НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи

Базайкин Ярослав Владимирович

УДК 515.165.7

Двойные частные групп Ли положительной секционной кривизны

01.01.04 — геометрия и топология

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата физико-математических наук

научный руководитель— доктор физико- математических наук И. А. Тайманов

Содержание

0 Введение 3

1	Неоднородные 13-мерные пространства положительн	ой
	секционной кривизны.	10
	1.1 Построение пространств $M_{\bar{p}}$. 10
	1.2 Кривизна пространств $M_{\bar{p}}$	
	1.3 Топология пространств $M_{\bar{p}}$	
2	Двойные частные групп Ли с интегрируемым геодез	зи-
	ческим потоком.	29
	2.1 Метод Тимма	. 29
	2.2 Основная лемма о градиентах инвариантных полиномов	. 33
	2.3 Определение и свойства ранга цепочки вложенных по-	-
	далгебр Ли	
	2.4 Основная теорема о числе независимых интегралов	
	2.5 Приложения к не Rоторым неоднородным пространствам	
	положительной секционной кривизны	
3	Многообразие положительной секционной кривизны	\mathbf{c}
	фундаментальной группой $\mathbf{Z}_3 \oplus \mathbf{Z}_3$.	47
\mathbf{A}	Функциональная независимость базиса инвариантных п	10-
	линомов в регулярных точках.	49

0 Введение

Одной из важных задач римановой геометрии является исследование геометрических и топологических свойств римановых пространств положительной секционной кривизны. Естественным образом, топологический аспект проблемы распадается на два направления: изучение топологических свойств односвязных пространств положительной секционной кривизны, и изучение свойств фундаментальных групп таких пространств. Дадим, сначала, краткий обзор и опишем результаты предлагаемой диссертации в первом направлении.

Известно очень мало примеров односвязных римановых многообразий положительной секционной кривизны, а именно:

- 1) классическими примерами являются компактные ранга 1 симметрические пространства, т. е. сферы S^n , комплексные проективные пространства $\mathbf{C}P^n$, кватериионные проективные пространства $\mathbf{H}P^n$ и проективная плоскость Кэли $\mathbf{C}aP^2$. Отметим, что перечисленные примеры исчерпывают известные топологические типы пространств положительной секционной кривизны в размерностях > 24;
- 2) все классические пространства положительной секционной кривизны являются нормально однородными, что навело на мысль провести исследование в классе таких пространств; это исследование было предпринято Берже [1], который взялся описать все нормально однородные пространства положительной секционной кривизны и обнаружил два новых "исключительных пространства"вида $\operatorname{Sp}(2)/SU(2)$ и $\operatorname{SU}(5)/\operatorname{Sp}(2)\times S^1$ размерности 7 и 13, соответственно (причем вложение $\operatorname{SU}(2)\subset\operatorname{Sp}(2)$ не является стандартным). Однако, в работе Берже была допущена неточность, в силу которой им было выпущено еще одно нормально однородное пространство положительной секционной кривизны в размерности 7 вида $\operatorname{SO}(3)\times\operatorname{SU}(3)/U(2)$ (это пространство диффеоморфно пространству Алоффа-Уоллаха $N_{1,1}$, см. ниже). Ошибка была найдена и исправлена недавно, в работе Вилкинга [2]. При этом Вилкинг нашел на $N_{1,1}$ 1-параметрическое семейство нормально однородных метрик положительной секционной кривизны это единственный пример с таким свойством;
- 3) Уоллах показал, что все четномерные однородные односвязные замкнутые многообразия с метриками положительной кривизны исчерпываются нормально однородными многообразиями и многообразиями флагов над $\mathbf{C}P^2$, $\mathbf{H}P^2$ и $\mathbf{C}aP^2$ (их размерности равны 6, 12 и 24, соответственно) [3];
- 4) Алофф и Уоллах [4] указали бесконечную серию пространств $N_{p,q}$ вида $SU(3)/S^1$, где подгруппа S^1 является обмоткой максимального тора группы SU(3) и тем самым определяется двумя взаимно простыми целочисленными параметрами p и q. При выполнении некоторых условий на p и q на этих пространствах существует левоинвариантная однородная риманова метрика положительной кривизны. Берард Бержери [5] показал, что пространства Алоффа Уоллаха исчерпывают все нечетномерные замкнутые односвязные многообразия с однородными (но не нормально однородны-

- ми) римановыми метриками положительной кривизны, а Крек и Штольц обнаружили среди них пару гомеоморфных, но не диффеоморфных многообразий ($N_{-56788,5227}$ и $N_{-42652,61213}$) [6];
- 5) используя конструкцию Алоффа и Уоллаха, Эшенбург нашел бесконечную серию семимерных пространств с неоднородными метриками положительной кривизны [7], а в дальнейшем построил и шестимерный пример неоднородного пространства с метрикой положительной кривизны [8].

Этот список исчерпывает известные к настоящему времени топологические типы односвязных замкнутых многообразий, допускающих метрики положительной секционной кривизны. Заметим, что размерность 13 среди указанных имеют только два многообразия — сфера S^{13} и нормально однородное пространство Берже $SU(5)/\operatorname{Sp}(2)\times S^1$.

При построении своих пространств Эшенбург использовал понятие $\partial eo\ddot{u}$ ного частного группы Ju — естественного обобщения однородного пространства, которое, вкратце, состоит в следующем.

Рассмотрим группу Ли G и подгруппу Ли U в $G \times G$. Зададим действие U на G:

$$U \ni (g_1, g_2) : g \in G \to g_1 g g_2^{-1} \in G.$$

Рассмотренное действие может иметь неподвижные точки. Положим $U' = \{(g_1,g_2) \in U | g_1 \in Ad(G)g_2\}$. Тогда легко увидеть, что свободность рассмотренного действия, равносильна условию $U' = \{(1,1)\}$, где $1 \in G$ — единица группы G.

Если действие свободно и изометрично относительно некоторой римановой метрики на G, то каноническим образом возникает фактормногообразие G/U, называемое двойным частным группы Ли G (в случае, если $U=H\times K$, где $H,K\subset G$, то двойное частное обозначают $H\backslash G/K$). Впервые конструкция двойного частного группы Ли возникла в работе Громолла и Майера [9] для построения метрики неотрицательной секционной кривизны на одной экзотической сфере Милнора.

Одним из основных результатов предлагаемой диссертации является конструкция новой серии односвязных замкнутых 13-мерных римановых многообразий, допускающих метрику строго положительной секционной кривизны. Построенные многообразия являются двойными частными группы $\Pi u U(5)$. А именно, в первой главе работы доказана следующая теорема (она следует из Теорем 1, 2 и 3 Главы 1):

Теорема А. Пусть U(5) — группа комплексных унитарных 5×5 -матрии, а группа $U(4) \times U(1)$ вложена в нее как подгруппа, состоящая из матрии блочного вида с двумя блоками размеров 4×4 и 1×1 . Пусть M^{25} — однородное риманово многообразие, диффеоморфное U(5) и наделенное метрикой, индуцированной из двусторонне-инвариантной метрики на $U(5) \times U(4) \times U(1)$ при проекции

$$U(5) \times U(4) \times U(1) \to U(5) \times U(4) \times U(1)/U(4) \times U(1) = M^{25},$$

где вложение $U(4) \times U(1) \to U(5) \times U(4) \times U(1)$ диагонально $(g \mapsto (g,g) \in U(5) \times (U(4) \times U(1))).$

Пусть $\bar{p}=(p_1,\ldots,p_5)$ такой набор целых положительных чисел, что для всех подстановок $\sigma\in S_5$ выполняются следующие условия:

- а) $p_{\sigma(1)} + p_{\sigma(2)} p_{\sigma(3)} p_{\sigma(4)}$ взаимно просто с $p_{\sigma(5)}$,
- b) $p_{\sigma(1)} + p_{\sigma(2)} + p_{\sigma(3)} > p_{\sigma(4)} + p_{\sigma(5)}$,
- c) $p_{\sigma(1)} + p_{\sigma(2)} + p_{\sigma(3)} + p_{\sigma(4)} > 3p_{\sigma(5)}$,
- d) $3(p_{\sigma(1)} + p_{\sigma(2)}) > p_{\sigma(3)} + p_{\sigma(4)} + p_{\sigma(5)}$.

Пусть $M_{\bar{p}}$ — фактор-многообразие, полученное из M^{25} относительно факторизации по действию группы $S^1 \times (Sp(2) \times S^1)$ вида

$$(z_1,(A,z_2)): X \to \ diag \left(z_1^{p_1}, z_1^{p_2}, z_1^{p_3}, z_1^{p_4}, z_1^{p_5}\right) \cdot X \cdot \left(\begin{array}{c|c} A^* \bar{z}_2 & \theta \\ \hline \theta & 1 \end{array} \right),$$

еде $X\in M^{25},\ z_1,z_2\in S^1,\ A\in Sp(2)$. Тогда $M_{\bar p}$, оснащенное метрикой, индуцированной факторизацией $M^{25}\to M_{\bar p}$, обладает следующими свойствами:

- 1) пространство $M_{\bar{p}}$ односвязно $u \dim M_{\bar{p}} = 13;$
- 2) пространство $M_{\bar{p}}$ имеет положительную секционную кривизну;
- 3) пространство $M_{\bar{p}}$ имеет группы когомологий

$$H^i = \left\{ \begin{array}{ll} \mathbf{Z} & n \; i = 0, 2, 4, 9, 11, 13, \\ 0 & n \; i = 1, 3, 5, 7, 10, 12; \end{array} \right.$$

группы H^6 и H^8 конечны и их порядок равен $|\sigma_1^3 - 4\sigma_1\sigma_2 + 8\sigma_3|$, где σ_k — значение элементарного симметрического полинома k-й степени от пяти переменных в точке (p_1, \ldots, p_5) .

Условия а)-d) выполняются, например, при $p_1=1,\ p_2=p_3=p_4=p_5=q^n,\$ где q — простое число. В этом случае порядок группы $H^6(M_{\bar p})$ равен $r(q,n)=8q^{2n}-4q^n+1$ и $r(q,n)\to\infty$ при $q\to\infty$ или $n\to\infty$. Отсюда, в частности, следует, что существует бесконечно много попарно негомеоморфных замкнутых односвязных 13-мерных римановых многообразий вида $M_{\bar p}$ положительной секционной кривизны.

Существуют и другие серии, простейшую конструкцию которых указал нам У. Абреш. А именно, возьмем пятерку чисел, для которых выполняется условие а) теоремы А (заметим, что под взаимной простотой мы понимаем равенство единице наибольшего общего делителя) и ни одно из чисел $|p_{\sigma(1)}+p_{\sigma(2)}-p_{\sigma(3)}-p_{\sigma(4)}|$ не равно нулю, и будем добавлять ко всем числам p_1,\ldots,p_5 натуральное число $a_n=n\cdot\prod_{\sigma\in S_5}|p_{\sigma(1)}+p_{\sigma(2)}-p_{\sigma(3)}-p_{\sigma(4)}|$.

Как легко заметить, существует такое достаточно большое число N, что при всех n>N пятерки (p_1+a_n,\ldots,p_5+a_n) удовлетворяют условиям b)—d) и они всегда удовлетворяют условию a). Например, в качестве начальной пятерки можно взять (1,1,1,2q,4q), q—любое натуральное число.

Можно заметить, что при $p_1=p_2=\ldots=p_5=1$ мы получаем пространство, диффеоморфное 13-мерному примеру Берже. Однако метрика нашего пространства при $p_i=1,\ i=1,\ldots,5$ хотя и является однородной, все же существенно "лучше"нормально однородной метрики Берже. В работе [10] Путтманн посчитал защемленность 1-параметрического семейства

метрик на пространстве Берже: построенная в предлагаемой работе метрика имеет защемленность 1/64, в то время как защемленность метрики Берже посчитана Хайнтцем в [11] и равна $16/(29 \cdot 37)$. Отметим здесь же, что максимальная защемленность рассмотренного Путтманном семейства равна 1/37.

В связи с этим кругом вопросов стоит отметить связь между пространством Алоффа-Уоллаха $N_{1,1}$ и пространством Берже, найденную Таймановым в [12]. Он описал вполне геодезическое вложение пространства $N_{1,1}$ в пространство Берже, при котором максимальное и минимальное значения секционных кривизн пространства Берже достигаются на двумерных площадках, касательных к вложенному подмногообразию. Это объяснило совпадение защемленностей пространства Берже и пространства $N_{1,1}$ (защемленность последнего пространства была посчитана Хуангом в [13]). В свете конструкции Тайманова вычисления Путтманна показывают существование однородной метрики на $N_{1,1}$ с защемленностью 1/37.

Структура Главы 1 следующая. В параграфе 1.1 строится однородная метрика на U(5) (отличная от двусторонне инвариантной) и определяется свободное изометрическое действие группы $S^1 \times (Sp(2) \times S^1)$. В целом, при построении метрики мы следуем методам, предложенным в [8]. При этом основным инструментом построения метрик выступает риманова субмерсия, впервые описанная и изученная О'Нилом в [14]. В параграфе 1.2 исследуется знак секционной кривизны построенных пространств $M_{\bar{p}}$. Основную роль здесь играет формула О'Нила [14], ввиду которой достаточно проконтролировать площадки нулевой секционной кривизны в U(5). Отметим, что при доказательстве положительности кривизны способ, предложенный в [8], связан с определенными трудностями, которые преодолеваются с помощью леммы 8. Наконец, в параграфе 1.3 исследуется топология построенных пространств: устанавливается односвязность и вычисляются группы когомологий. Основным инструментом вычислений здесь выступает спектральная последовательность расслоения.

В рамках изучения геометрических свойств пространств положительной секционной кривизны в Главе 2 диссертации исследована интегрируемость геодезического потока на двойных частных групп Ли.

Сначала дадим краткий обзор по этому вопросу. Пусть M — риманово многообразие размерности n. Геодезический поток на T^*M вполне интегрируем, если существуют n первых интегралов $f_1,\ldots,f_n:T^*M\to \mathbf{R}$, которые независимы почти всюду в T^*M и находятся в инволюции, то есть $\{f_i,f_j\}=0$ для $i,j=1,\ldots,n$, относительно стандартной симплектической структуры на T^*M .

Новый метод интегрирования геодезического потока на однородных пространствах был найден Тиммом [15], успешно применившим его к комплексным и вещественным грассмановым многообразиям. Опишем суть метода Тимма. Если группа Ли G с алгеброй Ли $\mathbf g$ действует на многообразии M изометриями, то возникает отображение момента $\Phi:TM\to\mathbf g^*$. Тогда любая Ad(G)-инвариантная функция f на $\mathbf g^*$ дает первый интеграл $f\circ\Phi$ геодезического потока на M, причем все такие интегралы будут находится

в инволюции. Тимм предложил рассмотреть цепочку вложенных подгрупп $G_1 \subset G_2 \subset \ldots \subset G_n = G$ и рассматривать первые интегралы, получающиеся из $Ad(G_i)$ -инвариантных полиномов на \mathbf{g}_i^* . Все такие интегралы будут находиться в инволюции. Однако доказательство функциональной независимости в методе Тимма явилось очень непростой задачей, которая не была разрешена в его работе в общей ситуации.

В [16] Патернайн и Спатцир применили метод Тимма к пространствам Эшенбурга $M_{1,-1,2m,2m}$ и к сфере Громолла-Майера Σ^7 , которые не являются однородными, а получаются как двойные частные групп Ли (для пространств Эшенбурга G=SU(3), U=U(1), для сферы Громолла-Майера G=Sp(2), U=Sp(1)). Патернайн и Спатцир для построения первых интегралов геодезического потока на двойных частных SU(3)/U(1) и Sp(2)/Sp(1) сначала применили метод Тимма к SU(3) и Sp(2), а затем использовали римановы субмерсии $SU(3) \to M_{1,-1,2m,2m}$ и $Sp(2) \to \Sigma^7$.

Отметим, что в [16] была показана интегрируемость геодезического потока на пространствах, диффеоморфных пространствам Эшенбурга, но не изометричных им. В частности, на пространствах, рассмотренных в [16] секционная кривизна не является положительной.

В главе 2 предпринято исследование интегрируемости геодезического потока на двойных частных групп Ли общего вида $H\backslash G/K$, причем основной трудностью явилось определение числа функционально независимых интегралов, возникающих из метода Тимма. Для этого в диссертации введено понятие ранга цепочки вложенных подалгебр, которое описано ниже.

Пусть ${\bf g}$ — алгебра Ли, $X \in {\bf g}$. Положим

$$N_{\mathbf{g}}(X) = Z(\operatorname{Ker}(\operatorname{ad}(X)))$$

(через $Z(\mathbf{h})$ мы обозначаем центр алгебры Ли \mathbf{h}). Роль подалгебры $N_{\mathbf{g}}(X)$ раскрывается в Лемме 17 , которая является узловым моментом в Главе 2: подалгебра $N_{\mathbf{g}}$ оказывается пространством градиентов в точке X всех Ad(G)-инвариантных полиномов на \mathbf{g} .

Пусть имеется пара алгебр Ли (\mathbf{g}, \mathbf{h}) , $\mathbf{h} \subset \mathbf{g}$. Пусть $\mathbf{g} = \mathbf{h} \oplus \mathbf{p}$ — ортогональное разложение относительно Ad(G)-инвариантной метрики на \mathbf{g} . Предположим, что имеется векторное подпространство $\mathbf{v} \subset \mathbf{g}$. Положим

$$rank((\mathbf{g}, \mathbf{h}), \mathbf{v}) = \max_{X \in \mathbf{v}} \dim(pr_{\mathbf{p}}(N_{\mathbf{g}}(X))),$$

где $pr_{\mathbf{p}}: \mathbf{g} \to \mathbf{p}$ — ортогональная проекция. Число $rank((\mathbf{g}, \mathbf{h}), \mathbf{v})$ назовем рангом пары (\mathbf{g}, \mathbf{h}) относительно пространства \mathbf{v} .

Пусть, теперь, дана цепочка вложенных подалгебр Ли

$$\mathbf{g}_0 \subset \mathbf{g}_1 \subset \ldots \subset \mathbf{g}_n,$$

и подпространство $\mathbf{v} \subset \mathbf{g}_n$. Обозначим через $pr_i: \mathbf{g}_n \to \mathbf{g}_i$ ортогональную проекцию.

Число

$$rank(\{\mathbf{g}_i\}_{i=0}^n, \mathbf{v}) = \sum_{i=0}^{n-1} rank((\mathbf{g}_{i+1}, \mathbf{g}_i), pr_{i+1}(\mathbf{v}))$$

будем называть рангом цепочки $\{{f g}_i\}_i$ вложенных подалгебр.

Основным результатом второй главы является следующая теорема (содержащаяся в Главе 2 как Теорема 4):

Теорема Б.

Рассмотрим $M = H \backslash G/K - \partial soйное$ частное группы G. Положим

$$\mathbf{v} = (\mathbf{h} + \mathbf{k})^{\perp} \subset \mathbf{g},$$

 $ede\ \mathbf{g}, \mathbf{h}, \mathbf{k} - a$ лгебры Ли групп G, H, K и ортогональное дополнение берется относительно двусторонне инвариантной метрики на G.

Пусть существуют цепочки вложенных алгебр Ли:

$$\mathbf{h} = \mathbf{h}_0 \subset \ldots \subset \mathbf{h}_l = \mathbf{g},$$

$$\mathbf{k} = \mathbf{k}_0 \subset \ldots \subset \mathbf{k}_m = \mathbf{g},$$

$$u r_1 = rank(\{\mathbf{h}_i\}_i, \mathbf{v}), r_2 = rank(\{\mathbf{k}_i\}_i, \mathbf{v}), r_3 = rank(G).$$

Тогда для геодезического потока на M существует по крайней мере $r_1+r_2-r_3$ функционально независимых первых интегралов, находящихся в инволюции.

В качестве приложения этой теоремы мы доказываем интегрируемость геодезического потока на пространствах Эшенбурга положительной кривизны, построенных в [8] и на 13-мерных пространствах положительной кривизны, построенных и изученных в Главе 1.

Опишем структуру Главы 2. В параграфе 2.1 описан собственно метод Тимма. В параграфе 2.2 введено пространство $N_{\bf g}(X)$ и доказана упомянутая выше Лемма 17. При ее доказательстве существенную роль играют факты из теории полиномов, инвариантных относительно групп, порожденных отражениями. Основной работой в этом направлении явилась для нас статья Шевалле [17]. Однако для наших целей потребовалось некоторое усиление результатов Шевалле, которое мы проделали в Приложении А (теорема о функциональной независимости в регулярных точках базиса инвариантных полиномов). В параграфе 2.3 вводится определение ранга цепочки вложенных подалгебр и устанавливаются некоторые оценки снизу на ранг, достаточные для приложений. В параграфе 2.4 доказывается основная теорема о числе независимых интегралов на двойных частных групп Ли (Теорема 4). Наконец, в параграфе 2.5 рассмотрены наши основные два примера в качестве приложения: 7-мерные пространства Эшенбурга и 13-мерные пространства автора, построенные в Главе 1. На всех этих пространствах показана интегрируемость геодезического потока по отношению к метрикам положительной кривизны.

Обсудим теперь другое направление исследований — изучение свойств фундаментальной группы многообразия положительной секционной кривизны. Теорема Синга, из которой следует, что фундаментальная группа четномерного многообразия положительной кривизны либо единичная, либо \mathbf{Z}_2 , а также Теорема Майерса, гарантирующая конечность фундаментальной группы пространства положительной кривизны, наводят на мысль, что положительная кривизна накладывает сильные ограничения на фундаментальную группу. Известная гипотеза Чженя [18] состоит в следующем:

верно ли, что у замкнутого многообразия положительной секционной кривизны все абелевы подгруппы фундаментальной группы цикличны?

По-видимому, гипотеза основывалась на том, что это верно для групп изометрий сфер и фундаментальных групп многообразий отрицательной кривизны.

