$, и U — окрестность точки x'. Возьмем $V=V_{\alpha_1}\cap\dots\cap V_{\alpha_n}\subset U$ — элемент из базы пространства X, где $V_{\alpha_k}=\pi_{\alpha_k}^{-1}(U_{\alpha_k}), k=1,\dots,n$. Для каждого значения k возьмем функцию $f_k:X_{\alpha_k}\to[0,1]$, равную нулю в точке x'_{α_k} и единице вне U_{α_k} . Определим теперь функцию $f:X\to[0,1]$ по формуле

$$f(x) = 1 - (1 - f_{\alpha_1}(x_{\alpha_1})) \dots (1 - f_{\alpha_n}(x_{\alpha_n})),$$

где $x=(\dots,x_{\alpha},\dots)\in X.$ Очевидно, f(x')=0 и $f\equiv 1$ вне V, а, следовательно, и вне U. Мы тем самым доказали, что X — вполне регулярное пространство.

Лемма доказана.

Следствие 4 Любое подпространство пространства вида $[0,1]^{\tau}$ является вполне регулярным.

В следующей теореме мы объединим это следствие из леммы с обратным утверждением, получив характеризацию подпространств в пространствах $[0,1]^{\tau}$.

Теорема 2 (Тихонов) Пространство X вполне регулярно тогда и только тогда, когда оно вкладывается в пространство $[0,1]^{\tau}$ (для подходящего значения τ).

Замечание. Если вес пространства X бесконечен, то его можно взять в качестве τ .

Доказательство. Из предыдущей леммы вытекает, что любое подпространство в $[0,1]^{\tau}$ вполне регулярно. Поэтому нам остается доказать, что любое вполне регулярное пространство X вкладывается в $[0,1]^{\tau}$ для подходящего τ .

Пусть β — база топологии, имеющая мощность τ . Для каждой точки $x\in X$ и для любой ее окрестности U существует такая окрестность V точки x, что V принадлежит базе β ,

$$x \in V \subset \overline{V} \subset U \tag{1}$$

и существует такая непрерывная функция $f_{UV}: X \to [0,1]$, что

$$f_{UV}|_{\overline{V}} \equiv 0, \quad f_{UV}|_{X \setminus U} \equiv 1.$$

Действительно, возьмем функцию g, равную нулю в x и единице вне U, положим $W=g^{-1}([0,1/3))$, за V возьмем такую окрестность точки x из базы β , что $V\subset W$, и определим f как

$$f_{UV}(x) = \begin{cases} 0 & \text{при } g(x) \le \frac{1}{2}, \\ 2(g(x) - \frac{1}{2}) & \text{при } g(x) \ge \frac{1}{2}. \end{cases}$$

Рассмотрим множество M, образованное всевозможными парами областей (U,V) из базы β . Обозначим мощность множества M через τ . Если β имеет бесконечную мощность, равную τ , то число таких пар не больше, чем $\tau^2=\tau$. Построим отображение

$$f: X \to [0, 1]^{\tau} = \prod_{\alpha \in M} I_{\alpha} : f(x) = (\dots, f_{UV}(x), \dots)_{(U, V) \in M},$$

где I=[0,1]. Это отображение является взаимно однозначным отображением на образ: $f:X\to f(X)$:

$$f(x) \neq f(y)$$
 при $x \neq y$.

Это несложно доказать. Пусть U — окрестность точки x, не содержащая точки y. Можно взять такую окрестность из базы. Возьмем теперь другую окрестность V из базы, удовлетворяющую условию (1). Нам осталось заметить, что $f_{UV}(x) = 0$, а $f_{UV}(y) = 1$, что влечет неравенство $f(x) \neq f(y)$.

Отображение $f:X\to f(X)$ непрерывно по построению. Действительно, предбазу топологии на f(X) образуют пересечения f(X) с множествами вида $\pi_{\alpha}^{-1}(W)$, где $W\subset I_{\alpha}=[0,1]$ — открытое множество в [0,1]. Из непрерывности f_{α} следует, что прообразы таких множеств тоже открыты:

$$f^{-1}(f(X) \cap \pi_{\alpha}^{-1}(W)) = f_{\alpha}^{-1}(W).$$

Докажем, что отображение $f^{-1}:f(X)\to X$ непрерывно. Для этого надо доказать, что для любого открытого множества $U\subset X$ существует такое открытое множество $W\subset f(X)$, что $f^{-1}(W)\subset U$. Более того, это достаточно показать для случая, когда U принадлежит базе β . Пусть $x\in U\in \beta$. Возьмем множество V из базы, удовлетворяющее (1). Этой паре отвечает функция $f_{UV}=f_{\alpha}$. По ее построению, $f_{\alpha}^{-1}([0,1))\subset U$. Поэтому за W можно принять множество $\pi_{\alpha}^{-1}([0,1))\cap f(X)$.

Теорема доказана.