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1. Introduction. A surface in the 3-dimensional Euclidean space
constituted by a finite set of polygons is said to be a polyhe-

dron. The polygons are referred to as faces of the polyhedron

and the sides of the polygons are referred to as its edges . We

suppose that exactly two faces are adjacent to every edge.

Shape and size of the faces will be considered to be unchange-
able, i. e. the faces will be considered as made from solid
plates. On the contrary, suppose we can vary dihedral angles
of our polyhedron. We'll call our polyhedron a flezible one, if
it is possible to change dihedral angles continuously in such a
way as to change the spatial shape of the polyhedron.

2. Survey of evolution of theory of flexible polyhedrons. One
can formulate the Definition 10 from Book XI of Euclid’s Ele-
ments [9] as follows: “Equal and similar solid figures are those
contained by similar planes equal in multitude and magni-
tude”. Some authors use this fact to prove that Euclid have
passed through the notion of flexible polyhedron.

The first rigorous result on flexible polyhedrons was obtained
by A. L. Cauchy in 1813. In particular he has proved that
each convex polyhedron is not a flexible one [6]. Answering
the question whether non convex polyhedron can be flexible, in
1897 R. Bricard have constructed examples of flexible octahe-
drons (i. e. polyhedrons with 6 vertexes, 12 edges and 8 faces)
[5]. All of them have points of self-intersection. The problem
on existence of a flexible polyhedron without self-intersection
remains open for a long time even though it was interesting for
such outstanding mathematicians as Henri Lebesgue [12] and
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A. D. Aleksandrov [1]. Many mathematicians were sure that
it has the negative answer. Nevertheless in 1976 R. Connelly
[7], [8] have obtained the positive answer. Soon K. Steffen
has simplified Connelly’s example and constructed a flexible
polyhedron without self-intersection with only 9 vertexes (only
one more then the cube has) (see [3]). In 1994 I. Maksimov
has announced that the number 9 can not be replaced by any
smaller one [13].

3. Applications of flexible polyhedrons. In the paper [9] R. Con-
nelly discusses applications of flexible polyhedrons to building
mechanics. It is based on the intuitively clear reason that each
construction made from prefabricated ferro-concrete items can
be regarded as polyhedron with rigid items-faces and change-
able dihedral angles at joints-edges.

In the articles [4] and [10] applications of flexible octahedrons
to stereo chemistry are discussed. The idea is that the carbon
skeleton of the cyclohexane molecule may be represented by a
spatial hexagon with prescribed sides and angles. Replacing
each pair of sides with common vertex by the rigid trian-
gle with the same vertexes we obtain an octahedron. Thus
the problem weather the spatial hexagon is rigid or flexible is
equivalent to the problem weather the octahedron is flexible.

4. Open problems. By far the main goal is to obtain a criterion
for flexibility of polyhedrons, i. e. to obtain a rule which
will allows us to conclude after some finite set of operations
involving finite number of sizes of our polyhedron whether it
is flexible or not. As there are no direct approaches to this
problem, we’ll discuss the following partial problems:
e Does there exist flexible polyhedron in many dimensional
space?
e Is the set of flexible polyhedreons semialgebraic one in
the space of all polyhedrons of a prescribed combinato-
rial type, i. e. is it defined by a finite set of polynomial
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“equations and inequalities?

e Is it true that each flexible polyhedron preserves volume
during the process of bending [9]? (The positive answer
for a class of combinatorial one-parameter flexible poly-
hedrons was announced by I. Kh. Sabitov [14] in 1994.
A flexible polyhedron is said to be combinatorial one-
parameter if it fails to be flexible after we fix spatial dis-
tance between two its vertexes that were not joined by
an edge.)

e Which functions except volume can be preserved by all

flexible polyhedrons? Can the mean curvature play this
role [2]?

Obviously, studying these problems it is useful to have exam-
ples of flexible polyhedrons. Connelly’s and Steffen’s polyhe-
drons are very elegant, but they are based on the Bricard’s
octahedrons. For better understanding of the problems it is
desirable to have examples based on other ideas.

5. Formulation of the result. In the present report we’ll ex-
plain a new example of a flexible polyhedron (with self-in-
tersection), that is a piecewise linear realization (but not an
immersion) of torus. The Bricard’s octahedrons are not used
in the construction. Flexibility of the polyhedron is deduced
from the purely analytical reason — from the fact that ev-
ery rational function can be expanded into a sum of proper
fractions. We shall verify that, under some relations between
parameters of the construction, the polyhedron is flexible. It
turns out that precisely with these values of parameters our
polyhedron preserves volume and mean curvature during a
bending. For more details see [2].
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