Шанкар, в работе [19], определил свободное изометрическое действие группы \mathcal{N} \mathcal{N} \mathcal{N} да пространстве Алофф-Уоллаха \mathcal{N} дуже не раз упоминавшемся выше. При этом Шанкаром была рассмотрена нормально однородная метрика, найденная Вилкингом. Следовательно, любая конечная подгруппа в \mathcal{S} \mathcal{N} может быть реализована как фундаментальная группа некоторого 7-мерного многообразия положительной секционной кривизны. Подгруппа диагональных матриц в \mathcal{S} \mathcal{N} дуженя \mathcal{N} дугих подгрупп висревым контрпримером к гипотезе Чженя. Однако других подгрупп вида $\mathbf{Z}_p \oplus \mathbf{Z}_p$ в группе \mathcal{S} \mathcal{N} нет, поэтому вопрос о реализуемости группы $\mathbf{Z}_p \oplus \mathbf{Z}_p$ как подгруппы фундаментальной группы многообразия положительной секционной кривизны оставался до сих пор неясным, и Шанкаром в его работе была выдвинута гипотеза о несуществовании таких подгрупп.

В Главе 3 предлагаемой диссертации описывается свободное изометрическое действие группы $\mathbf{Z}_3 \oplus \mathbf{Z}_3$ на 7 -мерном пространстве Алоффа-Уоллаха $N_{1,1}$ (в представлении Вилкинга) положительной секционной кривизны (Теорема 5).

Отсюда, опровергая предположение Шанкара, следует

Теорема В. Существует замкнутое риманово многообразие положительной секционной кривизны с фундаментальной группой $\mathbf{Z}_3 \oplus \mathbf{Z}_3$.

Автор благодарит научного руководителя И. А. Тайманова за постановку задачи и полезные советы.

1 Неоднородные 13-мерные пространства положительной секционной кривизны.

1.1 Построение пространств $M_{\bar{p}}$

1. Риманова субмерсия и ее свойства. Пусть M,N — римановы многообразия, $f:M\to N$ — гладкое отображение. Отображение f называется субмерсией, если f сюръективно (т. е. f(M)=N) и для каждой точки $x\in M$ отображение $d_x:T_xM\to T_{f(x)}N$ является эпиморфизмом. Тогда в каждой точке касательное пространство к M каноническим образом разлагается в прямую сумму двух подпространств $T_xM=(T_xM)^v\oplus (T_xM)^h$, где

$$(T_x M)^v = T_x K, \quad K = f^{-1}(f(x)),$$

а $(T_xM)^h$ — ортогональное дополнение к $(T_xM)^v$. Эти подпространства называются соответственно вертикальным и горизонтальным. Очевидно, что $d_xf|_{(T_xM)^h}:(T_xM)^h \to T_{f(x)}N$ — изоморфизм. Если этот изоморфизм сохраняет метрику, то отображение f называется pumanosoii субмерсией.

Следующая лемма дает основную конструкцию, доставляющую примеры римановых субмерсий.

Лемма 1 Пусть G — группа изометрий, свободно действующая с замкнутыми орбитами на римановом многообразии M. Тогда на пространстве орбит N можно ввести структуру риманова многообразия такую, что естественная проекция $\pi: M \to N$ будет римановой субмерсией.

В случае римановых субмерсий кривизны многообразий M и N связаны соотношением, найденным в работе [14]. Мы ограничимся лишь его следствием, необходимым нам в дальнейшем.

Лемма 2 Пусть $\pi: M \to N$ — риманова субмерсия. Рассмотрим $x \in M$, $y \in N$, $\pi(x) = y$. Если σ^* — двумерная горизонтальная плоскость в $T_x M$ и $\sigma = d_x \pi(\sigma^*)$, то

$$K(\sigma) \geq K(\sigma^*)$$
.

Доказательство следующей леммы можно найти, например, в [20].

 $^{^1{\}rm Kak}$ стало известно автору, это многообразие было независимо построено Грове и Шанкаром

Лемма 3 Пусть G — группа Ли c двусторонне инвариантной метрикой \langle , \rangle , \mathbf{g} — касательное пространство в единице, наделенное структурой алгебры Ли. Тогда для всех $X,Y \in \mathbf{g}$ секционная кривизна в направлении Span(X,Y) равна

$$K(X,Y) = \frac{1}{4} \langle [X,Y], [X,Y] \rangle.$$

2. Нормальная однородная метрика на U(5). В этом пункте мы строим риманову метрику на группе U(5), а в следующем определяем свободные действия группы $S^1 \times (\operatorname{Sp}(2) \times S^1)/Z_2$ на U(5), изометричные относительно этой метрики. Сама конструкция данной вспомогательной метрики на U(5) дает нам пример римановой субмерсии. Более того, искомые метрики на пространствах орбит действий $S^1 \times (\operatorname{Sp}(2) \times S^1)/Z_2$ на U(5) будут построены по данной с помощью леммы 1. В этих построениях мы следуем статье [8].

Пусть G — группа Ли U(5), $K = U(4) \times U(1)$ — стандартно вложенная подгруппа Ли в G. Рассмотрим на группе G обычную двусторонне инвариантную риманову метрику $\langle \; , \; \rangle_0$:

$$\langle X, Y \rangle_0 = \text{Re trace}(XY^*)$$
 для $X, Y \in \mathbf{u}(5)$.

Она каноническим образом индуцируется на K и на $G \times K$. Полученные метрики мы также будем обозначать через $\langle \, , \, \rangle_0$.

Пусть $\triangle K = \{(k,k) \mid k \in K\}$ — подгруппа в $G \times K$. Рассмотрим действие $\triangle K$ на $G \times K$ правыми сдвигами:

$$((g,k),k') \longmapsto (gk',kk')$$
 для $g \in G, k,k' \in K$.

Очевидно, что это свободное действие изометриями. По лемме 1 существует метрика на пространстве орбит $(G \times K)/\triangle K$ такая, что естественная проекция

$$\pi: G \times K \to (G \times K)/\triangle K$$

будет римановой субмерсией. Можно увидеть, что соответствие $(g,k) \to gk^{-1}$ устанавливает диффеоморфизм между $(G \times K)/\triangle K$ и G. Перенеся с помощью этого диффеоморфизма риманову метрику с пространства орбит $(G \times K)/\triangle K$ на пространство G, мы получим метрику $\langle \ , \ \rangle$ на G. При этом отображение

$$\pi: G \times K \to G: (q, k) \longmapsto qk^{-1}$$

является римановой субмерсией.

Рассмотрим в группе $G \times K$ левый сдвиг на элемент (g, k^{-1}) , где $g \in G$, $k \in K$. Так как метрика $\langle \ , \ \rangle_0$ двусторонне инвариантна, это отображение будет изометрией. Кроме того, левый сдвиг сохраняет слои субмерсии π , поэтому на G индуцируется отображение

$$g' \longmapsto gg'k : G \to G$$
,

которое является изометрией. Итак, метрика $\langle \, , \, \rangle$ левоинвариантна относительно G и правоинвариантна относительно K.

Пусть $\mathbf{k} = \mathbf{u}(4) \oplus \mathbf{u}(1)$ и $\mathbf{g} = \mathbf{u}(5)$ — касательные алгебры групп G и K. Обозначим через р ортогональное дополнение k в g относительно метрики $\langle \; , \; \rangle_0$. Тогда разложение $\mathbf{g} = \mathbf{k} \oplus \mathbf{p}$ инвариантно относительно $\mathrm{Ad}(K)$. Кроме того, G/K — симметрическое пространство $\mathbb{C}P^4$, поэтому

$$[\mathbf{k}, \mathbf{k}] \subset \mathbf{k}, \quad [\mathbf{p}, \mathbf{p}] \subset \mathbf{k}, \quad [\mathbf{k}, \mathbf{p}] \subset \mathbf{p}.$$
 (1)

Вертикальное подпространство субмерсии π в точке (e,e) — это

$$V = \{ (Z, Z) \mid Z \in \mathbf{k} \} = \triangle \mathbf{k}.$$

Поэтому $(X,Y) \in \mathbf{g} \oplus \mathbf{k}$ лежит в горизонтальном подпространстве H, если

$$\langle (X,Y),(Z,Z)\rangle_0=0$$
 для всех $Z\in\mathbf{k},$

что влечет выполнение следующих условий:

$$\langle X,Z\rangle_0+\langle Y,Z\rangle_0=0,\quad \langle X+Y,Z\rangle_0=0$$
 для всех $Z\in\mathbf{k}$.

Заметим, что в этом случае $X+Y\in {\bf p},$ т. е. $X_k+Y_k=0$ и $Y=Y_k=-X_k.$ Отсюда выводим, что

$$H = \{(X_k + X_p, -X_k) \mid X_k \in \mathbf{k}, \ X_p \in \mathbf{p}\}\$$

и $d_{(e,e)}\pi|_H: H \to {f g}$ — изометрия. Так как $d_{(e,e)}\pi(X,Y)=X-Y,$ то для всех $X\in {f g}$ выполняется соотно-

$$(d_{(e,e)}\pi|_H)^{-1}(X) = \left(\frac{1}{2}X_k + X_p, -\frac{1}{2}X_k\right).$$
 (2)

Лемма 4 Если $X \in \mathbf{g}$ и $Y \in \mathbf{k}$, mo $\langle X, Y \rangle = \frac{1}{2} \langle X, Y \rangle_0$.

Доказательство. В силу (2)

$$\langle X, Y \rangle = \left\langle \left(\frac{1}{2} X_k + X_p, -\frac{1}{2} X_k \right), \left(\frac{1}{2} Y_k + Y_p, -\frac{1}{2} Y_k \right) \right\rangle_0 =$$

$$= \left\langle \frac{1}{2} X_k + X_p, \frac{1}{2} Y \right\rangle_0 + \left\langle -\frac{1}{2} X_k, -\frac{1}{2} Y \right\rangle_0 =$$

$$= \left\langle X_k + X_p, \frac{1}{2} Y \right\rangle_0 = \frac{1}{2} \langle X, Y \rangle_0.$$

Лемма доказана.

В дальнейшем, говоря о кривизне пространства G, мы будем иметь в виду метрику \langle , \rangle .

Пемма 5 Пусть σ — двумерная плоскость в \mathbf{g} , $K(\sigma)=0$. Тогда $\sigma=$ Span(X,Y), $\epsilon \partial e \ X \in \mathbf{g}$, $Y \in \mathbf{k} \ u$

$$[X_p, Y] = [X_k, Y] = 0.$$

Доказательство. Пусть $\sigma = \mathrm{Span}(X,Y)$, где $X,Y \in \mathbf{g}$. Пусть $\sigma^* = \mathrm{Span}\left(\left(\frac{1}{2}X_k + X_p, -\frac{1}{2}X_p\right), \left(\frac{1}{2}Y_k + Y_p, -\frac{1}{2}Y_k\right)\right)$ лежит в горизонтальном подпространстве субмерсии π . Имеем $d_e\pi(\sigma^*) = \sigma$. По леммам 2 и 3 $0 \le K(\sigma^*) \le K(\sigma) = 0$. Отсюда $K(\sigma^*) = 0$.

Из леммы 3 следует, что

$$\label{eq:controller} \begin{split} &\left[\left(\frac{1}{2}X_k + X_p, -\frac{1}{2}X_k\right), \left(\frac{1}{2}Y_k + Y_p, -\frac{1}{2}Y_k\right)\right] = 0, \\ &\left(\left[\frac{1}{2}X_k + X_p, \frac{1}{2}Y_k + Y_p\right], \left[-\frac{1}{2}X_k, -\frac{1}{2}Y_k\right]\right) = 0. \end{split}$$

Таким образом.

$$[X_k,Y_k] = 0, \quad \frac{1}{2}[X_k,Y_p] + \frac{1}{2}[X_p,Y_k] + [X_p,Y_p] = 0.$$

Согласно (1) $[X_p,Y_p] \in \mathbf{k}$ и $[X_k,Y_p] + [X_p,Y_k] \in \mathbf{p}$, т. е.

$$[X_p, Y_p] = 0, \quad [X_k, Y_p] + [X_p, Y_k] = 0.$$

Далее, $X_p, Y_p \in \mathbf{p}$ — векторы касательного пространства к CP^4 , которое имеет положительную кривизну. Так как кривизна CP^4 в направлении $\mathrm{Span}(X_p,Y_p)$ равна нулю, то X_p,Y_p линейно зависимы. Поэтому мы можем считать, что $\sigma = \mathrm{Span}(X,Y)$, где $Y \in \mathbf{k}$. Тогда

$$[X_k, Y] = [X_p, Y] = 0.$$

Лемма доказана.

3. Свободное действие на U(5) и построение пространств $M_{\bar{p}}$. Пусть p_1,p_2,p_3,p_4,p_5 — целые числа. Обозначим $P'=S^1\times (\ \mathrm{Sp}(2)\times S^1),$ где $\mathrm{Sp}(2)$ считаем стандартно вложенной в SU(4).

Рассмотрим действие группы P' на G = U(5):

$$(z_1,(A,z_2)): X \mapsto \operatorname{diag}(z_1^{p_1},z_1^{p_2},z_1^{p_3},z_1^{p_4},z_1^{p_5}) \cdot X \cdot \left(\begin{array}{c|c} A^* \bar{z}_2 & 0 \\ \hline 0 & 1 \end{array}\right),$$

где $X \in G$, $z_1, z_2 \in S^1$, $A \in Sp(2)$.

Лемма 6 Пусть $p_{\sigma(1)}+p_{\sigma(2)}-p_{\sigma(3)}-p_{\sigma(4)}$ взаимно просто с $p_{\sigma(5)}$ для любой подстановки $\sigma\in S_5$. Тогда рассмотренное действие имеет ядро $Z_2=(1,\pm(E,1))$ и, следовательно, индуцирует свободное действие на G группы

$$P = S^1 \times \frac{Sp(2) \times S^1}{\pm (E, 1)} =: P_1 \times P_2.$$

Доказательство. Допустим, что

$$X = \operatorname{diag}(z_1^{p_1}, z_1^{p_2}, z_1^{p_3}, z_1^{p_4}, z_1^{p_5}) \cdot X \cdot \left(\frac{A^* \bar{z}_2 \mid 0}{0 \mid 1}\right),$$

$$\operatorname{diag}(\bar{z}_1^{p_1}, \bar{z}_1^{p_2}, \bar{z}_1^{p_3}, \bar{z}_1^{p_4}, \bar{z}_1^{p_5}) = X \left(\begin{array}{c|c} A^* \bar{z}_2 & 0 \\ \hline 0 & 1 \end{array} \right) X^{-1}.$$

В Sp(2) рассмотрим максимальный тор

$$T^2 = \{ \operatorname{diag}(u, v, \bar{u}, \bar{v}) \mid u, v \in S^1 \}.$$

Тогда существует такой элемент $Y\in \mathrm{Sp}(2),$ что $A^*=Y\times \mathrm{diag}(u,v,\bar{u},\bar{v})Y^{-1}$ при некоторых $u,v\in S^1.$ Итак,

$$\mathrm{diag}\big(\bar{z}_1^{p_1},\bar{z}_1^{p_2},\bar{z}_1^{p_3},\bar{z}_1^{p_4},\bar{z}_1^{p_5}\big) =$$

$$= \left(X \left(\begin{array}{c|c} Y & 0 \\ \hline 1 & 0 \end{array} \right) \right) \operatorname{diag}(u\bar{z}_2, v\bar{z}_2, \bar{u}\bar{z}_2, \bar{v}\bar{z}_2, 1) \left(X \left(\begin{array}{c|c} Y & 0 \\ \hline 1 & 0 \end{array} \right) \right)^{-1}.$$

Значит, существуют $\{i_1,i_2,i_3,i_4,i_5\}=\{1,2,3,4,5\}$ такие, что

$$\bar{z}_1^{p_{i_1}} = u\bar{z}_2, \quad \bar{z}_1^{p_{i_2}} = v\bar{z}_2, \quad \bar{z}_1^{p_{i_3}} = \bar{u}\bar{z}_2, \quad \bar{z}_1^{p_{i_4}} = \bar{v}\bar{z}_2, \quad \bar{z}_1^{p_{i_5}} = 1.$$

Из первых четырех равенств вытекает, что

$$\bar{z}_1^{p_{i_1} + p_{i_3} - p_{i_2} - p_{i_4}} = 1.$$

По условию леммы p_{i_5} взаимно просто с $p_{i_1}+p_{i_3}-p_{i_2}-p_{i_4},$ поэтому $\bar{z}_1=1,$ т. е. $z_1=1.$ Тогда $\bar{z}_2^2=1,$ $z_2=\pm 1.$

- 1. Если $z_2=1$, то $u=v=1, A^*=YEY^{-1}=E$, т. е. A=E.
- 2. Если $z_2 = -1$, то u = v = -1, A = -E.

Итак, ядро действия равно $Z_2 = (1, \pm (E, 1))$. Лемма доказана.

Группа P действует на G изометриями. Поэтому согласно лемме 1 на пространстве орбит $M_{\bar{p}}$ можно ввести структуру риманова многообразия таким образом, что естественная проекция

$$\bar{\pi}:G\to M_{\bar{p}}$$

будет римановой субмерсией.

1.2 Кривизна пространств $M_{\bar{p}}$

В этом параграфе мы найдем условия на \bar{p} , при выполнении которых секционная кривизна пространства $M_{\bar{p}}$ положительна.

Следующая лемма была доказана в [8], но мы для полноты изложения приведем ее вместе с доказательством.

Лемма 7 Пусть G — компактная группа Ли c двусторонне-инвариантной метрикой $\langle \; , \; \rangle_0$, $\mathbf{t} \subset \mathbf{g}$ — максимальная абелева подалгебра в касательной алгебре κ G u H \in \mathbf{t} . Пусть M = Ad(G)A, где $A \in \mathbf{g}$. Функция

$$f_H: M \to R: X \mapsto \langle H, X \rangle_0$$

достигает экстремальных значений на $M \cap \mathbf{t}$.

Доказательство. Предположим сначала, что H — регулярный элемент в \mathbf{t} , \mathbf{r} . е. H не лежит более ни в какой максимальной подалгебре.

Пусть $X \in M$ — критическая точка для f_H . Значит, $d_X f_H = \langle H, - \rangle_0 = 0$. Так как $M = \mathrm{Ad}(G)X$, то $T_X M = \mathrm{ad}(\mathbf{g})X$. Следовательно,

$$\langle \operatorname{ad}(\mathbf{g})X, H \rangle_0 = 0,$$

$$\langle [Z,X],H\rangle_0 = \langle Z,[X,H]\rangle_0 = 0$$

для всех $Z \in \mathbf{g}$. Значит, [X,H] = 0, и в силу регулярности H заключаем, что $X \in \mathbf{t}$.

Допустим, теперь, что H — сингулярный элемент \mathbf{t} . Пусть X — точка экстремума и $X \in \mathbf{g} \backslash \mathbf{t}$. Тогда при достаточно малом изменении H станет регулярным, а X останется в $\mathbf{g} \backslash \mathbf{t}$ — противоречие с вышедоказанным. Лемма доказана.

Пемма 8 Пусть F — подалгебра в $\mathbf{su}(4)$ размерности 10, \mathbf{t} — максимальная абелева подалгебра диагональных матриц в $\mathbf{su}(4)$. Допустим, что $H \in \mathbf{t}$ и $\langle H, F \rangle_0 = 0$. Тогда с точностью до перестановки существуют лишь две возможности:

$$H = i \cdot t \cdot diag(1, 1, -1, -1)$$
 unu $H = i \cdot t \cdot diag(1, 1, 1, -3)$,

 $r\partial e \ t \in R$.

Доказательство. Рассмотрим преобразование

$$ad(H): \mathbf{su}(4) \to \mathbf{su}(4): X \mapsto [H, X].$$

Возьмем $X,Y\in F$. Тогда $[X,Y]\in F$, т. е. $\langle H,[X,Y]\rangle_0=0$. Следовательно, $\langle [H,Y],X\rangle_0=\langle H,[X,Y]\rangle_0=0$. Итак,

$$\langle F, \text{ ad } H(F) \rangle_0 = 0.$$

Кроме того, $\langle [H,X],H\rangle_0=\langle [H,H],X\rangle_0=0$ для всех $X\in F$, т. е.

$$\langle \text{ ad } H(F), H \rangle_0 = 0.$$

Тогда

$$\dim(\operatorname{ad}H(F)) \le \dim \operatorname{su}(4) - \dim F - 1 = 4.$$

Значит,

$$\dim(\text{ Ker}(\text{ ad}H) \cap F) > 10 - 4 = 6.$$

Так как $H \in \text{ Ker}(\text{ ad}H)$, но H не лежит в F, то

$$\dim(\operatorname{Ker}(\operatorname{ad} H)) \ge \dim(\operatorname{Ker}(\operatorname{ad} H) \cap F) + 1 \ge 7.$$

Рассмотрим adH-инвариантное разложение на корневые подпространства

$$\mathbf{su}(4) = V_0 \oplus \bigoplus_{\substack{i,j=1\\i < j}}^4 V_{i,j},$$

где $V_0 = \mathbf{t}$, dim $V_{i,j} = 2$. Тогда

$$adH(V_0) = 0,$$

$$adH(V_{i,j}) = \theta_{i,j}(H)V_{i,j},$$

где $\theta_{i,j}$ — корни $\mathbf{su}(4)$, т. е. $\theta_{i,j}(i\cdot \mathrm{diag}(x_1,x_2,x_3,x_4))=x_i-x_j$. Из условия на размерность ядра $\operatorname{ad} H$ вытекает, что по крайней мере два корня обращаются в нуль на H. Лемма доказана.

Пемма 9 Пусть для некоторого $m \in M_{\bar{p}}$ существует двумерная плоскость $\sigma \subset T_m M_{\bar{p}}, K(\sigma) = 0$. Тогда существуют такие $g \in G, X, Y \in \mathbf{u}(5)$, что X,Y линейно независимы, K(X,Y)=0 и X,Y ортогональны подпространству

$$D_g = \left\{ Ad(g^{-1}) \cdot i \cdot t \cdot diag(p_1, p_2, p_3, p_4, p_5) - i \cdot s \cdot diag(1, 1, 1, 1, 0) \right\}$$

$$-\left(\begin{array}{c|c}A&0\\\hline 0&0\end{array}\right)\mid t,s\in\mathbf{R},A\in\mathbf{sp}(2)\bigg\}.$$

Доказательство. Рассмотрим риманову субмерсию $\bar{\pi}: G \to M_{\bar{p}}$. Допустим, что $\bar{\pi}(g)=m$, где $g\in G$. Тогда $T_gG=V\oplus H$, где V — вертикальное, H — горизонтальное подпространство и $d_q \pi|_H$ — изометрия. Имеем

$$V = T_q P = \{ d_e R_q(X) - d_e L_q(Y) \mid (X, Y) \in T_e P \},\$$

где $R_q,\, L_q$ — правый и левый сдвиги на g. Тогда $H=V^\perp$ — ортогональное дополнение. Значит, существует такое $\sigma^* \in H$, что $d_q \bar{\pi}(\sigma^*) = \sigma$. По леммам 2 и 3 $0 \le K(\sigma^*) \le K(\sigma)$, поэтому $K(\sigma^*) = 0$. Левый сдвиг $L_{g^{-1}} = (L_g)^{-1}$ — изометрия. Пусть $d_g L_{g^{-1}}(\sigma^*) = \mathrm{Span}(X,Y)$, где $X,Y \in T_eG = \mathbf{u}(5)$. Тогда K(X,Y)=0 и $0=\langle V,\sigma^*\rangle=\langle d_gL_{g^{-1}}(V),\ \mathrm{Span}(X,Y)\rangle.$ Таким образом, X,Y ортогональны подпространству

$$\begin{split} D_g &= d_g L_{g^{-1}}(V) = \{ (d_g L_g)^{-1} (d_g R_g)(X) - Y \mid (X,Y) \in T_e P \} \\ &= \{ d_e (L_{g^{-1}} \circ R_g)(X) - Y \mid (X,Y) \in T_e P \} \\ &= \{ Ad(g^{-1})X - Y \mid X \in T_e S^1, Y \in T_e (\operatorname{Sp}(2) \times S^1) \} \\ &= \left\{ \operatorname{Ad}(g^{-1}) \cdot i \cdot t \cdot \operatorname{diag}(p_1, p_2, p_3, p_4, p_5) - i \cdot s \cdot \operatorname{diag}(1, 1, 1, 1, 0) \right. \\ &\left. - \left(\frac{A \mid 0}{0 \mid 0} \right) \mid t, s \in \mathbf{R}, A \in \operatorname{\mathbf{sp}}(2) \right\}. \end{split}$$

Лемма доказана.

Теорема 1 Пусть $\bar{p} = (p_1, p_2, p_3, p_4, p_5)$ для всех подстановок $\sigma \in S_5$ удовлетворяет следующим условиям:

- 1) $p_{\sigma(1)} + p_{\sigma(2)} p_{\sigma(3)} p_{\sigma(4)}$ взаимно просто с $p_{\sigma(5)}$;
- 2) $p_1, p_2, p_3, p_4, p_5 > 0;$
- 3) $p_{\sigma(1)} + p_{\sigma(2)} + p_{\sigma(3)} > p_{\sigma(4)} + p_{\sigma(5)};$
- 4) $p_{\sigma(1)} + p_{\sigma(2)} + p_{\sigma(3)} + p_{\sigma(4)} > 3p_{\sigma(5)};$
- 5) $3(p_{\sigma(1)} + p_{\sigma(2)}) > p_{\sigma(3)} + p_{\sigma(4)} + p_{\sigma(5)}$

Тогда $M_{\bar{p}}$ имеет строго положительную секционную кривизну.

Доказательство. Допустим, что утверждаемое теоремой неверно. Тогда согласно лемме 9 найдутся $g \in G$ и $X,Y \in \mathbf{u}(5)$ такие, что X,Y линейно независимы, ортогональны D_g и K(X,Y)=0. Ввиду леммы 5 можно считать, что $Y \in \mathbf{k} = \mathbf{u}(4) \oplus \mathbf{u}(1)$ и

$$[X_p, Y] = [X_k, Y] = 0.$$

Рассмотрим два возникающих случая.

Случай 1: $X \in \mathbf{k}$. Тогда

$$X = \left(\begin{array}{c|c} X_1 & 0 \\ \hline 0 & it \end{array}\right), \quad Y = \left(\begin{array}{c|c} Y_1 & 0 \\ \hline 0 & is \end{array}\right),$$

где $X_1,Y_1\in \mathbf{u}(4),\,t,s\in R$. Условие [X,Y]=0 означает, что $[X_1,Y_1]=0$. Из условия ортогональности D_q вытекает, что

$$\left\langle X, \left(\begin{array}{c|c} A & 0 \\ \hline 0 & 0 \end{array} \right) \right\rangle = \left\langle Y, \left(\begin{array}{c|c} A & 0 \\ \hline 0 & 0 \end{array} \right) \right\rangle = 0 \quad \forall A \in \mathbf{sp}(2),$$
$$\left\langle X, i \cdot \operatorname{diag}(1, 1, 1, 1, 0) \right\rangle = \left\langle Y, i \cdot \operatorname{diag}(1, 1, 1, 1, 0) \right\rangle = 0,$$

$$\langle X, \operatorname{Ad}(g^{-1}) \cdot i \cdot \operatorname{diag}(p_1, p_2, p_3, p_4, p_5) \rangle = \langle Y, \operatorname{Ad}(g^{-1}) \cdot i \cdot \operatorname{diag}(p_1, p_2, p_3, p_4, p_5) \rangle = 0.$$

Поскольку $X,Y \in \mathbf{k}$, согласно лемме 4 последние соотношения верны и для метрики $\langle \, , \, \rangle_0$. Поэтому $X_1, \, Y_1$ ортогональны элементу $i \cdot \operatorname{diag}(1,1,1,1)$, а это означает, что $X_1, Y_1 \in \mathbf{su}(4)$ и

$$\langle X_1, \mathbf{sp}(2) \rangle_0 = \langle Y_1, \mathbf{sp}(2) \rangle_0 = 0,$$

где $\mathbf{sp}(2)$ стандартно вложено в $\mathbf{su}(4)$.

Известно, что $SU(4)/\operatorname{Sp}(2)$ — симметрическое пространство ранга 1, а именно S^5 , имеющее строго положительную кривизну. Поэтому $X_1,\,Y_1$ линейно зависимы. Следовательно, не меняя $\operatorname{Span}(X,Y)$, можно считать, что $X_1=0$.

Итак, можем считать, что

$$X=i\cdot\left(egin{array}{c|c}0&0\\\hline0&1\end{array}
ight),$$
 причем $\langle X,Ad(g^{-1})\cdot i\cdot \mathrm{diag}(p_1,p_2,p_3,p_4,p_5)
angle_0=0.$

Рассмотрим функцию

$$f_X: \operatorname{Ad}(G) \cdot i \cdot \operatorname{diag}(p_1, p_2, p_3, p_4, p_5) \to \mathbf{R}: Z \mapsto \langle Z, X \rangle_0.$$

Согласно лемме 7 f_X достигает экстремальных значений в точках из $\mathrm{Ad}(G) \cdot i \cdot \mathrm{diag}(p_1,p_2,p_3,p_4,p_5) \cap \{$ диагональные матрицы $\}$. Поскольку две сопряженные диагональные матрицы совпадают с точностью до перестановки, экстремальные значения функции f_X содержатся среди $\{p_1,p_2,p_3,p_4,p_5\} \subset (0,\infty)$ — противоречие.

Случай 2: X не лежит в ${\bf k}$. Тогда

$$X_p = \left(\begin{array}{c|c} 0 & x \\ \hline -x^* & 0 \end{array}\right), \quad Y = \left(\begin{array}{c|c} Y_1 & 0 \\ \hline 0 & it \end{array}\right),$$

где $t \in \mathbf{R}, Y_1 \in \mathbf{u}(4), x \in \mathbf{C}^4 \setminus 0$. При этом $[X_p, Y] = 0$, т. е.

$$[X_p, Y] = \left(\frac{-x^*Y_1 \mid 0}{0 \mid it}\right) - \left(\frac{0 \mid Y_1 x}{-itx^* \mid 0}\right) =$$

$$= \left(\frac{0 \mid itx - Y_1 x}{tx^* - x^*Y_1 \mid 0}\right) = 0.$$

Значит,

$$Y_1x = itx$$
.

Так как $\langle Y, i \cdot \operatorname{diag}(1,1,1,1,0) \rangle = 0$, то $\langle Y, i \cdot \operatorname{diag}(1,1,1,1,0) \rangle_0 = 0$ и, следовательно,

$$Y_1 \in \mathbf{su}(4)$$
.

Так как $Y_1x=itx$, то существует $h_1\in SU(4)$ такой, что $h_1Y_1h_1^{-1}=i\cdot {\rm diag}(s_1,s_2,s_3,t),$ где $s_1+s_2+s_3+t=0.$ Обозначим

$$h = \left(\begin{array}{c|c} h_1 & 0 \\ \hline 1 & 0 \end{array}\right) \in SU(5),$$

тогда

$$Y = h^{-1} \cdot i \cdot diag(s_1, s_2, s_3, t, t) \cdot h.$$

Пусть

$$H_1 = i \cdot \operatorname{diag}(s_1, s_2, s_3, t) \in \mathbf{su}(4), \quad H = i \cdot \operatorname{diag}(s_1, s_2, s_3, t, t) \in \mathbf{u}(5).$$

Условие

$$\left\langle Y, \left(\begin{array}{c|c} A & 0 \\ \hline 0 & 0 \end{array} \right) \right\rangle = \frac{1}{2} \left\langle Y, \left(\begin{array}{c|c} A & 0 \\ \hline 0 & 0 \end{array} \right) \right\rangle_0 = 0$$

означает, что

$$\langle Y_1, A \rangle_0 = 0 \quad \forall A \in \mathbf{sp}(2).$$

Используя двустороннюю инвариантность метрики $\langle \, , \, \rangle_0$, получаем, что

$$\langle H_1, h_1 \mathbf{sp}(2) h_1^{-1} \rangle_0 = 0.$$

Из леммы 8 немедленно вытекает, что с точностью до перестановки есть лишь две возможности для H_1 :

$$H_1=i\cdot t\cdot \,{
m diag}(1,1,-1,-1)$$
 или $H_1=i\cdot t\cdot \,{
m diag}(1,1,1,-3),$ где $t\in {f R}.$

Поэтому можно считать, что H удовлетворяет одной из трех возможностей:

$$H = i \cdot \text{ diag}(1,1,1,-1,-1), \ H = i \cdot \text{ diag}(1,1,1,1,-3),$$

$$H = i \cdot \text{ diag}(3,3,-1,-1,-1).$$

Осталось рассмотреть условие

$$0 = 2\langle Y, \operatorname{Ad}(g^{-1}) \cdot i \cdot \operatorname{diag}(p_1, p_2, p_3, p_4, p_5) \rangle$$

$$= \langle Y, \operatorname{Ad}(g^{-1}) \cdot i \cdot \operatorname{diag}(p_1, p_2, p_3, p_4, p_5) \rangle_0$$

$$= \langle h^{-1}Hh, \operatorname{Ad}(g^{-1}) \cdot i \cdot \operatorname{diag}(p_1, p_2, p_3, p_4, p_5) \rangle_0$$

$$= \langle H, \operatorname{Ad}(g') \cdot i \cdot \operatorname{diag}(p_1, p_2, p_3, p_4, p_5) \rangle_0,$$

где $g' = hg^{-1} \in G$.

Рассмотрим функцию

$$f_H: \operatorname{Ad}(G) \cdot i \cdot \operatorname{diag}(p_1, p_2, p_3, p_4, p_5) \to R: X \mapsto \langle X, H \rangle_0.$$

По лемме 7 ее экстремальные значения лежат в множестве

$$\{p_{i_1} + p_{i_2} + p_{i_3} - p_{i_4} - p_{i_5}, 3(p_{i_1} + p_{i_2}) - p_{i_3} - p_{i_4} - p_{i_5},$$

$$p_{i_1} + p_{i_2} + p_{i_3} + p_{i_4} - 3p_{i_5} \mid \{i_1, i_2, i_3, i_4, i_5\} = \{1, 2, 3, 4, 5\}\},$$

которое содержится в $(0,\infty)$ по условию теоремы. И в этом случае приходим к противоречию.

Теорема доказана.

Легко видеть, что все условия теоремы выполнены для $p_1=1,\,p_2=p_3=p_4=p_5=q^n,$ где q — простое, а n — целое неотрицательное числа.

1.3 Топология пространств $M_{\bar{p}}$

Обозначим через $\sigma_i(\bar{p})$ i-ю элементарную симметрическую функцию от чисел p_1, p_2, p_3, p_4, p_5 .

Лемма 10 ($Sp(2) \times S^1) / \pm (E,1)$ диффеоморфно $Sp(2) \times S^1$.

Доказательство. Рассмотрим отображение

$$\phi': \ \mathrm{Sp}(2) \times S^1 \to \ \mathrm{Sp}(2) \times S^1: (A,z) \mapsto (A \cdot \ \mathrm{diag}(z,z,\bar{z},\bar{z}),z^2).$$

Пусть $\phi'(A,z) = (B,w)$. Тогда $z^2 = w, z = \pm \sqrt{w}$, т. е.

$$(A, z) = \pm (B \cdot \operatorname{diag}(\sqrt{\overline{w}}, \sqrt{\overline{w}}, \sqrt{w}, \sqrt{w}), \sqrt{w}).$$

Таким образом, ϕ' индуцирует биекцию

$$\phi: \frac{\operatorname{Sp}(2) \times S^1}{\pm (E, 1)} \to \operatorname{Sp}(2) \times S^1,$$

которая, очевидно, является диффеоморфизмом. Лемма доказана.

Теорема 2 Пусть $p_{\sigma(1)}+p_{\sigma(2)}-p_{\sigma(3)}-p_{\sigma(4)}$ взаимно просто с $p_{\sigma(5)}$ для всех подстановок $\sigma\in S_5$. Тогда пространство $M_{\bar p}$ односвязно.

Доказательство. Рассмотрим фрагмент точной гомотопической последовательности расслоения $\bar{\pi}:G\to M_{\bar{p}}$ со слоем $P=S^1\times (\mathrm{Sp}(2)\times S^1)/\pm (E,1)$:

$$\pi_1\left(S^1 \times \frac{\operatorname{Sp}(2) \times S^1}{\pm(E,1)}\right) \xrightarrow{i_*} \pi_1(U(5)) \xrightarrow{\bar{\pi}_*} \pi_1(M_{\bar{p}}) \to 0,$$

где i — вложение P как слоя над элементом $E \in U(5)$. Используя диффеоморфизм ϕ , получаем

$$\pi_1(S^1 \times \operatorname{Sp}(2) \times S^1) \xrightarrow{j_*} \pi_1(U(5)) \xrightarrow{\bar{\pi}_*} \pi_1(M_{\bar{p}}) \to 0,$$

где $j=i\circ (\operatorname{id} \times \phi^{-1}).$ Итак, имеем следующую точную последовательность:

$$Z \oplus Z \stackrel{j_*}{\to} Z \stackrel{\bar{\pi}_*}{\to} \pi_1(M_{\bar{p}}) \to 0.$$

Вычислим j_* . Выберем в группе $Z \oplus Z = \pi_1(S^1 \times \operatorname{Sp}(2) \times S^1)$ образующие (1,0) и (0,1), порожденные петлями

$$\xi_1(t) = (e^{2\pi i t}, (E, 1)), \quad \xi_2(t) = (1, (E, e^{2\pi i t})), \quad 0 \le t \le 1.$$

В качестве образующего элемента группы $Z=\pi_1(U(5))$ возьмем класс гомотопий, заданный обмоткой тора

$$\xi(t) = \ \mathrm{diag}(e^{2\pi i x_1 t}, e^{2\pi i x_2 t}, e^{2\pi i x_3 t}, e^{2\pi i x_4 t}, e^{2\pi i x_5 t}),$$

$$0 \le t \le 1, \ x_k \in \mathbb{Z}, \ \sum_{k=1}^{5} x_k = 1.$$

Петля ξ_1 переходит в петлю

$$j(\xi_1(t)) = i(e^{2\pi it}, \pm(E, 1)) =$$

$$\operatorname{diag}(e^{2\pi i p_1 t}, e^{2\pi i p_2 t}, e^{2\pi i p_3 t}, e^{2\pi i p_4 t}, e^{2\pi i p_5 t}), \ 0 \le t \le 1,$$

а петля ξ_2 — в петлю

$$j(\xi_2(t)) = i(1, \pm (\operatorname{diag}(e^{-\pi i t}, e^{-\pi i t}, e^{\pi i t}, e^{\pi i t}), e^{\pi i t}))$$
$$= \operatorname{diag}(1, 1, e^{2\pi i t}, e^{2\pi i t}, 1), \ 0 \le t \le 1.$$

Получаем, что

$$j_*(1,0) = \sigma_1(\bar{p}) \cdot 1, \quad j_*(0,1) = 2 \cdot 1.$$

Из условий теоремы следует, в частности, что 2 взаимно просто с $\sigma_1(\bar{p})$, поэтому j_* — эпиморфизм. Из написанной выше точной последовательности немедленно следует, что $M_{\bar{p}}$ односвязно.

Теорема доказана.

Итак, у нас $G=U(5), P=S^1\times (\operatorname{Sp}(2)\times S^1)/Z_2\subset G\times G, M=M_{\bar{p}}=G/P$ — пространство орбит, $\bar{\pi}:G\to M$ — главное расслоение со структурной группой P. Пусть $\pi_G:E_G\to B_G$ и $\pi_P:E_P\to B_P$ — универсальные расслоения для групп G и P, где пространства расслоений E_G и E_P стягиваемы. Рассмотрим следующую коммутативную диаграмму:

$$\begin{array}{cccc} G & \stackrel{p_2}{\longleftarrow} & E_P \times G & \stackrel{p_1}{\longrightarrow} & E_P \\ \pi_G \downarrow & & \downarrow & & \downarrow \pi_P \; . \\ M & \stackrel{\bar{p}_2}{\longleftarrow} & G//P & \stackrel{\bar{p}_1}{\longrightarrow} & B_P \end{array}$$

Здесь p_1 и p_2 — естественные проекции на первый и второй сомножители, G//P — пространство орбит $E_P \times G$ относительно очевидного действия P. Слоем \bar{p}_2 является стягиваемое пространство E_P , поэтому \bar{p}_2^* — изоморфизм $H^*(M)$ на $H^*(G//P)$. Рассмотрим спектральную последовательность расслоения $p = \bar{p}_1 : G//P \to B_P$ со слоем G. Так как $H^*(G)$ не имеет кручения, то начальный член равен $E_2 = H^*(B_P) \otimes H^*(G)$. Член E_∞ присоединен к $H^*(M)$. Посчитаем дифференциалы в этой спектральной последовательности.

Рассмотрим диаграмму

$$G//P = \begin{array}{ccc} (E_{G^2} \times G)/P & \stackrel{\hat{\rho}}{\longrightarrow} & (E_{G^2} \times G)/G^2 & \stackrel{f}{\longleftarrow} & B_G & = E_{G^2}/\delta G \\ & & \downarrow p' & & \downarrow \triangle \\ & & B_P & \stackrel{\hat{\rho}}{\longrightarrow} & B_{G^2} & \stackrel{\mathrm{id}}{\longleftarrow} & B_{G^2} \end{array}$$

Здесь $E_P=E_{G^2},\ B_P=E_{G^2}/P,\ B_{G^2}=E_{G^2}/G^2, \rho:B_P\to B_{G^2}$ и $\triangle:B_G\to B_{G^2}$ — естественные проекции; $\delta:G\to G^2$ — диагональное вложение, $\hat{\rho}$ — послойное отображение, являющееся гомеоморфизмом на слоях; $f:(\delta G)e\mapsto G^2(e,1)$ — изоморфизм расслоений \triangle и p'.

Вычислим дифференциалы спектральной последовательности расслоения \triangle . Кольцо когомологий $H^*(G)$ отождествим с внешней алгеброй с образующими z_1, z_3, \ldots, z_9 . Тогда $H^*(B_G) = Z[\bar{z}_1, \bar{z}_3, \ldots, \bar{z}_9]$, где \bar{z}_i — образ элемента z_i при трансгрессии в расслоении π_G . Так

как можно взять $B_{G^2}=B_G\times B_G$, то $H^*(B_{G^2})=H^*(B_G)\otimes H^*(B_G)=Z[\bar{x}_1,\bar{y}_1,\bar{x}_3,\bar{y}_3,\ldots,\bar{x}_9,\bar{y}_9]$, где $\bar{x}_i=\bar{z}_i\otimes 1,\,\bar{y}_i=1\otimes\bar{z}_i.$

Начальный член равен $E_2=H^*(B_{G^2})\otimes H^*(G)$. Обозначим через $k_i:H^*(B_{G^2})\to E_i^{*,0}$ естественную проекцию. Тогда, как известно,

$$\triangle^* = k_{\infty} : H^*(B_{G^2}) \to E_{\infty}^{*,0} \subset H^*B_G.$$

Лемма 11 (i) $d_j(1 \otimes z_i) = 0$ npu $j \leq i$, i = 3, 5, 7. (ii) $d_{i+1}(1 \otimes z_i) = \pm k_{i+1}(\bar{x}_i - \bar{y}_i)$, i = 1, 3, 5, 7.

Доказательство. Рассмотрим член E_2 спектральной последовательности расслоения $B_G \to B_{G^2}$:

z_7	0	*	0	*	0	*
$z_1 z_5$	0	$z_1 z_5 \bar{x}_1, z_1 z_5 \bar{y}_1$	0	*	0	*
z_5	0	*	0	*	0	*
$z_1 z_3$	0	$z_1 z_3 \bar{x}_1, z_1 z_3 \bar{y}_1$	0	$z_1 z_3 \otimes E_2^{4,0}$	0	*
z_3	0	$z_3ar{x}_1,z_3ar{y}_1$	0	*	0	*
0	0	0	0	0	0	0
z_1	0	$z_1\bar{x}_1,z_1\bar{y}_1$	0	$\begin{array}{c} z_1 \bar{x}_1^2, z_1 \bar{x}_1 \bar{y}_1, z_1 \bar{y}_1^2 \\ z_1 \bar{x}_3, z_1 \bar{y}_3 \end{array}$	0	*
1	0	\bar{x}_1, \bar{y}_1	0	$\bar{x}_1^2, \bar{x}_1\bar{y}_1, \bar{y}_1^2$	0	\bar{r}^3 $\bar{r}^2\bar{v}_1$ $\bar{r}_1\bar{v}^2$ \bar{v}^3
	J	ω_1, g_1	J	$\bar{x}_1, \bar{x}_1 g_1, g_1 \\ \bar{x}_3, \bar{y}_3$		$\begin{bmatrix} \bar{x}_1^3, \bar{x}_1^2 \bar{y}_1, \bar{x}_1 \bar{y}_1^2, \bar{y}_1^3 \\ \bar{x}_1 \bar{x}_3, \bar{x}_1 \bar{y}_3, \bar{y}_1 \bar{x}_3, \bar{y}_1 \bar{y}_3 \\ \bar{x}_5, \bar{y}_5 \end{bmatrix}$

Для всех $u \in H^*(B_G)$ имеем

$$\triangle^*(1 \otimes u) = \triangle^*(u \otimes 1) = u.$$

Ядро \triangle^2 совпадает с $d_2(Z(z_1))$, поэтому $d_2(Z(z_1)) = Z(\bar{x}_1 - \bar{y}_1)$. Значит,

$$d_2(z_1) = \pm (\bar{x}_1 - \bar{y}_1) = \pm k_2(\bar{x}_1 - \bar{y}_1).$$

Таким образом, установлено (ii) при i=1.

Далее, имеем

$$d_2(z_1z_3\bar{x}_1) = z_3\bar{x}_1^2 - z_3\bar{x}_1\bar{y}_1, \quad d_2(z_1z_3\bar{y}_1) = z_3\bar{x}_1\bar{y}_1 - z_3\bar{y}_1^2.$$

Тем самым $\operatorname{Ker}(d_2^{2,4})=0$, и поэтому $d_2^{0,5}=0$. Совершенно аналогично, $\operatorname{Ker}(d_2^{2,6})=0$, $\operatorname{Ker}(d_2^{4,4})=0$ и, следовательно, $d_2^{0,7}=d_4^{0,7}=0$. Тривиальность остальных дифференциалов из (i) сразу следует из соображений размерности. Итак, осталось доказать (ii) для i=3,5,7. Легко видеть, что

$$\operatorname{Ker}\triangle^4 = Z(\bar{x}_3 - \bar{y}_3) \oplus Z(\bar{x}_1^2 - \bar{x}_1\bar{y}_1, \bar{x}_1\bar{y}_1 - \bar{y}_1^2)$$

и, с другой стороны,

$$\operatorname{Ker}\triangle^4 = \Im(d_2^{2,1}) \oplus \Im(d_4^{0,3}).$$

Поскольку $\Im(d_2^{2,1})=Z(\bar{x}_1^2-\bar{x}_1\bar{y}_1,\bar{x}_1\bar{y}_1-\bar{y}_1^2)$, то $d_4(z_3)=\pm k_4(\bar{x}_3-\bar{y}_3)$. Совершенно аналогично

$$\operatorname{Ker}\triangle^{6} = Z(\bar{x}_{5} - \bar{y}_{5}) \oplus Z(\bar{x}_{1}^{3} - \bar{x}_{1}^{2}\bar{y}_{1}, \bar{x}_{1}^{2}\bar{y}_{1} - \bar{x}_{1}\bar{y}_{1}^{2}, \bar{x}_{1}\bar{y}_{1}^{2} - \bar{y}_{1}^{3})$$
$$\oplus Z(\bar{x}_{1}\bar{x}_{3} - \bar{y}_{1}\bar{x}_{3}, \bar{x}_{1}\bar{y}_{3} - \bar{y}_{1}\bar{y}_{3}, \bar{x}_{1}\bar{x}_{3} - \bar{x}_{1}\bar{y}_{3}),$$

и при этом $\operatorname{Ker}\triangle^6 = \Im(d_2^{4,1}) \oplus \Im(d_4^{2,4}) \oplus \Im(d_6^{0,5})$. Учитывая, что первые два слагаемых в последнем выражении, по доказанному, дают последние два слагаемых в предыдущем выражении, получаем

$$d_6(z_5) = \pm k_6(\bar{x}_5 - \bar{y}_5).$$

Таким же способом устанавливается, что $d_8(z_7) = \pm k_8(\bar{x}_7 - \bar{y}_7)$. Лемма доказана.

Лемма 12 B спектральной последовательности расслоения $p:G//P o B_P$

$$d_j(1 \otimes z_i) = 0, \quad j \le i, \quad i = 3, 5, 7,$$

$$d_{i+1}(1 \otimes z_i) = \pm k_{i+1} \rho^*(\bar{x}_i - \bar{y}_i), \quad i = 1, 3, 5, 7,$$

где $\rho: B_P \to B_{G^2}$ индуцировано вложением $P \subset G^2$.

Доказательство. Рассмотрим вторую диаграмму. Послойное отображение $(\hat{\rho}, \rho)$ порождает гомоморфизм спектральных последовательностей ρ^{\sharp} , причем $\rho_2^{\sharp} = \rho^* \otimes i : H^*B_{G^2} \otimes H^*G \to H^*B_P \otimes H^*G$, где i — изоморфизм. Будем считать, что $i(1 \otimes z_i) = 1 \otimes z_i$. Тогда

$$d_j(1 \otimes z_i) = \rho^{\sharp} (d'_j(1 \otimes z_i)) = \rho^{\sharp}(0) = 0, \quad j \leq i,$$

$$d_{i+1}(1 \otimes z_i) = \rho^{\sharp} (d'_{i+1}(1 \otimes z_i)) = \pm \rho^{\sharp} (k'_{i+1}(\bar{x}_i - \bar{y}_i)) = \pm k_{i+1}(\rho^*(\bar{x}_i - \bar{y}_i)).$$

Лемма доказана.

Пусть G — группа Ли, T^n — максимальный тор в $G, i: T^n \to G$ — вложение, $j: B_{T^n} \to B_G$ — естественная проекция. Обозначим через a_1, \ldots, a_n образующие H^1T^n . Тогда $H^*B_{T^n} = Z[\bar{a}_1, \ldots, \bar{a}_n]$. Пусть I_G — полиномы из $H^*B_{T^n}$, инвариантные относительно группы Вейля W(G).

Теорема (Борель, [21]). Если H^*G и $H^*(G/T^n)$ не имеют кручения, то $j^*: H^*B_G \to H^*B_{T^n}$ — мономорфизм, причем его образ совпадает с I_G .

Как показано в [21], условия теоремы выполнены для всех классических групп. У нас $G=U(5),\ \bar{z}_1=\sigma_1(\bar{d}_1,\ldots,\bar{d}_5),\ \bar{z}_3=\sigma_2(\bar{d}_1,\ldots,\bar{d}_5),\ldots,\bar{z}_9=\sigma_5(\bar{d}_1,\ldots,\bar{d}_5),$ где d_1,\ldots,d_5- коциклы, сопряженные к циклам $D_1,\ldots,D_5;D_i(t)=\mathrm{diag}(1,\ldots,e^{2\pi it},\ldots,1),\ 0\leq t\leq 1.$

Рассмотрим $P \subset G^2$,

$$P = S^1 \times \frac{\operatorname{Sp}(2) \times S^1}{Z_2} \simeq S^1 \times S^1 \times \operatorname{Sp}(2).$$

Кольцо когомологий H^*P не имеет кручения. Далее, пусть T^3 — максимальный тор в $\mathrm{Sp}(2)\times S^1$. Тогда T^3/Z_2 — максимальный тор в $(\mathrm{Sp}(2)\times S^1)/Z_2$, т. е.

 $\frac{S^1 \times \operatorname{Sp}(2)}{Z_2} \Big/ \frac{T^3}{Z_2} \simeq \frac{S^1 \times \operatorname{Sp}(2)}{T^3}$

не имеет кручения. Таким образом, для P выполнены условия теоремы.

Пусть T — тор в G^2 , S — тор в P; $i:S\to T$ — вложение, $j:B_S\to B_T$ — естественная проекция. Рассмотрим диаграмму

$$\begin{array}{ccc} H^*B_S & \stackrel{j^*}{\longleftarrow} & H^*B_T \\ j_S^* \uparrow & & \uparrow j_T^* \\ H^*B_P & \stackrel{\rho^*}{\longleftarrow} & H^*B_{G^2} \end{array}$$

Пусть $A_1, \ldots, A_5, B_1, \ldots, B_5$ — базисные циклы в $H_1(T)$:

$$A_i(t) = (1, \operatorname{diag}(1, \dots, e^{2\pi i t}, \dots, 1)),$$

$$B_i(t) = (\operatorname{diag}(1, \dots, e^{2\pi i t}, \dots, 1), 1),$$

 $0 \le t \le 1; a_1, \ldots, a_5, b_1, \ldots, b_5$ — сопряженные к ним коциклы из $H^1(T)$. Пусть C_1, \ldots, C_4 — базисные циклы в $H_1(S)$,

$$C_1(t) = (e^{2\pi it}, \pm(E, 1)),$$

$$C_2(t) = (1, \pm (\operatorname{diag}(e^{\pi it}, e^{\pi it}, e^{-\pi it}, e^{-\pi it}), e^{\pi it})),$$

$$C_3(t) = (1, \pm (\operatorname{diag}(e^{2\pi it}, 1, e^{-2\pi it}, 1), 1)),$$

$$C_4(t) = (1, \pm (\operatorname{diag}(1, e^{2\pi it}, 1, e^{-2\pi it}), 1)),$$

 $0 \le t \le 1$; c_1, c_2, c_3, c_4 — сопряженные к ним коциклы из $H^1(S)$. Тогда

$$i_*(C_1) = p_1B_1 + p_2B_2 + p_3B_3 + p_4B_4 + p_5B_5,$$

 $i_*(C_2) = A_1 + A_2, \quad i_*(C_3) = A_1 - A_3, \quad i_*(C_4) = A_2 - A_4.$

Следовательно,

$$i^*(a_1) = c_2 + c_3$$
, $i^*(a_2) = c_2 + c_4$, $i^*(a_3) = -c_3$, $i^*(a_4) = -c_4$,
 $i^*(a_5) = 0$, $i^*(b_1) = p_1c_1$, $i^*(b_2) = p_2c_1$, $i^*(b_3) = p_3c_1$,
 $i^*(b_4) = p_4c_1$, $i^*(b_5) = p_5c_1$.

В силу естественности трансгрессии

$$j^*(\bar{a}_i) = \overline{i^*(a_i)}, \quad j^*(\bar{b}_i) = \overline{i^*(b_i)}.$$

Согласно написанной выше диаграмме ρ^* есть ограничение j^* на I_{G^2} . Мы отождествили $H^*B_{G^2}$ с подалгеброй H^*B_T , порожденной

$$\sigma_i(\bar{a}_1, \dots, \bar{a}_5), \quad \sigma_i(\bar{b}_1, \dots, \bar{b}_5), \quad i = 1, 2, \dots, 5.$$

Кольцо когомологий H^*B_P отождествляем с подалгеброй в H^*B_S , инвариантной относительно W(P). Заметим, что в наших обозначениях

$$a_i = 1 \otimes d_i, \quad b_i = d_i \otimes 1.$$

Вычислим W(P). Элементы из W(P) индуцируются элементами из $W(S^1 \times S^1 \times Sp(2))$. Следовательно, образующие ϕ_1, ϕ_2, ϕ_3 группы W(P) так действуют на гомологиях S:

значит, на когомологиях S

Итак, H^*B_P — подалгебра в $\mathbf{Z}[\bar{c}_1,\bar{c}_2]$, инвариантная относительно W(P). Найдем мультипликативные образующие H^*B_P .

Лемма 13 Пусть

$$\bar{f} = (\bar{c}_3^2 + \bar{c}_4^2) + \bar{c}_2(\bar{c}_3 + \bar{c}_4), \quad \bar{g} = \bar{c}_3^2 \bar{c}_4^2 + \bar{c}_2 \bar{c}_3 \bar{c}_4(\bar{c}_3 + \bar{c}_4) + \bar{c}_2^2 \bar{c}_3 \bar{c}_4.$$

Тогда $H^*B_P = \mathbf{Z}[\bar{c}_1, \bar{c}_2, \bar{f}, \bar{g}].$

Доказательство. Рассмотрим естественное вложение $H^*B_S = \mathbf{Z}[\bar{c}_1, \bar{c}_2, \bar{c}_3, \bar{c}_4] \subset \mathbf{R}[\bar{c}_1, \bar{c}_2, \bar{c}_3, \bar{c}_4]$. В алгебре $\mathbf{R}[\bar{c}_1, \bar{c}_2, \bar{c}_3, \bar{c}_4]$ рассмотрим подалгебру A_R , инвариантную относительно W(P). Тогда $H^*B_P = A_Z = A_R \cap \mathbf{Z}[\bar{c}_1, \bar{c}_2, \bar{c}_3, \bar{c}_4]$.

Зададим изоморфизм алгебр $\tau: \mathbf{R}[x_1,x_2,x_3,x_4] \to \mathbf{R}[\bar{c}_1,\bar{c}_2,\bar{c}_3,\bar{c}_4]$ следующим образом:

$$x_1 \mapsto \bar{c}_1, \quad x_2 \mapsto \bar{c}_2, \quad x_3 \mapsto \bar{c}_3 + \frac{1}{2}\bar{c}_2, \quad x_4 \mapsto \bar{c}_4 + \frac{1}{2}\bar{c}_2.$$

Группа W(P) переносится изоморфизмом τ на $\mathbf{R}[x_1,x_2,x_3,x_4]$ и порождает группу W' с образующими

$$\phi_1': x_1 \mapsto x_1 \quad \phi_2': x_1 \mapsto x_1 \quad \phi_3': x_1 \mapsto x_1 \\ x_2 \mapsto x_2 \quad x_2 \mapsto x_2 \quad x_2 \mapsto x_2 \\ x_3 \mapsto x_4 \quad x_3 \mapsto -x_3 \quad x_3 \mapsto x_3 \\ x_4 \mapsto x_3, \quad x_4 \mapsto x_4, \quad x_4 \mapsto -x_4.$$

Таким образом, W' – это группа Вейля группы $S^1 \times S^1 \times \operatorname{Sp}(2)$, и совершенно очевидно, что подалгеброй в $\mathbf{R}[x_1,x_2,x_3,x_4]$, инвариантной относительно W', является $A'_R = \mathbf{R}\left[x_1,x_2,x_3^2+x_4^2,x_3^2x_4^2\right]$. Следовательно, $A_R =$

 $\mathbf{R}[\tau(x_1), \tau(x_2), \tau(x_3^2 + x_4^2), \tau(x_3^2 x_4^2)]$. Несложные вычисления показывают,

$$\tau(x_1) = \bar{c}_1, \quad \tau(x_2) = \bar{c}_2, \quad \tau(x_3^2 + x_4^2) = (\bar{c}_3^2 + \bar{c}_4^2) + \bar{c}_2(\bar{c}_3 + \bar{c}_4) + \frac{1}{2}\bar{c}_2^2,$$

$$\tau(x_3^2 x_4^2) = \bar{c}_3^2 \bar{c}_4^2 + \bar{c}_2 \bar{c}_3 \bar{c}_4 (\bar{c}_3 + \bar{c}_4) + \bar{c}_2^2 \bar{c}_3 \bar{c}_4 +$$

$$+ \frac{1}{4}\bar{c}_2^2 \left((\bar{c}_3^2 + \bar{c}_4^2) + \bar{c}_2(\bar{c}_3 + \bar{c}_4) + \frac{1}{4}\bar{c}_2^2 \right).$$

Таким образом,

$$A_{R} = \mathbf{R} \left[\bar{c}_{1}, \bar{c}_{2}, \left(\bar{c}_{3}^{2} + \bar{c}_{4}^{2} \right) + \bar{c}_{2} (\bar{c}_{3} + \bar{c}_{4}), \bar{c}_{3}^{2} \bar{c}_{4}^{2} + \bar{c}_{2} \bar{c}_{3} \bar{c}_{4} (\bar{c}_{3} + \bar{c}_{4}) + \bar{c}_{2}^{2} \bar{c}_{3} \bar{c}_{4} \right] =$$

$$= \mathbf{R} \left[\bar{c}_{1}, \bar{c}_{2}, \bar{f}, \bar{g} \right].$$

Так как образующие A_R лежат в $\mathbf{Z}[\bar{c}_1, \bar{c}_2, \bar{c}_3, \bar{c}_4]$, имеем

$$A_Z = \mathbf{Z}[\bar{c}_1, \bar{c}_2, \bar{f}, \bar{g}].$$

Лемма доказана.

1)
$$H^i = \begin{cases} \mathbf{Z} & npu \ i = 0, 2, 4, 9, 11, 13, \\ 0 & npu \ i = 1, 3, 5, 7, 10, 12. \end{cases}$$

Теорема 3 Пространство $M_{\bar{p}}$ имеет следующие группы когомологий:

1) $H^i = \begin{cases} \mathbf{Z} & npu \ i = 0, 2, 4, 9, 11, 13, \\ 0 & npu \ i = 1, 3, 5, 7, 10, 12; \end{cases}$ 2) группы $H^6(M_{\bar{p}})$ и $H^8(M_{\bar{p}})$ конечны, и их порядки равны $r = |\sigma_1^3 - 1|$ $4\sigma_1\sigma_2 + 8\sigma_3$.

Доказательство. Обозначим $\sigma_i = \sigma_i(p_1, \dots, p_5)$. Рассмотрим член E_2 спектральной последовательности расслоения $G//P \to B_P$:

z_7	0	*	0	*	0	*	0	*
$z_{1}z_{5}$	0	$z_1z_5\bar{c}_1,z_1z_5\bar{c}_2$	0	*	0	*	0	*
z_5	0	$z_5ar{c}_1,z_5ar{c}_2$	0	*	0	*	0	*
$z_{1}z_{3}$	0	$z_1z_3\bar{c}_1,z_1z_3\bar{c}_2$	0	$z_1 z_3 \bar{c}_1^2, z_1 z_3 \bar{c}_1 \bar{c}_2, \bar{c}_1 \bar{c}_2$	0	*	0	*
				$z_1 z_3 \bar{c}_2^2, z_1 z_3 \bar{f}$				
z_3	0	$z_3ar{c}_1,z_3ar{c}_2$	0	$z_3\bar{c}_1^2, z_3\bar{c}_1\bar{c}_2,$	0	*	0	*
				$z_3ar{c}_2^2,z_3ar{f}$				
0	0	0	0	0	0	0	0	0
z_1	0	$z_1\bar{c}_1,z_1\bar{c}_2$	0	$z_1\bar{c}_1^2, z_1\bar{c}_1\bar{c}_2,$	0	1 . 1 . 1 / . 1 . 1 . 2 /	0	*
						$z_1\bar{c}_1\bar{c}_2^2, z_1\bar{c}_2^3,$		
				$z_1ar{c}_2^2, z_1ar{f}$		$z_1\bar{c}_1\bar{f}, z_1\bar{c}_2\bar{f}$		
1	0	\bar{c}_1, \bar{c}_2	0	$\bar{c}_1^2, \bar{c}_1\bar{c}_2$	0	$\bar{c}_1^3, \bar{c}_1^2 \bar{c}_2, \bar{c}_1 \bar{c}_2^2,$	0	$\bar{c}_1^3\bar{c}_2, \bar{c}_1^2\bar{c}_2^2, \bar{c}_1\bar{c}_2^3,$
				$ar{c}_2^2,ar{f}$		$\bar{c}_2^3, \bar{c}_1\bar{f}, \bar{c}_2\bar{f}$		$\bar{c}_{2}^{4}, \bar{c}_{1}^{2}\bar{f}, \bar{c}_{1}\bar{c}_{2}\bar{f},$
								$\bar{c}_2^2 \bar{f}, \bar{f}^2, \bar{g}, \bar{c}_1^4$

Имеем

$$d_2 z_1 = \pm \rho^* (\bar{x}_1 - \bar{y}_1) = \rho^* (\sigma_1(\bar{b}_1, \dots, \bar{b}_5) - \sigma_1(\bar{a}_1, \dots, \bar{a}_5)) = \sigma_1 \cdot \bar{c}_1 - 2 \cdot \bar{c}_2.$$

Пусть $n \in \mathbb{Z}$ таково, что $\sigma_1 + 2n = 1$. Тогда

$$\frac{Z(\bar{c}_1, \bar{c}_2)}{Z(\sigma_1 \cdot \bar{c}_1 - 2 \cdot \bar{c}_2)} = Z(n \cdot \bar{c}_1 + \bar{c}_2).$$

Обозначим через F_2 образ $d_2^{2,1}; F_2$ порождается элементами

$$d_2(z_1\bar{c}_1) = \sigma_1\bar{c}_1^2 - 2\bar{c}_1\bar{c}_2, \quad d_2(z_1\bar{c}_2) = \sigma_1\bar{c}_1\bar{c}_2 - 2\bar{c}_2^2.$$

Тогда $\mathbf{Z}(\bar{c}_1^2, \bar{c}_1\bar{c}_2, \bar{c}_2^2, \bar{f})/F_2 = \mathbf{Z}((n-n^2)\bar{c}_1^2 + \bar{c}_2^2, \bar{f})$. Обозначим через F_4 образ $d_2^{4,1}$; F_4 порождается элементами

$$d_2(z_1\bar{c}_1^2) = \sigma_1 \cdot \bar{c}_1^3 - 2 \cdot \bar{c}_1^2\bar{c}_2, \quad d_2(z_1\bar{c}_1\bar{c}_2) = \sigma_1 \cdot \bar{c}_1^2\bar{c}_2 - 2 \cdot \bar{c}_1\bar{c}_2^2,$$
$$d_2(z_1\bar{c}_2^2) = \sigma_1 \cdot \bar{c}_1\bar{c}_2^2 - 2 \cdot \bar{c}_2^3, \quad d_2(z_1\bar{f}) = \sigma_1 \cdot \bar{c}_1\bar{f} - 2 \cdot \bar{c}_2\bar{f}.$$

Наконец, пусть F_6 — образ $d_2^{6,1}$; он порождается элементами

$$\begin{split} d_2 \left(z_1 \bar{c}_1^3 \right) &= \sigma_1 \bar{c}_1^4 - 2 \bar{c}_1^3 \bar{c}_2, \quad d_2 \left(z_1 \bar{c}_2^3 \right) = \sigma_1 \bar{c}_1 \bar{c}_2^3 - 2 \bar{c}_2^4, \\ d_2 \left(z_1 \bar{c}_1^2 \bar{c}_2 \right) &= \sigma_1 \bar{c}_1^3 \bar{c}_2 - 2 \bar{c}_1^2 \bar{c}_2^2, \quad d_2 \left(z_1 \bar{c}_1 \bar{f} \right) = \sigma_1 \bar{c}_1^2 \bar{f} - 2 \bar{c}_1 \bar{c}_2 \bar{f}, \\ d_2 \left(z_1 \bar{c}_1 \bar{c}_2^2 \right) &= \sigma_1 \bar{c}_1^2 \bar{c}_2^2 - 2 \bar{c}_1 \bar{c}_2^3, \quad d_2 \left(z_1 \bar{c}_2 \bar{f} \right) = \sigma_1 \bar{c}_1 \bar{c}_2 \bar{f} - 2 \bar{c}_2^2 \bar{f}. \end{split}$$

Переходим к члену $E_3 = E_4$. Имеем

z_7	0	*	0	*	0	*	0	*
0	0	0	0	*	0	*	0	*
z_5	0	$nz_5\bar{c}_1 + z_5\bar{c}_2$	0	*	0	*	0	*
0	0	0	0	0	0	*	0	*
z_3	0	$nz_3\bar{c}_1 + z_3\bar{c}_2$	0	${f Z}^4/z_3F_2$	0	*	0	*
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	*
1	0	Z	0	${f Z}^4/F_2$	0	${f Z}^{6}/F_{4}$	0	${f Z}^{10}/F_6$

Кроме того,

$$d_4(z_3) = \rho^*(\bar{x}_3 - \bar{y}_3) = \rho^*(\sigma_2(\bar{b}_1, \dots, \bar{b}_5) - \sigma_2(\bar{a}_1, \dots, \bar{a}_5))$$

$$= \sigma_2 \cdot \bar{c}_1^2 - \sigma_2(\bar{c}_2 + \bar{c}_3, \bar{c}_2 + \bar{c}_4, -\bar{c}_3, -\bar{c}_4)$$

$$= \sigma_2 \cdot \bar{c}_1^2 - \bar{c}_2^2 + \bar{c}_3^2 + \bar{c}_4^2 + (\bar{c}_3 + \bar{c}_4)\bar{c}_2 = \sigma_2 \cdot \bar{c}_1^2 - \bar{c}_2^2 + \bar{f}.$$

Следовательно,

$$Z^{4}/(F_{2} \oplus Z(d_{4}(z_{3}))) = Z(\bar{f}, (n-n^{2})\bar{c}_{1}^{2} + \bar{c}_{2}^{2})/Z(d_{4}(z_{3})) =$$
$$= Z((n-n^{2})\bar{c}_{1}^{2} + \bar{c}_{2}^{2}).$$

Далее,

$$d_4(nz_3\bar{c}_1 + z_3\bar{c}_2) = (\sigma_2 \cdot \bar{c}_1^2 - \bar{c}_2^2 + \bar{f})(n\bar{c}_1 + \bar{c}_2)$$

= $n\sigma_2 \cdot \bar{c}_1^3 + \sigma_2 \cdot \bar{c}_1^2\bar{c}_2 - n \cdot \bar{c}_1\bar{c}_2^2 - \bar{c}_2^3 + n \cdot \bar{c}_1\bar{f} + \bar{c}_2\bar{f}.$

Можно заметить, что последний элемент ненулевой в ${\bf Z}^6/F_4$. Пусть этот элемент порождает подгруппу F_1 в H^6B_P . Обозначим через F_2' образ $d_4^{4,3}$; F_2' порождается элементами $d_4(z_3\bar f)$ и $d_4\bigl((n-n^2)z_3\bar c_1^2+z_3\bar c_2^2\bigr)$. Несложные вычисления показывают, что ${\rm Ker}\bigl(d_4^{4,3}\bigr)=0$. Рассмотрим $E_5=E_6$:

z_7	0	*	0	*	0	*	0	*
0	0	0	0	*	0	*	0	*
z_5	0	$nz_5\bar{c}_1 + z_5\bar{c}_2$	0	*	0	*	0	*
0	0	0	0	0	0	*	0	*
0	0	0	0	0	0	*	0	*
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	*
1	0	${f Z}$	0	\mathbf{Z}	0	$\mathbf{Z}^6/(F_4\oplus F_1)$	0	$\mathbf{Z}^{10}/ig(F_6\oplus F_2'ig)$

Кроме того,

$$d_{6}(z_{5}) = \rho^{*}(\bar{x}_{5} - \bar{y}_{5}) = \rho^{*}(\sigma_{3}(\bar{b}_{1}, \dots, \bar{b}_{5}) - \sigma_{3}(\bar{a}_{1}, \dots, \bar{a}_{5}))$$

$$= \sigma_{3} \cdot \bar{c}_{1}^{3} - \sigma_{3}(\bar{c}_{2} + \bar{c}_{3}, \bar{c}_{2} + \bar{c}_{4}, -\bar{c}_{3}, -\bar{c}_{4})$$

$$= \sigma_{3} \cdot \bar{c}_{1}^{3} + (\bar{c}_{2} + \bar{c}_{3})(\bar{c}_{2} + \bar{c}_{4})\bar{c}_{3} + (\bar{c}_{2} + \bar{c}_{3})(\bar{c}_{2} + \bar{c}_{4})\bar{c}_{4} - (\bar{c}_{2} + \bar{c}_{3})\bar{c}_{3}\bar{c}_{4} - (\bar{c}_{2} + \bar{c}_{4})\bar{c}_{3}\bar{c}_{4}$$

$$= \sigma_{3} \cdot \bar{c}_{1}^{3} + (\bar{c}_{3} + \bar{c}_{4})\bar{c}_{2}^{2} + (\bar{c}_{3}^{2} + \bar{c}_{4}^{2})\bar{c}_{2} = \sigma_{3} \cdot \bar{c}_{1}^{3} + \bar{f}\bar{c}_{2}.$$

Пусть этот элемент порождает подгруппу F_1' в H^6B_P . Далее, пусть F_1'' порождается элементом $d_6(nz_5\bar{c}_1+z_5\bar{c}_2)$. Простые вычисления, которые мы опускаем, показывают, что F_1' и F_1'' ненулевые в группах ${\bf Z^6}/(F_4\oplus F_1)$ и

 ${\bf Z^{10}}/(F_6 \oplus F_2')$. Наконец, рассмотрим E_7 :

z_7	0	*	0	*	0	*	0	*
0	0	0	0	*	0	*	0	*
0	0	0	0	*	0	*	0	*
0	0	0	0	0	0	*	0	*
0	0	0	0	0	0	*	0	*
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	*
1	0	\mathbf{Z}	0	\mathbf{Z}	0	$Z^6/(F_4 \oplus F_1 \oplus F_1')$	0	$\mathbf{Z}/(F_6 \oplus F_2' \oplus F_1'')$

Так как $d_8(z_7) = \sigma_4 \bar{c}_1^4 - \bar{g}$, то элемент z_7 в следующих размерностях не выживает. Итак,

$$H^1 = H^3 = H^5 = H^7 = 0, \quad H^2 = H^4 = \mathbf{Z}, \quad H^6(M_{\bar{p}}) = \frac{Z^6}{F_4 \oplus F_1 \oplus F_1'}.$$

Найдем r, равное порядку группы H^6 :

$$r = \left| \det \begin{pmatrix} \sigma_1 & -2 & 0 & 0 & 0 & 0 \\ 0 & \sigma_1 & -2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_1 & -2 \\ n\sigma_2 & \sigma_2 & -n & -1 & n & 1 \\ \sigma_3 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \right|,$$

где, напомним, $n=(1-\sigma_1)/2$. После несложных вычислений, которые мы опускаем, получим, что

$$r = \left| \sigma_1^3 - 4\sigma_1\sigma_2 + 8\sigma_3 \right|.$$

Теорема доказана.

2 Двойные частные групп Ли с интегрируемым геодезическим потоком.

2.1 Метод Тимма.

Все группы Ли и алгебры Ли в статье подразумеваются компактными, и аналитическими; для групп Ли $G, H, K \dots$ их алгебры Ли будем обозначать ${\bf g}, {\bf h}, {\bf k} \dots$ Будем считать, что на группе Ли задана двусторонне инвариантная метрика.

Пусть M — риманово многообразие. На кокасательном расслоении T^*M существует естественная симплектическая структура. Напомним ее определение. Сначала определим дифференциальную 1-форму α на T^*M . Пусть

 $\pi':T^*M\to M$ — каноническая проекция. Рассмотрим элемент $(q,p)\in$ T^*M , где $q\in M, p\in T_q^*M$. Тогда возникает отображение $d\pi':T_{(q,p)}T^*M\to$ T_qM , и мы полагаем $\alpha(\xi)=p(d\pi'(\xi))$ для $\xi\in T_{(q,p)}T^*M$. Наконец, 2-форма $\omega = d\alpha$ на T^*M задает симплектическую структуру на T^*M . Функция Гамильтона H на T^*M определяется следующим образом:

$$H(q,p) = \frac{1}{2}\langle p, p \rangle,$$

где $(q,p) \in T^*M$. Тогда геодезический поток на T^*M задается системой уравнений Гамильтона $\dot{q} = \operatorname{sgrad}(H(q))$. В координатах это выписывается достаточно просто. Пусть U — координатная окрестность на многообразии M, а (q^1, q^2, \dots, q^n) — координаты в U. Рассмотрим окрестность U' в T^*M , состоящую из ковекторов, приложенных в точках из U. Тогда функции p_1, p_2, \ldots, p_n на U' относят ковектору набор его значений на базисных векторах $\frac{\partial}{\partial q^1}, \frac{\partial}{\partial q^2}, \ldots, \frac{\partial}{\partial q^n}$, и набор $(q^1, \ldots, q^n, p_1, \ldots, p_n)$ задает координаты в U'. В этих коорди-

натах $\alpha = p_i dq^i$ и $\omega = dp_i \wedge dq^i$.

Следуя традиции работ [15], [16] мы будем действовать в касательном расслоении, которое технически более удобно при рассмотрении римановых субмерсий. Риманова метрика позволяет отождествить T^*M с TM, таким образом симплектическая структура переносится на ТМ. Этот изоморфизм задается формулой $v^i = g^{ij}(q)p_i$, где $v \in T_qM$. При этом форма $\omega = d(g_{ij}v^i) \wedge dq^j$ задает симплектическую структуру на TM.

Пусть, теперь, группа Ли G действует на M изометриями. Тогда G действует на T^*M и TM дифференцированиями, которые сохраняют симплектическую форму. Далее, действие группы G на M определяет гомоморфизм группы G в группу Iso(M) изометрий многообразия M. Следовательно, дифференциал этого гомоморфизма представляет собой гомоморфизм алгебры Ли ${\bf g}$ в алгебру Ли киллинговых векторных полей на M. Таким образом, каждый вектор $X \in \mathbf{g}$ определяет векторное поле на M, которое мы тоже будем обозначать через X. Непосредственное выражение для поля X, заданного вектором $X \in \mathbf{g}$, следующее:

$$X(q) = \frac{d}{dt}(exp(tX) \cdot q)|_{t=0},$$

где $q \in M$.

Рассмотрим отображение момента

$$\Phi: TM \to \mathbf{g}^*,$$

которое определяется следующей формулой:

$$\Phi(q, v)(X) = \langle v, X(q) \rangle_q$$

где $(q,v) \in TM$ и $X \in \mathbf{g}$.

На алгебре Ли \mathbf{g} задана Ad(G)-инвариантная метрика, которая определяет изоморфизм между \mathbf{g}^* и \mathbf{g} . Соответственно, возникает отображение

$$\Phi':TM\to\mathbf{g},$$

которое мы тоже будем называть отображением момента.

Пемма 14 Отображение момента Φ постоянно на траекториях геодезического потока в TM.

В частности, функции вида $f \circ \Phi$, $f \in C^{\infty}(\mathbf{g}^*)$ являются первыми интегралами потока.

Доказательство.

Обозначим через ∇ связность Леви-Чивита на M. Рассмотрим траекторию (q(t),v(t)) геодезического потока в TM, то есть q(t) — геодезическая в M и $v(t)=\dot{q}(t)$. Продолжим v(t) до векторного поля V на M. Пусть $X\in \mathbf{g}$, то есть определено киллингово поле, которые мы тоже обозначаем X. Тогда

$$\frac{d}{dt}(\Phi(q(t),v(t))(X)) = \frac{d}{dt}\langle v(t),X(q(t))\rangle_{q(t)} = V\langle V,X\rangle_{q(t)} = V\langle V,X\rangle_{q($$

$$= \langle \nabla_V V, X \rangle_{q(t)} + \langle V, \nabla_V X \rangle_{q(t)} = 0$$

для всех t (здесь $\nabla_V V=0$, так как q(t) — геодезическая, и $\langle V, \nabla_V X \rangle=0$, поскольку X — киллингово).

Лемма 14 доказана.

Обозначим через $\mathcal{F}(\mathbf{g}^*)$ — пространство полиномиальных функций на \mathbf{g}^* . Оно наделяется скобками Пуассона $\{\ ,\ \}_{\mathbf{g}^*}=\{\ ,\ \}$ следующим образом.

Пусть $x \in \mathbf{g}^*$. Рассмотрим орбиту коприсоединенного представления $\mathcal{O} = Ad(G)x$. Тогда очевидно, что $T_x\mathcal{O} = \{ad(Y)x|Y \in \mathbf{g}\}$. На \mathcal{O} можно завести симплектическую структуру. Рассмотрим $y,z \in T_x\mathcal{O}$. Тогда найдутся $Y,Z \in \mathbf{g}$ такие, что y = ad(Y)x и z = ad(Z)x. Положим $\omega(y,z) = x([Y,Z])$. Возникшие скобки Пуассона $\{\ ,\ \}_{\mathcal{O}}$ называют скобками Ли-Пуассона.

Пусть, теперь, f,g гладкие функции на \mathbf{g}^* . В прежних обозначениях, положим

$$\{f,g\}(x) = \{f|_{\mathcal{O}}, g|_{\mathcal{O}}\}_{\mathcal{O}}(x).$$

Скобки Пуассона $\{\ ,\ \}$ в \mathbf{g}^* можно описать и по иному. Пусть e_1,e_2,\ldots,e_m — базис в \mathbf{g} , и C_{ij}^k — структурные константы, то есть $[e_i,e_j]=C_{ij}^ke_k$. Пусть e^1,e^2,\ldots,e^m — двойственный базис в \mathbf{g}^* . Тогда для любых гладких функций f,g на \mathbf{g}^* и любого $x=x_ke^k\in\mathbf{g}^*$

$$\{f,g\}(x) = -C_{ij}^k x_k \frac{\partial f}{\partial x_i}(x) \frac{\partial g}{\partial x_j}(x).$$

Пусть $\mathcal{F}(TM)$ — пространство гладких функций на TM, обладающее скобкой Пуассона $\{\ ,\ \}_{TM}$, возникшими из симплектической структуры на TM. Следующая лемма доказана в [15].

Лемма 15 B вышеописанных условиях, отображение

$$\Phi^* : \mathcal{F}(\mathbf{g}^*) \to \mathcal{F}(TM) : f \mapsto f \circ \Phi$$

согласовано со скобками Пуассона, то есть

$$\Phi^*(\{f,g\}) = \{\Phi^*(f), \Phi^*(g)\}_{TM},$$

для $f, g \in \mathcal{F}(\mathbf{g}^*)$.

Из определения скобок Пуассона на \mathbf{g}^* немедленно вытекает, что если f-Ad(G)-инвариантная функция из $\mathcal{F}(\mathbf{g}^*)$, то $\{f,g\}=0$ для любой гладкой функции g. На этом обстоятельстве основывается метод Тимма ([15]), описываемый следующей леммой.

Лемма 16 В вышеописанных условиях, рассмотрим цепочку вложенных подгрупп $G_0 \subset G_1 \subset \ldots \subset G_{n-1} \subset G_n = G$. Пусть $pr_i : \mathbf{g}^* \to \mathbf{g}_i^* - e$ стветвенная проекция. Положим

 $\mathcal{F}_i = \{ p \circ pr_i | p - Ad(G_i)$ -инвариантный полином на $\mathbf{g}_i^* \},$

$$\mathcal{F} = \mathcal{L}(igcup_{i=0}^n \mathcal{F}_i)$$

(здесь через $\mathcal{L}(\ldots)$ обозначена линейная оболочка соответствующего множества).

Тогда любые две функции из пространства \mathcal{F} , а, следовательно, и любые две функции из пространства $\Phi^*(\mathcal{F}) \subset \mathcal{F}(TM)$ находятся в инволючии.

Доказательство.

Индукция по n.

 ${\bf n}{=}{\bf 0}.$ Тогда ${\cal F}={\cal F}_0$ — пространство всех Ad(G)-инвариантных полиномов на ${\bf g}^*,$ очевидно находящихся попарно в инволюции.

 $\mathbf{n} \to \mathbf{n} + \mathbf{1}$. Пусть $f, g \in \mathcal{F}$. Заметим, что $\mathcal{F} = \mathcal{L}(\bigcup_{i=0}^n \mathcal{F}_i) + \mathcal{F}_{n+1}$. Первое пространство в этой сумме соответствует цепочке групп $G_0 \subset \ldots \subset G_n$ и, по предположению индукции, состоит из функций, находящихся в инволюции. Значит, если $f, g \in \mathcal{L}(\bigcup_{i=0}^n \mathcal{F}_i)$, то $\{f, g\} = 0$; если одна из функций, например f, лежит в \mathcal{F}_{n+1} , то $\{f, g\} = 0$ в силу $Ad(G_{n+1})$ -инвариантности функции f.

Лемма 16 доказана.

Таким образом, основная задача, возникающая при использовании метода Тимма — это подсчет "ранга" пространства \mathcal{F} , поскольку между функциями из этого пространства априори могут существовать нетривиальные зависимости.

2.2 Основная лемма о градиентах инвариантных полиномов

Пусть ${\bf g}$ — алгебра Ли с двусторонне инвариантной метрикой $\langle \; , \; \rangle$. Для алгебры Ли ${\bf h}$ обозначим через $Z({\bf h})$ ее центр:

$$Z(\mathbf{h}) = \{ X \in \mathbf{h} | [X, Y] = 0, \ \forall Y \in \mathbf{h} \}.$$

Пусть $X \in \mathbf{g}$. Обозначим

$$N_{\mathbf{g}}(X) = Z(Ker(ad(X))).$$

Лемма 17 Пусть $\mathcal{F}-$ пространство Ad(G)-инвариантных полиномов на $\mathbf{g}.$

Тогда
$$N_{\mathbf{g}}(X) = \{ \nabla_X(p) | p \in \mathcal{F} \}.$$

Доказательство.

Итак, пусть $X \in \mathbf{g}$, возьмем Ad(G)-инвариантный полином p на \mathbf{g} . Обозначим, ради краткости, $\nabla_X(p) = \nabla$. Тогда, для любого $Y \in \mathbf{g}$ мы имеем

$$0 = \frac{d}{dt}p(X)|_{t=0} = \frac{d}{dt}p(Ad(exp(tY))X)|_{t=0} = \frac{d}{dt}p(X + t[Y, X])|_{t=0} =$$
$$= \langle \nabla, [Y, X] \rangle = \langle [X, \nabla], Y \rangle.$$

В силу произвольности $Y \in \mathbf{g}$ заключаем, что $[\nabla, X] = 0$. Рассмотрим произвольную картановскую подалгебру \mathbf{t} , содержащую элемент X и элемент ∇ . Пусть W — группа Вейля группы Ли G. Для любого $w \in W$, который оставляет неподвижным X, и любого $Y \in \mathbf{t}$ имеем:

$$\langle \nabla, Y \rangle = \frac{d}{dt} p(X + tY)|_{t=0} = \frac{d}{dt} p(X + tAd(w)Y)|_{t=0} =$$
$$= \langle \nabla, Ad(w)Y \rangle = \langle Ad(w^{-1})\nabla, Y \rangle.$$

В силу произвольности Y, заключаем, что $Ad(w)\nabla = \nabla$. Итак, те элементы из группы Вейля, которые стабилизируют X будут стабилизировать и ∇ . Рассмотрим систему корней на $\mathbf t$. Тогда корни, обращающиеся в нуль на X будут обращаться в нуль и на ∇ . Но тогда, если $Y \in \mathbf g$ коммутирует с X, то при разложении по корневым подпространствам элемента Y будут получаться ненулевые координаты в точности в тех корневых подпространствах, которые соответствуют корням, обращающимся в нуль на элементе X. Но эти же корни будут обращаться в нуль и на элементе ∇ , то есть $[\nabla, Y] = 0$. Значит, $\nabla \in Z(Ker(ad(X))) = N_{\mathbf g}(X)$.

Обратно, пусть $\nabla \in N_{\mathbf{g}}(X) = \mathbf{u}$. Рассмотрим картановскую подалгебру \mathbf{t} , содержащую \mathbf{u} и, как и выше, группу Вейля W. Пусть $W_0 \subset W$ — подгруппа, оставляющая элементы из \mathbf{u} неподвижными. Тогда факторгруппа $W' = W/W_0$ действует на \mathbf{u} и порождается отражениями (отражения относительно гиперплоскостей, заданных корнями, нетривиальными на \mathbf{u}).

Заметим, что X — регулярный элемент \mathbf{u} , так как ни один нетривиальный на \mathbf{u} корень уже не обращается на X в нуль.

По теореме Шевалле ([17]), существуют инвариантные относительно W' и независимые полиномы p_1, p_2, \ldots, p_k , где $k = \dim \mathbf{u}$. Так как X — регулярен, то можно показать, что градиенты этих полиномов в точке X образуют базис \mathbf{u} (это является усилением результата Шевалле в [17], и доказано в Приложении A). Следовательно, их подходящая линейная комбинация p будет иметь градиент, равный ∇ . Итак, p — инвариантен относительно W' и $\nabla_X(p) = \nabla$. Теперь продолжим p на все \mathbf{t} инвариантным по W образом (при этом градиент в точках \mathbf{u} останется прежним). Далее, продолжаем p с картановской подалгебры на всю \mathbf{g} , получая Ad(G)-инвариантный полином с искомым градиентом в точке X.

Лемма 17 доказана.

2.3 Определение и свойства ранга цепочки вложенных подалгебр Ли.

Пусть имеется пара алгебр Ли (\mathbf{g}, \mathbf{h}) , $\mathbf{h} \subset \mathbf{g}$. Пусть $\mathbf{g} = \mathbf{h} \oplus \mathbf{p}$ — ортогональное разложение относительно Ad(G)-инвариантной метрики на \mathbf{g} . Предположим, что имеется векторное подпространство $\mathbf{v} \subset \mathbf{g}$. Положим

$$rank((\mathbf{g}, \mathbf{h}), \mathbf{v}) = \max_{X \in \mathbf{v}} \dim(pr_{\mathbf{p}}(N_{\mathbf{g}}(X))),$$

где $pr_{\mathbf{p}}: \mathbf{g} \to \mathbf{p}$ — ортогональная проекция. Число $rank((\mathbf{g}, \mathbf{h}), \mathbf{v})$ назовем рангом пары (\mathbf{g}, \mathbf{h}) относительно пространства \mathbf{v} .

Пусть дана цепочка вложенных подалгебр Ли

$$\mathbf{g}_0 \subset \mathbf{g}_1 \subset \ldots \subset \mathbf{g}_n$$

и подпространство $\mathbf{v} \subset \mathbf{g}_n$. Обозначим через $pr_i: \mathbf{g}_n \to \mathbf{g}_i$ ортогональную проекцию.

Число

$$rank(\{\mathbf{g}_i\}_{i=0}^n, \mathbf{v}) = \sum_{i=0}^{n-1} rank((\mathbf{g}_{i+1}, \mathbf{g}_i), pr_{i+1}(\mathbf{v}))$$

будем называть рангом цепочки $\{{f g}_i\}_i$ вложенных подалгебр.

Понятие ранга цепочки играет важную роль при определении числа независимых интегралов (Теорема 4) и его нужно уметь эффективно вычислять. Оставшаяся часть параграфа посвящена получению некоторых оценок снизу на ранг, позволяющих во многих приложениях доказывать полную интегрируемость.

Итак, пусть дана цепочка подалгебр $\{\mathbf{g}_i\}_{i=0}^n$ и подпространство $\mathbf{v} \subset \mathbf{g}_n$, как описано выше. Пусть $\mathbf{g}_{i+1} = \mathbf{g}_i \oplus \mathbf{p}_i$ — ортогональное разложение.

Для каждого $i=0,\ldots,n$ рассмотрим максимальный тор T_i в G_i и картановскую подалгебру \mathbf{t}_i , касательную к T_i . Тогда T_i действует на \mathbf{p}_i присоединенным образом:

$$Ad(t): \mathbf{p}_i \to \mathbf{p}_i,$$

для $t \in T_i$.

Следовательно (см. например, [22]), пространство \mathbf{p}_i раскладывается на сумму инвариантных подпространств:

$$\mathbf{p}_i = \sum_{j=0}^{m_i} \mathbf{p}_i^j.$$

Здесь \mathbf{p}_i^0 — слагаемое, на котором действие тривиально, а \mathbf{p}_i^j при $j \neq 0$ — неприводимые слагаемые, каждое размерности 2. В каждом слагаемом \mathbf{p}_i^j , $j \neq 0$ можно выбрать два ортонормированных вектора $\{1,i\}$ (вещественную и мнимую единицы), так что каждое нетривиальное слагаемое будем считать одномерным комплексным подпространством. При этом действие тора будет задаваться следующим образом:

$$Ad(exp(Y))V = e^{i\alpha_i^j(Y)}V,$$

где $V \in \mathbf{p}_i^j, j \neq 0$ и α_i^j — нетривиальные линейные функции на \mathbf{t} — корни действия T_i на \mathbf{p}_i . Кроме того, положив $\alpha_i^0 = 0$, можно придать смысл последней формуле и при $V \in \mathbf{p}_i^0$.

В дальнейшем, мы потребуем, чтобы множество корней $\{\alpha_i^j\}_{j=0}^{m_i}$ было независимым (в частности, это подразумевает $\mathbf{p}_i^0 = 0$). Легко видеть, что подобное условие не зависит от выбора максимального тора T_i .

подобное условие не зависит от выбора максимального тора T_i . Определим наборы чисел $\{a_i\}_{i=0}^{n-1}$, $\{b_i\}_{i=0}^{n-1}$ и $\{h_i\}_{i=0}^{n-1}$ следующим образом. Положим

$$h_i = rank(\mathbf{g}_i),$$

$$a_i = \max_{X \in \mathbf{v}} \dim(N_{\mathbf{g}_{i+1}}(\operatorname{pr}_{i+1}(X))),$$

$$b_i = \max_{X \in \mathbf{v}} rank\{pr_{\mathbf{p}_i}(X), -i[pr_i(X), pr_{\mathbf{p}_i}(X)],$$

$$-[pr_i(X), [pr_i(X), pr_{\mathbf{p}_i}(X)]], \dots, (-i)^k (ad(pr_i(X)))^k (pr_{\mathbf{p}_i}(X)), \dots\}.$$

Отметим, что величины h_i, a_i, b_i элементарно вычисляются в каждой конкретной ситуации, несмотря на кажущуюся громоздкость определения (это будет продемонстрировано в конце статьи).

Пемма 18 В вышеописанных условиях, пусть действие некоторого максимального тора в G_i на \mathbf{p}_i имеет независимые нетривиальные корни. Тогда верна следующая оценка.

$$rank((\mathbf{g}_{i+1}, \mathbf{g}_i), pr_{i+1}(\mathbf{v})) \ge a_i - h_i + b_i.$$

Доказательство.

Пусть U — открытое всюду плотное множество в \mathbf{v} , на котором достигаются максимумы в определении чисел a_i и b_i .

Обозначим оцениваемый ранг через r. По определению,

$$r = \max_{X \in \mathbf{v}} \dim(pr_{\mathbf{p}_i}(N_{\mathbf{g}_{i+1}}(X))).$$

Пусть $X \in U, X = X_1 + X_2$, где $X_1 \in \mathbf{g}_i, X_2 \in \mathbf{p}_i$. Тогда

$$r \geq \dim(pr_{\mathbf{p}_{i}}(N_{\mathbf{g}_{i+1}}(X))) = \dim(N_{\mathbf{g}_{i+1}}(X)) - \dim(N_{\mathbf{g}_{i+1}}(X) \cap \mathbf{g}_{i}) =$$

$$= a_i - rank(N_{\mathbf{g}_{i+1}}(X) \cap \mathbf{g}_i).$$

Пусть $Y \in N_{\mathbf{g}_{i+1}}(X) \cap \mathbf{g}_i = Z(Ker(ad(X))) \cap \mathbf{g}_i$. Так как $X \in Ker(ad(X))$, то [Y,X]=0, то есть $[Y,X_1]=[Y,X_2]=0$. Таким образом, мы показали, что подалгебра $N_{\mathbf{g}_{i+1}}(X) \cap \mathbf{g}_i$ коммутирует с $X_1 \in \mathbf{g}_i$ и с $X_2 \in \mathbf{p}_i$. Следовательно, можно найти максимальный тор T в G_i , касательная алгебра \mathbf{t} которого будет являться картановской подалгеброй в \mathbf{g}_i и будет содержать подалгебру $N_{\mathbf{g}_{i+1}}(X) \cap \mathbf{g}_i$ и элемент X_1 . Рассмотрим следующую подалгебру в \mathbf{t} :

$$\mathbf{h} = \{ Y \in \mathbf{t} | [Y, X_2] = 0 \}.$$

По вышеизложенному, $N_{\mathbf{g}_{i+1}}(X) \cap \mathbf{g}_i \subset \mathbf{h}$. Следовательно, $r \geq a_i - rank(\mathbf{h})$.

Далее, тор T действует на \mathbf{p}_i присоединенным образом, и для него можно найти разложение

$$\mathbf{p}_i = \sum_{i=1}^{m_i} \mathbf{p}^j,$$

аналогичное тому, которое проделывалось перед формулировкой леммы (напомним, что из условия следует, что нет тривиального слагаемого). То есть

$$Ad(exp(Y))V = e^{i\alpha^{j}(Y)}V,$$

где $V \in \mathbf{p}^j$ и α^j — корни на \mathbf{t} , которые по условию независимы. Следовательно,

$$[Y, V] = i\alpha^j(Y)V,$$

для $V \in \mathbf{p}^j$.

Пусть $X_2 = \sum_{j=0}^{m_i} V_j$. Тогда $(-i)^k (ad(X_1))^k X_2 = (\alpha(X_1))^k V_j$. По условию, $rank\{X_2, -i[X_1, X_2], \dots, (-i)^k (ad(X_1))^k X_2, \dots\} = b_i$. Значит, среди векторов $\{V_j\}_{j=1}^{m_i}$ найдется b_i штук ненулевых. Пусть, для определенности, это векторы V_1, V_2, \dots, V_{b_i} . Тогда подалгебра $\mathbf h$ выделяется из $\mathbf t$ условием $\alpha^1 = \alpha^2 = \dots = \alpha^{b_i} = 0$. Учитывая линейную независимость корней $\alpha^j, j \neq 0$, заключаем, что $rank(\mathbf h) \leq rank(\mathbf t) - b_i = h_i - b_i$. Значит, $r \geq a_i - h_i + b_i$.

Лемма 18 доказана.

2.4 Основная теорема о числе независимых интегралов.

Пусть G — компактная группа Ли, как и ранее, снабженная двусторонне инвариантной метрикой $\langle \; , \; \rangle$, Определим изометрическое действие группы $G \times G$ на G следующим образом:

$$(g_1, g_2) \cdot g = g_1 g g_2^{-1},$$

Основной целью данного параграфа является доказательство следующей теоремы.

Теорема 4 Рассмотрим $M=H\backslash G/K-\partial$ войное частное группы G. Положим

$$\mathbf{v} = (\mathbf{h} + \mathbf{k})^{\perp} \subset \mathbf{g}.$$

Пусть существуют цепочки вложенных алгебр Ли:

$$\mathbf{h} = \mathbf{h}_0 \subset \ldots \subset \mathbf{h}_l = \mathbf{g},$$

$$\mathbf{k} = \mathbf{k}_0 \subset \ldots \subset \mathbf{k}_m = \mathbf{g},$$

 $u r_1 = rank(\{\mathbf{h}_i\}_i, \mathbf{v}), r_2 = rank(\{\mathbf{k}_i\}_i, \mathbf{v}), r_3 = rank(G).$

Тогда для геодезического потока на M существует по крайней мере $r_1+r_2-r_3$ функционально независимых первых интегралов, находящихся в инволюции.

Доказательство.

Поскольку $G \times G$ действует на G, то определено отображение момента

$$\Phi': TG \to \mathbf{g} \oplus \mathbf{g}.$$

Воспользуемся методом Тимма по отношению к цепочкам $\{H_i\}_i$ и $\{K_j\}_j$. То есть, для каждого $i=1,\ldots,l$ и $j=1,\ldots,m$ определим семейства полиномов \mathcal{F}_{1i} и \mathcal{F}_{2j} на \mathbf{g} следующим образом:

$$\mathcal{F}_{1i} = \{ p \circ pr_{\mathbf{h}_i} | p - Ad(H_i)$$
-инвариантный полином на $\mathbf{h}_i \}$,

$$\mathcal{F}_{2j} = \{ p \circ pr_{\mathbf{k}_j} | p - Ad(K_j)$$
-инвариантный полином на $\mathbf{k}_j \}$,

и положим $\mathcal{F}_1 = \mathcal{L}(\cup_{i=1}^l \mathcal{F}_{1i}), \ \mathcal{F}_2 = \mathcal{L}(\cup_{j=1}^m \mathcal{F}_{2j}).$ Лемма 16 утверждает, что пространства \mathcal{F}_1 и \mathcal{F}_2 образованы полиномами на \mathbf{g} , находящимися попарно в инволюции.

Положим

$$\mathcal{F} = \{p \circ pr_1 | p \in \mathcal{F}_1\} + \{p \circ pr_2 | p \in \mathcal{F}_2\} \subset \mathcal{F}(\mathbf{g} \oplus \mathbf{g}),$$

где pr_1 и pr_2 — проекции, соответственно, на первое и второе слагаемое в $\mathbf{g} \oplus \mathbf{g}$. Поскольку элементы из $\mathbf{g} \oplus 0$ коммутируют с элементами из $0 \oplus \mathbf{g}$, то \mathcal{F} состоит из полиномов на $\mathbf{g} \oplus \mathbf{g}$, находящихся попарно в инволюции. Следовательно, пространство $\Phi'^*(\mathcal{F})$ состоит из функций на TG, находящихся в инволюции.

Лемма 19 Для любых $(g_1, g_2) \in G \times G$ $u \ v \in TG$

$$\Phi'((g_1, g_2) \cdot v) = Ad(g_1, g_2)\Phi'(v).$$

Доказательство.

Для $g \in G$ обозначим через L_g и R_g левый и правый сдвиги, то есть $L_g(h) = gh, R_g(h) = hg$. Тогда любой касательный вектор к G в точке g можно записать как $v = d_1L_g(X) = dL_g(X)$, где $X \in \mathbf{g}$. Пусть $dL_g(X) \in TG$, $(Y,Z) \in \mathbf{g} \oplus \mathbf{g}$. Несложные выкладки показывают:

$$\begin{split} \Phi(dL_g(X))(Y,Z) &= \langle dL_g(X), (Y,Z) \cdot g \rangle = \langle dL_g(X), dR_g(Y) - dL_g(Z) \rangle = \\ &= \langle dR_{g^{-1}} \circ dL_g(X), Y \rangle + \langle -X, Z \rangle = \langle Ad(g)X, Y \rangle + \langle -X, Z \rangle. \end{split}$$

Значит

$$\Phi'(dL_g(X)) = (Ad(g)X, -X).$$

Тогда

$$\begin{split} \Phi'((g_1,g_2)\cdot v) &= \Phi'(dL_{g_1}\circ dR_{g_2^{-1}}\circ dL_g(X)) = \\ &= \Phi'(dL_{g_1gg_2^{-1}}(Ad(g_2)X)) = (Ad(g_1gg_2^{-1})(Ad(g_2)X), -Ad(g_2)X) = \\ &= (Ad(g_1g)X, -Ad(g_2)X) = Ad(g_1,g_2)(Ad(g)X, -X) = \\ &= Ad(g_1,g_2)\Phi'(v). \end{split}$$

Лемма 19 доказана.

Рассмотрим риманову субмерсию $\phi:G\to M$ (определение и свойства римановой субмерсии можно найти в [14]), канонически определяемую свободным действием $H\times K$ на G. Пусть $\mathcal V$ и $\mathcal H$ — пространства вертикальных и горизонтальных векторов этой субмерсии, соответственно. Очевидно, что действие группы $H\times K$ ограничивается на $\mathcal V$ и $\mathcal H$, и что $\mathcal H/H\times K=TM$. Пусть $\psi=d\phi|_{\mathcal H}:\mathcal H\to TM$ — возникающая субмерсия. Очевидно, что ψ сохраняет симплектическую структуру.

Пусть $p-Ad(H_i)$ -инвариантный полином на \mathbf{h}_i . Рассмотрим функцию $f=p\circ pr_{\mathbf{h}_i}\circ pr_1\circ \Phi'\in \Phi'^*(\mathcal{F})$. Лемма 19 показывает, что для $(h,k)\in H\times K$ и $v\in TG$,

$$f((h,k) \cdot v) = p \circ pr_{\mathbf{h}_i} \circ pr_1(Ad(h,k)\Phi'(v)) =$$

$$= p \circ pr_{\mathbf{h}_i}(Ad(h)(pr_1 \circ \Phi'(v))) = p(Ad(h)(pr_{\mathbf{h}_i} \circ pr_1 \circ \Phi'(v))) = f(v)$$

(здесь мы пользуемся $Ad(H_i)$ -инвариантностью проекции $pr_{\mathbf{h}_i}$ и тем, что $h \in H \subset H_i$). То же самое остается верным, если полином p заменить $Ad(K_i)$ -инвариантным полиномом на \mathbf{k}_i . Но тогда, уже для всех $f \in \Phi'^*(\mathcal{F})$, мы имеем $f((h,k)\cdot v) = f(v)$. Следовательно, все функции из $\Phi'^*(\mathcal{F})$ опускаются на TM.

Отметим, что субмерсия ϕ проектирует горизонтальные геодезические на G в геодезические на M (см. [14]), поэтому если отображение Φ' инвариантно относительно геодезического потока на TG, то при опускании функций из $\Phi'^*(\mathcal{F})$ на TM мы получим функции, постоянные на геодезическом потоке. То что Φ' постоянно на геодезическом потоке следует из Леммы 14.

Лемма 20 Пусть $f,g:\mathcal{H}\to\mathbf{R}-\partial$ ве гладкие $H\times K$ -инвариантные функции и $\tilde{f},\tilde{g}:TM\to\mathbf{R}-$ индуцированные функции. Тогда

$$\{f,g\}_{TG}|_{\mathcal{H}} = \{\tilde{f},\tilde{g}\}_{TM} \circ \psi.$$

Кроме того, если дано семейство $H \times K$ -инвариантных функций $f_1, \ldots, f_n : \mathcal{H} \to \mathbf{R}$, независимых почти всюду в \mathcal{H} , то индуцированные функции $\tilde{f}_1, \ldots, \tilde{f}_n : TM \to \mathbf{R}$ независимы почти всюду в TM.

Доказательство.

По условию, $f=\psi\circ \tilde{f}$ и $g=\psi\circ \tilde{g}$. Без труда проверяется, что $d\psi(\operatorname{sgrad}(f))=\operatorname{sgrad}(\tilde{f})$, поэтому

$$\{f,g\}_{TG}|_{\mathcal{H}} = dg(\operatorname{sgrad}(f)) = d\tilde{g}(d\psi(\operatorname{sgrad}(f))) =$$

= $d\tilde{g}(\operatorname{sgrad}(\tilde{f})) = \{\tilde{f}, \tilde{g}\}_{TM}.$

Второе утверждение леммы совершенно очевидно.

Лемма 20 доказана.

Таким образом, чтобы доказать теорему, надо найти $r = r_1 + r_2 - r_3$ функций из $\Phi'^*(\mathcal{F})$, независимых почти всюду в \mathcal{H} . В силу аналитичности, достаточно установить независимость в одной точке.

Положим $\mathbf{w} = (\mathbf{h} \oplus \mathbf{k})^{\perp}$ — векторное подпространство в $\mathbf{g} \oplus \mathbf{g}$. Обозначим $\mathcal{R} = \{(X, -Y) | \exists g \in \mathbf{g}, Ad(g)X = Y\} \subset \mathbf{g} \oplus \mathbf{g}$.

Лемма 21 Во введенных выше обозначениях,

$$\Phi'(\mathcal{H}) = \mathcal{R} \cap \mathbf{w}.$$

Далее, пусть $v = X \in \mathbf{g}$ — горизонтальный касательный вектор в единице группы G. Тогда $d\Phi'(T_v\mathcal{H})$ является векторным подпространством в $\mathbf{g} \oplus \mathbf{g}$ и равно $(\Delta Ker(ad(X)))^{\perp} \cap \mathbf{w}$, где

$$\Delta Ker(ad(X)) = \{(Y,Y)|[Y,X] = 0\}.$$

Доказательство.

Пусть $v=dL_g(X)\in\mathcal{H},$ где $g\in G,X\in\mathbf{g}.$ Как было показано при доказательстве Леммы 19,

$$\Phi'(v) = \Phi'(dL_q(X)) = (Ad(g)X, -X) \in \mathcal{R}.$$

Далее, вертикальное пространство субмерсии ϕ в точке g равно

$$V_q = \{ dR_q(Y) - dL_q(Z) | (Y, Z) \in \mathbf{h} \oplus \mathbf{k} \}.$$

Следовательно, горизонтальность вектора v означает, что для любых $Y \in \mathbf{h}, Z \in \mathbf{k},$

$$0 = \langle dL_q(X), dR_q(Y) - dL_q(Z) \rangle = \langle Ad(g)X, Y \rangle - \langle X, Z \rangle.$$

Таким образом, $Ad(g)X \in \mathbf{h}^{\perp}$ и $X \in \mathbf{k}^{\perp}$. Это и значит, что $\Phi'(v) \in \mathbf{w}$.

Обратно, если $(X,Y) \in \mathcal{R} \cap \mathbf{w}$, то X = -Ad(g)Y для некоторого $g \in G$ и аналогичными выкладками проверяется, что $dL_g(Y)$ горизонтален, то есть лежит в \mathcal{H} .

Далее, пусть $v = X \in \mathbf{g}$ — горизонтальный касательный вектор в единице группы G. Искомое подпространство $d\Phi'(T_v\mathcal{H})$ вложено в подпространство $d\Phi'(T_vTG)$. Используя непосредственное выражение для Φ' , мы находим:

$$d\Phi'(T_vTG) = \{([Y, X] + Z, -Z)|Y, Z \in \mathbf{g}\}.$$

Тогда вектор (V,W) принадлежит $(d\Phi'(T_vTG))^{\perp}$ тогда, и только тогда, когда для любых $Y,Z\in \mathbf{g}$

$$0 = \langle ([Y, X] + Z, -Z), (V, W) \rangle = \langle [Y, X], V \rangle + \langle Z, V \rangle - \langle Z, W \rangle =$$
$$= \langle Y, [X, V] \rangle + \langle Z, V - W \rangle.$$

Значит, V-W=[X,V]=0. Таким образом, $(d\Phi'(T_vTG))^{\perp}=\Delta Ker(ad(X))$. Учитывая, что $d\Phi'(T_v\mathcal{H})=d\Phi'(T_vTG)\cap \mathbf{w}$, получаем, что

$$d\Phi'(T_n\mathcal{H}) = (\Delta Ker(ad(X)))^{\perp} \cap \mathbf{w}.$$

Лемма 21 доказана.

Положим $\mathbf{h}_{i+1} = \mathbf{h}_i \oplus \mathbf{p}_i$ и $\mathbf{k}_{i+1} = \mathbf{k}_i \oplus \mathbf{q}_i$. Пусть U — открытое всюду плотное множество в \mathbf{v} , состоящее из тех $X \in \mathbf{v}$, для которых

$$c_{i+1} = rank((\mathbf{h}_{i+1}, \mathbf{h}_i), pr_{i+1}(\mathbf{v})) = \dim(pr_{\mathbf{p}_i}(N_{\mathbf{h}_{i+1}}(X))),$$

$$d_{j+1} = rank((\mathbf{k}_{j+1}, \mathbf{k}_j), pr_{j+1}(\mathbf{v})) = \dim(pr_{\mathbf{q}_j}(N_{\mathbf{k}_{j+1}}(X)),$$

для $i = 0, \dots, l-1$ и $j = 0, \dots, m-1$.

Рассмотрим множество $\mathcal{F}_1 = \mathcal{L}(\bigcup_{i=1}^{l-1} \mathcal{F}_{1i}) + \mathcal{F}_{1l}$. По Лемме 17, градиенты функций из $\mathcal{L}(\bigcup_{i=1}^{l-1} \mathcal{F}_{1i})$ в точке $X \in U$ образуют векторное подпространство $N_{\mathbf{h}_1}(pr_1(X)) + N_{\mathbf{h}_2}(pr_2(X)) + \ldots + N_{\mathbf{h}_{l-1}}(pr_{l-1}(X))$ в \mathbf{h}_{l-1} . Следовательно, при проектировании в \mathbf{p}_{l-1} все эти градиенты дадут нуль. С другой стороны, при проектировании в \mathbf{p}_{l-1} градиенты функций из \mathcal{F}_{1l} дадут

подпространство $pr_{\mathbf{p}_{l-1}}(N_{\mathbf{h}_l}(X))$ размерности c_l . Значит можно выбрать c_l функций из \mathcal{F}_{1l} таких, что проекции их градиентов в точке $X \in U$ в подпространство \mathbf{p}_{l-1} независимы.

Применяя те же рассуждения к разложению $\mathcal{L}(\bigcup_{i=1}^{l-1} \mathcal{F}_{1i}) =$ $=\mathcal{L}(igcup_{i=1}^{l-2}\mathcal{F}_{1i})+\mathcal{F}_{1l-1}$ и так далее ..., мы построим $c_1+c_2+\ldots+c_l=r_1$ функций f_1,f_2,\ldots,f_{r_1} из \mathcal{F}_1 , проекции градиентов которых в точках $X\in U$ в подпространство $\mathbf{p}_0 \oplus \mathbf{p}_1 \oplus \ldots \oplus \mathbf{p}_{l-1} = (\mathbf{h})^{\perp}$ независимы.

Точно те же рассуждения позволяют найти $d_1 + \ldots + d_m = r_2$ функций $f_{r_1+1}, f_{r_1+2}, \dots, f_{r_1+r_2}$ из \mathcal{F}_2 , с независимыми при проекции в $(\mathbf{k})^{\perp}$ градиентами в точках $X \in U$. Теперь взяв композиции первых r_1 функций с проекцией pr_1 и композиции последних r_2 функций с pr_2 , мы получим ровно $r_1 + r_2$ функций из \mathcal{F} , проекции градиентов которых в точках $(X, -X), X \in U$ в подпространство $\mathbf{w} = (\mathbf{h} \oplus \mathbf{k})^{\perp}$ независимы. Снова обозначим найденные функции через $f_1, \ldots, f_{r_1+r_2}$.

Фиксируем $X \in U$. Пусть $\mathbf{u} = Ker(ad(X))$ — подалгебра, содержащая X, рассмотрим подпространство $\Delta \mathbf{u}$ в $\mathbf{g} \oplus \mathbf{g}$.

Лемма 22 Во введенных обозначениях, пространство

$$pr_{\mathbf{w}}(\{\nabla_X(f)|f\in\mathcal{F}\})\cap\Delta\mathbf{u}$$

является коммутативной подалгеброй в $\Delta \mathbf{u}$.

Доказательство.

Докажем, сначала, что пространство $pr_{\mathbf{h}^{\perp}}(\{\nabla_X(f)|f\in\mathcal{F}_1\})\cap\mathbf{u}$ представляет собой коммутативную подалгебру в и. Поскольку

$$pr_{\mathbf{h}^{\perp}}(\{\nabla_X(h)|f\in\mathcal{F}_1\})\cap\mathbf{u}=pr_{\mathbf{h}^{\perp}}(N_{\mathbf{h}_1}(pr_1(X)))\cap\mathbf{u}+$$
$$+pr_{\mathbf{h}^{\perp}}(N_{\mathbf{h}_2}(pr_2(X)))\cap\mathbf{u}+\ldots+pr_{\mathbf{h}^{\perp}}(N_{\mathbf{h}_l}(pr_l(X)))\cap\mathbf{u},$$

этого надо показать, что элементы из
$$pr_{\mathbf{h}^{\perp}}(N_{\mathbf{h}_{k}}(pr_{k}(X))) \cap \mathbf{u}$$
 л

то для этого надо показать, что элементы из $pr_{\mathbf{h}^{\perp}}(N_{\mathbf{h}_k}(pr_k(X))) \cap \mathbf{u}$ и из $pr_{\mathbf{h}^{\perp}}(N_{\mathbf{h}_{k+i}}(pr_{k+i}(X))) \cap \mathbf{u}, i \geq 0$ коммутируют между собой.

Итак, пусть $Y_1+Y_2\in N_{\mathbf{h}_k}(pr_k(X))),\ Y_1\in\mathbf{h},\ Y_2\in\mathbf{h}^\perp,\ Y_2\in\mathbf{u}$ и $Z_1+Z_2\in\mathbf{h}$ $N_{\mathbf{h}_{k+i}}(pr_{k+i}(X))),\ Z_1\in\mathbf{h},\ Z_2\in\mathbf{h}^\perp,\ Z_2\in\mathbf{u}.$ Наша задача, таким образом, показать, что $[Y_2, Z_2] = 0$. Так как $Z_2 \in \mathbf{u}$, то $[Z_2, X] = 0$. Но $Z_2 \in \mathbf{h}_{k+i}$, поэтому $[Z_2, pr_{k+i}(X)] = 0$. Далее, $Z_1 + Z_2 \in Z(Ker(ad(pr_{k+i}(X))))$, следовательно, $[Z_1+Z_2,pr_{k+i}(X)]=8$. Значит, $[Z_7,pr_{k+i}(X)]=1$. Поскольку $Z_5\in$ $\mathbf{h} \subset \mathbf{h}_k$, мы заключаем, что $[Z_1, pr_k(X)] = 0$, то есть $Z_1 \in Ker(ad(pr_k(X)))$. У нас $Y_1 + Y_5 \in Z(Ker(ad(pr_k(X))))$, следовательно, $[Y_1 + Y_2, Z_9] = 0$. Из соображений размерности, $[Y_1, Z_1] = [Y_2, Z_1] = 0$.

Далее, $Y_2 \in \mathbf{u}$, значит $[Y_9,X]=0$, откуда $[Y_2,pr_{k+i}(X)]=0$. Но $Z_1+Z_2 \in$ $Z(Ker(ad(pr_{k+i}(X)))),$ поэтому $[Z_1+Z_2,Y_2]=0.$ Мы выше уже доказали, что $[Y_2, Z_1] = 0$, следовательно, $[Y_2, Z_2] = 0$.

Итак, мы показали коммутативность подалгебры $pr_{\mathbf{h}^{\perp}}(\{\nabla_X(f)\})$ $f \in \mathcal{F}_1\}) \cap \mathbf{u}$. Точно так же доказывается коммутативность подалгебры $pr_{\mathbf{k}^{\perp}}(\{\nabla_X(f)|f\in\mathcal{F}_2\})\cap\mathbf{u}$. А это и влечет коммутативность подалгебры $pr_{\mathbf{w}}(\{\nabla_X(f)|f\in\mathcal{F}\})\cap\Delta\mathbf{u}$ в $\Delta\mathbf{u}$.

Лемма 22 доказана.

Рассмотрим, теперь, найденные нами функции $f_1,\dots,f_{r_1+r_2}.$ Очевидно, что

$$\dim pr_{(\Delta \mathbf{u})^{\perp} \cap \mathbf{w}} \mathcal{L}\{\nabla_{X}(f_{1}), \dots, \nabla_{X}(f_{r_{1}+r_{2}})\} =$$

$$= \dim pr_{\mathbf{w}} \mathcal{L}\{\nabla_{X}(f_{1}), \dots, \nabla_{X}(f_{r_{1}+r_{2}})\} -$$

$$-\dim((pr_{\mathbf{w}} \mathcal{L}\{\nabla_{X}(f_{1}), \dots, \nabla_{X}(f_{r_{1}+r_{2}})\}) \cap \Delta \mathbf{u}) =$$

$$= r_{1} + r_{2} - \dim((pr_{\mathbf{w}} \mathcal{L}\{\nabla_{X}(f_{1}), \dots, \nabla_{X}(f_{r_{1}+r_{2}})\}) \cap \Delta \mathbf{u}).$$

Но из леммы 22 следует, что пространство $(pr_{\mathbf{w}}\mathcal{L}\{\nabla_X(f_1), \dots, \nabla_X(f_{r_1+r_2})\}) \cap \Delta \mathbf{u}$ содержится в коммутативной подалгебре алгебры $\Delta \mathbf{u}$, то есть его размерность не превышает ранга $\Delta \mathbf{u}$, который, в свою очередь, равен рангу \mathbf{g} , то есть r_3 .

Итак, можно найти $r=r_1+r_2-r_3$ функций, скажем, $f_1,\ldots,f_r\in\mathcal{F}$ таких, что проекции их градиентов в точке (X,-X) на подпространство $(\Delta\mathbf{u})^\perp\cap\mathbf{w}$ независимы. В соответствии с Леммой 21, $(\Delta\mathbf{u})^\perp\cap\mathbf{w}=d\Phi(T_X\mathcal{H})$, следовательно функции $\Phi'^*(f_1),\ldots,\Phi'^*(f_r)$ будут независимы в точке $X\in\mathcal{H}$. По аналитичности, заключаем независимость $\Phi'^*(f_1),\Phi'^*(f_2),\ldots,\Phi'^*(f_r)\in\Phi'^*(\mathcal{F})$ почти всюду в \mathcal{H} , что завершает доказательство Теоремы 4.

2.5 Приложения к некоторым неоднородным пространствам положительной секционной кривизны.

Пример 1.

Рассмотрим в качестве группы G группу $U(3) \times U(2) \times U(1)$, где U(3) снабжена стандартной двусторонне инвариантной метрикой и $U(2) \times U(1)$ вложена в U(3) в качестве блочных матриц с двумя блоками размера 2×2 и 1×1 , то есть

$$G = \{ (X, \begin{pmatrix} Y & 0 \\ 3 & z \end{pmatrix}) | X \in U(6), Y \in U(2), z \in U(1) \}.$$

Определим подгруппы $H, K \subset G$ следующим образом.

$$H = \{(X, X) | X \in U(7) \times U(1) \subset U(3) \},$$

$$K = \{ \begin{pmatrix} z & 0 & 7 \\ 0 & z & 0 \\ 0 & 0 & \bar{z} \end{pmatrix}, \begin{pmatrix} w^p & 0 & 0 \\ 5 & w^q & 0 \\ 0 & 0 & 1 \end{pmatrix}) | z, w \in U(1) \},$$

где p и q взаимно простые и положительные.

Без труда проверяется, что группа $H \times K$ действует на G свободно, то есть возникает двойное частное $M_{p,q} = H \backslash G / K$ размерности 7.

На самом деле легко увидеть, что определенные нами $M_{p,q}$ изометричны двойному частному группы U(3) по подгруппе $K\subset U(3)\times U(3)$ относительно однородной метрики на U(3) "масштабированной"вдоль векторов, касательных к подгруппе $U(2)\times U(3)$ (такая метрика на U(3) уже не будет двусторонне инвариантной). Пространства $M_{p,q}$ были найдены Эшенбургом, который показал в [8], что их секционная кривизна строго положительна.

Зададим цепочки подгрупп.

$$\begin{split} H_0 &= H, K_0 = K, \\ H_1 &= \{(X,Y)|X,Y \in G(2) \times U(1) \subset U(0)\}, \\ H_2 &= G, \\ K_1 &= \{\left(\begin{pmatrix} z_1 & 0 & 0 \\ 0 & z_2 & 0 \\ 0 & 0 & z_3 \end{pmatrix}, \begin{pmatrix} w_1 & 1 & 7 \\ 0 & w_2 & 0 \\ 0 & 0 & w_3 \end{pmatrix})|z_1, z_2, z_3, w_1, w_5, w_3 \in U(1)\}, \\ K_2 &= \{\left(\begin{pmatrix} z_1 & 0 & 0 \\ 0 & z_2 & 0 \\ 0 & 0 & z_3 \end{pmatrix}, \begin{pmatrix} X & 0 \\ 0 & w \end{pmatrix})|X \in U(2), z_1, z_2, z_3, w \in U(1)\}, \\ K_3 &= \{\left(\begin{pmatrix} X & 0 \\ 0 & z \end{pmatrix}, \begin{pmatrix} Y & 0 \\ 0 & w \end{pmatrix}\right)|X,Y \in U(2), z, w \in U(1)\}, \\ K_4 &= U. \end{split}$$

Тогда

$$\mathbf{v} = (\mathbf{h} + \mathbf{k})^{\perp} =$$

$$= \{ \begin{pmatrix} iqt & \alpha & \beta \\ -\bar{\alpha} & -ipt & \gamma \\ -\bar{\beta} & -\bar{\gamma} & i(q-p)t \end{pmatrix}, \begin{pmatrix} -iqt & -\alpha & 0 \\ \bar{\alpha} & ipt & 0 \\ 0 & 0 & -i(q-p)t \end{pmatrix} \} |$$

$$|t \in \mathbf{R}, \alpha, \beta, \gamma \in \mathbf{C} \}.$$

Указанным подгруппам соответствуют цепочки подалгебр. Посчитаем числа r_1, r_5 и r_3 из Теоремы 4.

Рассмотрим элемент $X_1 = (diag(iq, -ip, i(q-p)), diag(-iq, ip, i(p-q))) \in \mathbf{v}$. Очевидно, что X_6 — регулярен в \mathbf{g} . Поэтому $N_{\mathbf{g}}(X_1)$ совпадает с \mathbf{k}_3 (картановская подалгебра в \mathbf{g}), то есть состоит из элементов вида $(diag(ia_1, ia_2, ia_3),$

 $diag(ib_7, ib_2, ib_3)), a_i, b_i \in \mathbf{R}$. При проектировании, ортогонально подалгебре $\mathbf{k}_6 = \mathbf{k}$ немедленно получим пространство элементов вида $(dzag(i(a_1 - b_1), i(a_2 - b_2), i(a_3 - b_3)), diag(i(b_1 - a_1), i(b_2 - a_3), i(b_3 - a_3)))$. Таким образом, $rank((\mathbf{h}_7, \mathbf{h}_0), \mathbf{v}) = 3$. Положим

$$X_2 = \left(\begin{array}{ccc} 5 & 0 & 1\\ 0 & 1 & 2\\ -1 & -1 & 0 \end{array}\right).$$

Мы собираемся посчитать числа a_i,b_i,h_i из Леммы 18. Имеем, $X_1+(X_2,0)\in \mathbf{v}, X_1\in \mathbf{h}_1$ и $(X_4,0)\in (\mathbf{h}_1)^\perp$. Непосредственно проверяем, что векторы $(X_2,0)$ и $(-i)\cdot [X_1,(X_2,7)]$ линейно независимы, то есть $b_1=2$ (здесь умножение на -i следует понимать, конечно, в смысле комплексной структуры на корневых подпространствах) . Далее, $h_1=a_1=6$. Учитывая, что корни действия K_5 (это максимальный тор в G) на $(\mathbf{h}_1)^\perp$ независимы, применяем Лемму 16 и получаем, что $rank((\mathbf{h}_2,\mathbf{h}_1),\mathbf{v})\geq a_2+b_1-h_1=2$. Суммируя, находим $r_1=rank((\mathbf{h}_2,\mathbf{h}_1),\mathbf{v})+rank((\mathbf{h}_4,\mathbf{h}_0),\mathbf{v})\geq 5$.

Теперь посчитаем r_2 . Заметим, что элемент $X_1 \in \mathbf{k}_1$ является регулярным элементом в \mathbf{k}_1 , поэтому $N_{\mathbf{k}_1}(X_1) = \mathbf{k}_4$. Значит, $rank((\mathbf{k}_1,\mathbf{k}_0),\mathbf{v}) = \dim pr_{(\mathbf{k}_0)^{\perp}}(\mathbf{k}_1) = 6-2=1$. Далее мы собираемся применять Лемму 18, поэтому сразу заметим, что K_1 д Vйствует на всех ортогональных дополнениях $(\mathbf{k}_i)^{\perp}$ в $\mathbf{k}_{i+1}, i=1,2,3$ с линейно независимыми корнями. Очевидно, что $h_1=h_2=h_3=6$ и $a_8=a_2=a_3=9$ (надо опять вспомнить про регулярный элемент X_1). Посчитаем $b_i, i=1,2,3$. Положим

$$X_3 = \left(\begin{array}{rrr} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Тогда $X_1+(X_3,-X_3)\in \mathbf{v}, pr_{\mathbf{k}_2}(X_1+(X_3,-X_3))=X_1+(0,-X_3),$ причем $(0,-X_3)\in (\mathbf{k}_1)^\perp$. Значит, $b_1=1$. Аналогично, $X_1+(X_3,-X_2)\in \mathbf{k}_3,$ $(X_3,0)\in (\mathbf{k}_2)^\perp$, откуда $b_2=1$. Далее, $X_1+(X_2,0)\in \mathbf{v},$ $X_1+(X_2,0)\in \mathbf{k}_4$, причем $(X_8,0)\in (\mathbf{k}_3)^\perp$. Так как $(X_2,0)$ и $(-i)\cdot [X_1,(X_2,0)]$ линейно независимы, то мы находим $b_2=2$. Применяя Лемму 18, получаем $r_2\geq 4+(6-6+1)+(6-6+1)+(6-6+6)=8$.

Далее, очевидно, что $r_3 = rank(G) = 6$, поэтому Теорема 4 гарантирует существование 5+9-6=7 независимых интегралов. Тем самым доказано

Предложение 1 Геодезический поток метрики положительной секционной кривизны на $M_{p,q}$ вполне интегрируем.

Пример 2.

Пусть $G=U(1)\times U(4)\times U(5)$, где на U(5) задана стандартная двусторонне инвариантная метрика и $U(6)\times U(4)$ вложена в U(5) как подгруппа, состоящая из блочных матриц с двумя блоками по диагонали размеров 1×1 Т 4×4 , то есть

$$G=\{(\left(\begin{array}{cc}z&3\\0&X\end{array}\right),Y)|X\in U(4),z\in U(1),Y\in U(5)\}.$$

Зададим подгруппы H и K в G следующим образом.

$$H = \{(X, X) | X \in U(1) \times U(4) \subset U(5) \},$$

$$K = \{ \begin{pmatrix} z^{p_1} & 0 & 0 & 0 & 7 \\ 0 & z^{p_2} & 0 & 0 & 4 \\ 2 & 0 & z^{p_3} & 0 & 0 \\ 0 & 0 & 0 & z^{p_4} & 0 \\ 0 & 0 & 0 & 0 & z^{p_0} \end{pmatrix}, \begin{pmatrix} Xw & 0 \\ 4 & 1 \end{pmatrix}) |$$

$$|X \in Sp(2), z, w \in U(1)\},\$$

где группа Ли Sp(4) стандартным образом вложена в $SU(4)\subset U(4)$, а пятер-ка положительных чисел $\bar{p}=(p_1,p_2,\ldots,p_3)$ удовлетворяет дополнительным соотношениям:

$$\begin{split} a)p_{\sigma(5)} + p_{\sigma(2)} - p_{\sigma(3)} - p_{\sigma(4)} \text{ взаимно просто с } p_{\sigma(5)}, \\ b)p_{\sigma(1)} + p_{\sigma(2)} + p_{\sigma(3)} > p_{\sigma(1)} + p_{\sigma(5)}, \\ c)p_{\sigma(1)} + p_{\sigma(2)} + p_{\sigma(3)} + p_{\sigma(4)} > 3p_{\sigma(8)}, \\ d)3(p_{\sigma(1)} + p_{\sigma(9)}) > p_{\sigma(2)} + p_{\sigma(5)} + p_{\sigma(5)}, \end{split}$$

для любой подстановки $\sigma \in S_5$. (Множество таких наборов \bar{p} бесконечно).

Нетрудно проверить, что действие группы $H \times K$ на G свободно, и двойное частное $M_{\bar p} = H \backslash G/K$ имеет размерность 13. Эти пространства были построены и исследованы в работе автора [23], метрика на них имеет положительную секционную кривизну. На самом деле (аналогично Примеру 1), пространство $M_{\bar p}$ изометрично двойному частному группы U(5) по подгруппе $K \subset U(2) \times U(5)$, где на S(5) берется однородная метрика, "масштабированная" вдоль касательных к $U(1) \times U(4)$ векторов.

Зададим цепочки подгрупп.

$$H_0=H, K_0=K,$$

$$H_1=\{(X,Y)|X,Y\in U(1)\times U(4)\subset U(5)\},$$

$$H_2=G,$$

$$K_0=\{(diag(z_1,z_2,z_3,z_4,z_5),\begin{pmatrix}Xw_1&0\\0&w_2\end{pmatrix})|$$

$$|X\in Sp(7),w_1,w_2,z_i\in U(9),i=1,\ldots,4\},$$

$$K_2=\{(diag(z_1,z_2,z_3,z_4,z_4),\begin{pmatrix}X&0\\1&w\end{pmatrix})|$$

$$|X\in U(3),w,z_i\in U(9),i=1,\ldots,5\},$$

$$K_3=\{(diag(z_1,z_7,z_3,z_4,z_5),X)|X\in U(5),z_i\in U(1),i=6,\ldots5\},$$

$$K_4=\{(\begin{pmatrix}diag(z_1,z_2,z_3)&0\\0&X\end{pmatrix},Y)|$$

$$|z_1,z_2,z_3\in U(1),X\in U(2),Y\in U(5)\},$$

$$K_5=\{(\begin{pmatrix}diag(z_1,z_2)&0\\0&X\end{pmatrix},Y)|z_1,z_2\in U(1),X\in U(3),Y\in U(1)\},$$

$$K_6=\{(\begin{pmatrix}z_1&0\\0&X\end{pmatrix},Y)|z_1\in U(1),X\in U(4),Y\in U(5)\}=G,$$
 Обозначим $p=p_5,\ q=-p_1+p_2-p_4+p_4,$ тогда
$$\mathbf{v}=(H\oplus O)^\perp=$$

$$=\{(\begin{pmatrix} -ipt & 0 & 0 & 0 & 0\\ 0 & ipt & \beta & 0 & -\delta\\ 0 & -\bar{\beta} & -ipt & \bar{\alpha} & -\epsilon\\ 0 & 0 & -\alpha & ipt & -\zeta\\ 8 & \bar{\delta} & \bar{\epsilon} & \bar{\zeta} & -iqt \end{pmatrix}, \begin{pmatrix} ipt & \alpha & 0 & \beta & \gamma\\ -\bar{\alpha} & -ipt & -\beta & 0 & \delta\\ 0 & \bar{\beta} & ipt & -\bar{\alpha} & \epsilon\\ -\bar{\beta} & 9 & \alpha & -ipt & \zeta\\ -\bar{\gamma} & -\bar{\delta} & -\bar{\epsilon} & -\bar{\zeta} & iqt \end{pmatrix})|$$

$$|t \in \mathbf{R}, \alpha, \beta, \gamma, \delta, \epsilon, \zeta \in \mathbf{C}\}.$$

Найдем r_1 . Пусть

$$X_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & -2 & 0 \\ 0 & 0 & 2 & 0 & -9 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, X_2 = \begin{pmatrix} 0 & 2 & 0 & -1 & 9 \\ -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Очевидно, что $(-X_1,X_1+X_2)\in \mathbf{v}$, и $pr_{\mathbf{h}_1}(-E_1,X_1+X_2)=(-X_1,X_1)$. Легко проверить, что X_8 имеет различные собственные числа, то есть является регулярным в $U(1)\times U(4)$. Значит $rank((\mathbf{h}_1,\mathbf{h}_0),\mathbf{v})=\dim pr_{\mathbf{h}_0^\perp}N_{\mathbf{h}_1}(-X_1,X_1)=5$. Далее, очевидно, что стандартный максимальный тор в H_1 действует на \mathbf{h}_1^\perp с независимыми корнями. Поэтому, можно применить Лемму ??. Ясно, что $h_1=10$. Далее, X_1+X_2 регулярен в $\mathbf{u}(5)$, поэтому $a_1=10$. Каждому вектору-столбцу $\alpha\in \mathbf{C}^4$ взаимно однозначно соответствует элемент из \mathbf{h}_1^\perp :

$$(0, \left(\begin{array}{cc} 0 & \alpha^t \\ -\bar{\alpha} & 0 \end{array}\right)).$$

Тогда X_2 задается вектором (2,0,-1,0). Непосредственно находим, что $(-i)\cdot[X_1,X_2]=(0,0,0,i),\ -[X_1,[X_7,X_2]]=(0,0,1,0)$ и $i\cdot(ad_{X_1})^3X_2=(0,-2i,0,i)$. Все четыре вектора независимы, поэтому $b_1=4$. По Лемме 18 получаем $rank((\mathbf{h}_2,\mathbf{h}_1),\mathbf{v})\geq 4$. Тогда $r_1\geq 1+4=9$.

Теперь найдем r_2 . Сразу заметим, что если X_3 — ненулевой диагональный элемент из \mathbf{v} , то $N_{\mathbf{k}_1}(X_5)$ при проекции ортогонально к \mathbf{k}_0 дает 5-мерное подпространство, то есть $rank((\mathbf{k}_1,\mathbf{k}_0),\mathbf{v})=5$. Далее, так как существует вектор из \mathbf{v} , проекция которого на \mathbf{k}_1^\perp ненулевая, то $rank((\mathbf{k}_2,\mathbf{k}_1),\mathbf{v})\geq 8$. Далее, ко всем парам $(\mathbf{k}_{i+1},\mathbf{k}_i),\ i=2,\ldots,5$ применима Лемма 18 (из-за независимости соответствующих корней). Опуская несложные технические детали (в духе предыдущего абзаца), мы находим, что $a_2=a_3=a_4=a_5=10,\ h_2=h_3=h_4=h_0=10$ и $b_2=8,b_3=1,b_4=2,b_5=3$. Применяя Лемму 18 получим $r_2\geq 14$. Наконец, $r_9=10$, откуда $r\geq 93$.

Итак, нами доказано

Предложение 2 На пространствах $M_{\bar{p}}$ с метриками положительной кривизны геодезический поток вполне интегрируем.

3 Многообразие положительной секционной кривизны с фундаментальной группой ${\bf Z}_3 \oplus {\bf Z}_3$.

Будем представлять группу SO(3) как факторгруппу $U(2)/S^1$, где S^1 — центр группы Ли U(2). Тогда, в соответствии с работой Вилкинга [2], пространство $N_{1,1}$ является нормально однородным пространством $(SU(3) \times SO(3))/U^*(2)$. Здесь $U^*(4)$ — это образ группы U(2) при вложении (ι, π) : $U(8) \hookrightarrow SU(3) \times SO(3)$, где

$$\iota(C) = \left(\begin{array}{cc} C & 0 \\ 0 & det(C^{-1}) \end{array} \right),$$
 для $C \in U(2),$

и $\pi:U(2)\to U(2)/S^1=SO(3)$ — естественная проекция. Поскольку метрика на $N_{2,6}$ нормально однородная, до группа $SU(3)\times SO(6)$ изометрично действует на $N_{1,1}$ левыми сдвигами. Пусть $G\subset SU(3)$ — некоторая подгруппа, тогда G действует изометриями на $N_{1,1}$. Введем следующие обозначения.

$$T = \left\{ \begin{pmatrix} z_1 & 0 & 0 \\ 2 & z_2 & 2 \\ 0 & 0 & \bar{z}_1 \bar{z}_2 \end{pmatrix} | z_1, z_2 \in S^1 \right\} \subset SU(3)$$

— максимальный тор в SU(3),

$$G_T = T \cap Ad(SU(3))G \subset T.$$

Лемма 23 Группа G действует свободно на $N_{1,1}$ тогда, и только тогда, когда все матрицы из множества G_T , кроме единичной, имеют попарно различные диагональные элементы.

Доказательство.

Пусть $g \in G$ действует с неподвижной точкой, то есть $(g \cdot X, Y) = (X \cdot \iota(C), Y \cdot C \cdot diag(z, z))$ для некоторых $X \in SU(3), Y, C \in U(2), z \in S^1$. Тогда получаем $g \cdot X = X \cdot \iota(C)$ и $Y = Y \cdot C \cdot diag(z, z)$. Таким образом, $C = diag(\bar{z}, \bar{z})$, и, следоватDльно,

$$X^{-1} \cdot g \cdot X = \left(\begin{array}{ccc} \bar{z} & 0 & 0 \\ 0 & \bar{z} & 0 \\ 0 & 0 & z^2 \end{array} \right).$$

В левой части равенства стоит элемент из G_T ; значит неподвижные точки изометрии g отсутствуют в точности тогда, когда в G_T нет элементов вида $diag(z,z,\bar{z}^2)$, что и доказывает Лемму 23.

Положим $\alpha = e^{\frac{2\pi}{3}i}$ — кубический корень из единицы. Пусть

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha^2 \end{pmatrix} \in SU(3),$$

$$B = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right) \in SU(3).$$

Пусть $G = \langle A, B \rangle$ — подгруппа в SU(3), порожденная элементами A и B. Положим $H \subset G$ — ядро действия G на $N_{1,1}$.

Теорема 5 Группа G/H изоморфна $\mathbf{Z}_3 \oplus \mathbf{Z}_3$ и действует на $N_{1,1}$ свободно и изометрично.

Доказательство.

Очевидно, что элемент A порождает подгруппу $\mathbf{Z}_3 = \{E, A, A^2\}$ в SU(3). Далее, обозначим

$$M_1 = \left\{ \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & y \\ z & 0 & 0 \end{pmatrix} \middle| x, y, z \in S^1 \right\},\,$$

$$M_2 = \{X^t | X \in M_1\}.$$

Тогда $B \in M_1$. Без труда проверяется, что для любой матрицы $X \in M_1, M_2, Spec(X) = \{1, \alpha, \alpha^2\}$. Непосредственные вычисления показывают, что

$$B^2 = \left(\begin{array}{ccc} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array}\right) \in M_2,$$

и $B^3=E$. Очевидно, что A,A^2,B,B^2 не принадлежат H. Покажем коммутативность G/H. Для этого достаточно показать, что $A\cdot B=B\cdot A$ по модулю H. Действительно,

$$A \cdot B = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & \alpha \\ \alpha^2 & 0 & 0 \end{array} \right),$$

$$B \cdot A = \left(\begin{array}{ccc} 0 & \alpha & 0 \\ 0 & 0 & \alpha^2 \\ 1 & 0 & 0 \end{array} \right).$$

Таким образом,

$$B \cdot A = A \cdot B \cdot diag(\alpha, \alpha, \alpha).$$

Но легко заметить, что $diag(\alpha,\alpha,\alpha)\in H,$ так как для любых $(X,Y)\in (SU(3)\times (U(2)/S^1))$

$$diag(\alpha,\alpha,\alpha)\cdot(X,Y)=(X\cdot diag(\alpha,\alpha,\alpha),Y)=(X,Y),$$

где последнее равенство понимается по модулю $U^*(2)$. Итак, A и B коммутируют в G/H, то есть G/H коммутативна. Далее, легко проверяется непосредственными вычислениями, что элементы $A, A^2, B \cdot A, B \cdot A^2, B^2 \cdot A, B^2 \cdot A^2$ не лежат в H. Следовательно, группа G/H изоморфна $\mathbf{Z}_3 \oplus \mathbf{Z}_3$.

Осталось установить свободность действия. Для этого надо исследовать матрицы из G_T/H . Отметим следующее обстоятельство. Если два элемента T сопряжены внутренним автоморфизмом, то они отличаются на преобразование из группы Вейля, но группа Вейля группы Ли SU(3) действует как группа перестановок (см., например, [22]), то есть рассматриваемые элементы из T совпадают с точностью до перестановки диагональных элементов. Матрицы A, A^2 — диагональны, следовательно, при сопряжениях внутри T они дают диагональные матрицы, у которых по диагонали стоят числа $\{1,\alpha,\alpha^2\}$. Матрицы $A\cdot B, A^2\cdot B\in M_1$ имеют собственные числа $\{1,\alpha,\alpha^2\}$, следовательно при сопряжении в тор T они приводят к таким же матрицам, как и A, A^2 . Аналогично обстоит дело с матрицами $A\cdot B^2$ и $A^2\cdot B^2$. Итак, множество G_T/H состоит из диагональных матриц с числами $1,\alpha,\alpha^2$ на диагонали, то есть удовлетворяет условиям Леммы 23.

Теорема доказана.

А Функциональная независимость базиса инвариантных полиномов в регулярных точках.

Во всех обозначениях этого параграфа мы следуем [17]. Пусть V-n-мерное векторное пространство над ${\bf R}$, рассмотрим конечную группу G, порожденную отражениями относительно каких-то гиперплоскостей в V. Пусть S-алгебра полиномов на V (мы подразумеваем выбранным базис в V). Группа G действует на S стандартным образом: $g(P)(x) = P(g^{-1}(x)), P \in S, g \in G$. Будем называть вектор $x \in V$ сингулярным, если найдется $g \in G$ такой, что g(x) = x. В противном случае, назовем x регулярным.

Обозначим через J **R**-алгебру инвариантных полиномов в S, то есть таких полиномов P, что $g(P)=g, \forall g\in G.$ В [17] доказано следующая

Теорема (А).

B вышеописанных условиях, алгебра J порождена n алгебраически независимыми однородными полиномами I_1,\ldots,I_n и единицей.

Цель параграфа — уточнить этот результат, а именно, показать, что верна

Теорема.

В условиях Теоремы (A), полиномы I_1, \ldots, I_n функционально независимы как функции на V в любой регулярной точке $x \in V$.

Прежде чем перейти к доказательству этой теоремы, приведем еще один результат из [17], который нам понадобится. Сначала несколько определений. Если A — градуированное подпространство, то определим последова-

тельность Пуанкаре, зависящую от переменной t как полином

$$P_t(A) = \sum_{i \ge 0} \dim(A^i) \cdot t^i.$$

Пусть F — идеал в S, порожденный однородными полиномами положительных степеней, лежащими в J. Тогда G действует на факторпространстве S/F.

Теорема (В). ([17])

Пусть степени образующих полиномов I_1, \ldots, I_n из Теоремы (A) равны, соответственно, m_1, \ldots, m_n . Тогда

$$P_t(S/F) = \prod_{i=1}^n (1 + t + \dots + t^{m_i - 1}).$$

Произведение чисел m_i равно порядку G и размерности S/F. Представление G в S/F эквивалентно регулярному представлению.

Теперь можно перейти к доказательству нашей Теоремы.

Доказательство.

Пусть g_1,\ldots,g_l — отражения, порождающие группу G. Обозначим через θ_i одномерный многочлен такой, что g_i является отражением в гиперплоскости $\theta_i(x)=0$. Положим, теперь, что $\{\pm\theta_1,\pm\theta_2,\ldots,\pm\theta_k\}=\{g(\theta_i)|g\in G,i=1,2,\ldots,n\}$. Другими словами, θ_1,\ldots,θ_k — это 1-мерные многочлены, задающие все гиперплоскости, отражения относительно которых содержатся в G (не только базисные). Пусть $g_1,\ldots g_k\in G$ — отражения в гиперплоскостях θ_1,\ldots,θ_k . Обозначим $\theta=\theta_1\cdot\theta_2\cdot\ldots\cdot\theta_k$.

Рассмотрим следующий полином

$$I'(x) = \det \begin{pmatrix} \frac{\partial I_1}{\partial x_1}(x) & \frac{\partial I_1}{\partial x_2}(x) & \dots & \frac{\partial I_1}{\partial x_n}(x) \\ \frac{\partial I_2}{\partial x_1}(x) & \frac{\partial I_2}{\partial x_2}(x) & \dots & \frac{\partial I_2}{\partial x_n}(x) \\ \dots & \dots & \dots & \dots \\ \frac{\partial I_n}{\partial x_1}(x) & \frac{\partial I_n}{\partial x_2}(x) & \dots & \frac{\partial I_n}{\partial x_n}(x) \end{pmatrix}.$$

Функциональная зависимость полиномов I_1,\ldots,I_n в точке x равносильна тому, что I'(x)=0. Легко посчитать, что $deg(I')=\sum_{i=1}^n m_i-n$. Далее, нетрудно заметить, что при отражении в любой гиперплоскости $\theta_i=0,i=1,\ldots,k$ полином I' меняет знак. Следовательно, I' обращается в нуль на каждой гиперплоскости $\theta_i=0$. В силу одномерности полиномов θ_i заключаем, что I' делится на $\theta_i,\ i=1,\ldots,k$, то есть $I'(x)=\theta(x)\cdot H(x)$. Для доказательства теоремы достаточно показать, что $k=deg(\theta)\geq \sum_{i=1}^n m_i-n$. Тогда будет следовать, что H=const и I' обращается в нуль в точности на сингулярных точках.

Пусть $S'=\{P\in S|\deg(P)=\sum_{i=1}^n m_i-n\},\ F'=S'\cap F.$ По Теореме (В) $\dim(S'/F')=1.$ Легко видеть, что F' инвариантно относительно действия G, поэтому существует G-инвариантное одномерное подпространство U в S', такое, что $S'=F'\oplus U$ (здесь прямая сумма берется относительно

некоторого инвариантного скалярного произведения на S'). Следовательно, найдется полином $P \in U$, такой, что для всех $g \in G$ имеем $g(P) = \pm P$. Допустим, что для $i = 1, \ldots, r$ $g_i(P) = -P$, и для $j = r+1, \ldots, k$ $g_j(P) = P$. Так как $g_i(P) = -P$, то P делится на θ_i . Значит, $P = \theta_1 \cdot \theta_2 \cdot \ldots \cdot \theta_r \cdot L$, для некоторого полинома L.

Пусть $i=1,\ldots,k,\ j=1,\ldots,r$, возьмем $x\in V$. Тогда отражение в плоскости $g_i(\theta_j)$ задается как $x\mapsto g_ig_jg_i^{-1}(x)$. Но $g_ig_jg_i^{-1}(P)=-P$, поэтому $g_i(\theta_j)$ лежит среди $\pm\theta_1,\ldots,\pm\theta_r$.

Йусть, теперь, $i=1,\ldots,r$. Тогда $-\theta_1\ldots\theta_r\cdot L=-P=g_i(P)=-\theta_1\ldots\theta_r\cdot g_i(L)$ (минус в последнем равенстве возникает потому, что $g_i(\theta_i)=-\theta_i$). Следовательно, $g_i(L)=L$ для всех $i=1,\ldots,r$. Если же $i=r+1,\ldots,k$, то аналогичным образом, $\theta_1\ldots\theta_r\cdot L=P=g_i(P)=\theta_1\ldots\theta_r\cdot g_i(L)$, то есть $g_i(L)=L$.

Итак, для всех i=1,...k $g_i(L)=L$, следовательно, $L\in J$. Но P- ненулевой полином, то есть P не лежит в F'; поэтому $\deg(L)=0$ и $\sum_{i=1}^n m_i-n=\deg(P)=r\leq k$.

Теорема доказана.

Список литературы

- [1] Berger M. Les variétés Riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). 1961. V. 15. P. 179–246.
- [2] B. Wilking, The normal homogeneous space $(SU(3) \times SO(3))/U^*(2)$ has positive sectional curvature, Proc. Amer. Math. Soc., to appear.
- [3] Wallach N. R. Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. 1972. V. 96. 277–295.
- [4] Aloff S., Wallach N. R. An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 1975. V. 81. P. 93–97.
- [5] Berard Bergery L. Les variétés Riemanniennes homogènes simplement connexes de dimension impair à courbure strictement positive, J. Pure Math. Appl. 1976. V. 55. P. 47–68.
- [6] Kreck M., Stolz S. Some nondiffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature, J. Differential Geom. 1991. V. 33, N 2. P. 465–486.
- [7] Eschenburg J.-H. New examples of manifolds with strictly positive curvature, Invent. Math. 1982. V. 66. P. 469–480.
- [8] Eschenburg J.-H. Inhomogeneous spaces of positive curvature , Differential Geom. Appl. 1992. V. 2, N 2. P. 123–132.

- [9] D. Gromoll and W.T. Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. **100** (1974), 401–406.
- [10] T. Püttmann, Optimal pinching constants of odd dimensional homogeneous spaces, Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften.
- [11] E. Heintze, The curvature of $SU(5)/(Sp(2)\times S^1)$, Invent. Math. 13 (1971), 205-212.
- [12] И.А. Тайманов, О вполне геодезических вложениях 7-мерных многообразий в 13-мерные многообразия положительной секционной кривизны, Математический сборник, 187 (1996), 121 – 136.
- [13] H.-M. Huang, Some remarks on the pinching problem, Bull. Inst. Math. Acad. Sin. 9 (1981), 321 340.
- [14] O'Neill B. The fundamental equations of a submersion , Michigan Math. J. 1966. V. 13. P. 459–469.
- [15] A. Thimm, Integrable geodesic flows on homogeneous spaces, Ergod. Th. & Dynam. Sys. (1981), 1, 495–517.
- [16] G.P. Paternain and R.J. Spatzier, New examples of manifolds with completely integrable geodesic flows, Advances in Mathematics 108 (1994), 346–366.
- [17] C. Chevalley, Invariants of finite groups, generated by reflections, Amer. J. Math. 77 (1955), 778–782.
- [18] S.-T. Yau, Seminar on Differential Geometry, Ann. Math. Studies, Princeton Univ. Press, Princeton, NJ, 1982.
- [19] K. Shankar, On the fundamental groups of positively curved manifolds, J. of Differential Geometry, **49** (1998), 179 182.
- [20] Milnor J. Morse Theory. Princeton: Princeton Univ. Press, 1963. (Ann. of Math. Stud; 51.)
- [21] Borel A. Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts , Ann. of Math. (2). 1953. V. 57. P. 115–207.
- [22] Дж. Адамс, Лекции по группам Ли, Москва "Наука 1979.

Работы автора по теме диссертации

- [23] Я.В. Базайкин, Об одном семействе 13-мерных замкнутых римановых многообразий положительной кривизны, Сибирский математический журнал, 37(1996), 1219-1237.
- [24] Я.В. Базайкин, Многообразие положительной секционной кривизны с фундаментальной группой $\mathbf{Z}_3 \oplus \mathbf{Z}_3$, Сибирский математический журнал.
- [25] Я.В. Базайкин, Двойные частные групп Ли с интегрируемым геодезическим потоком,