
Closures of finite permutation groups
(Lectures 1,2)

Ilia Ponomarenkoa and Andrey Vasil’evb

a St.Petersburg Department Steklov Mathematical Institute, St.Petersburg, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia

The G2A2-Summer School, Novosibirsk
03.08-16.08.2025

1 / 23



Graph Isomorphism Problem: statement

The graphs X on Ω and X′ on Ω′ are said to be isomorphic if there
is a bijection f : Ω → Ω′, the isomorphism from X to X′, such that

(∗) α ∼ β if and only if αf ∼ βf .

The set of all such f is denoted by Iso(X,X′). When X = X′, the
group Aut(X) = Iso(X,X) is called the automorphism group of X.

The Graph Isomorphism Problem (ISO): given two graphs X
and X′, test whether Iso(X,X′) ̸= ∅.

To check whether a bijection f : Ω → Ω′ belongs to the set
Iso(X,X′), one needs to verify |Ω|2 conditions (∗). Thus, ISO
belongs to the class NP.

It is still unknown whether the isomorphism of any two graphs of
order n can be tested in a polynomial-time in n.
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Graph Isomorphism Problem: results

1 The exhaustive search algorithm runs in time 2cn log n.

2 A ”naive classification” algorithm tests isomorphism of a
random graphs in time cn2 [Babai et al, 1980].

3 The best (at the moment) algorithm tests isomorphism of
arbitrary graphs in time n(log n)

c
[Babai, 2019].

4 Natural combinatorial algorithms tests graph isomorphism not
faster than 2cn log n [Cai at al, 1992].

5 Isomorphism of graphs of Hadwiger number (max degree, ...)
d can be tested in time n(log d)

c
[Grohe at al, 2020].

6 There are algorithms (Nauty and Traces among the others)
that work efficient in practice [McKay–Piperno, 2014].
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Graph Isomorphism Problem and permutation groups

A (computational) problem P1 is polynomial-time reduced to a
problem P2, if P1 can be solved by a polynomial-time algorithm
using as an elementary step an “oracle” giving a solution of P2 for
a given input. We say that P1 and P2 are polynomially equivalent
if each of them is polynomial-time reduced to the other.

Exercise 1. The Graph Isomorpism Problem for graphs, connected
graphs, regular graphs, bipartite graphs, graphs without triangles,
colored graphs are pairwise polynomially equivalent.

Theorem [Mathon, 1979]. The following problems for graphs X
and X′ are polynomially equivalent:

1 find a bijection in Iso(X,X′) or a certificate of Iso(X,X′) = ∅,

2 find a generator set of Aut(X),

3 find the orbits of Aut(X).
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The Weisfeiler-Leman algorithm: general
A main goal is given a graph X, construct the orbits of Aut(X).

The idea is: for k ∈ N, construct a partition of the Cartesian power
Ωk , and project it to one coordinate. This is done by the k-dim
Weisfeiler-Leman algorithm (k-dim WL); see [Cai at al, 1992].

Remarks

1-dim WL is known as the “naive classification” of vertices;

2-dim WL is the classical Weisfeiler-Leman algorithm;

the k-dim WL for large k is used in the Babai quasipolynomial
algorithm [Babai, 2015].

Notation. For any point α ∈ Ω, any tuple x = (x1, . . . , xk) ∈∈ Ωk ,
and an index i ∈ {1, . . . , k}, we define an k-tuple

xi←α = (x1, . . . , xi−1, α, xi+1, . . . , xk),

The algorithm below consistently refines a coloring c0 of Ωk to
obtain a “stable” coloring, which is no longer refined.
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The Weisfeiler-Leman algorithm: description

The k-dim WL color refinement (k ≥ 2)

Input: a coloring c0 of Ωk .
Output: a “stable” coloring c of Ωk .

Step 1. Set m = 0.

Step 2. For each x ∈ Ωk , find a multiset s(x) = {sα(x) : α ∈ Ω}
with

sα(x) = (cm(x1←α), . . . , cm(xk←α)).

Step 3. Find a new coloring cm+1 of Ωk such that

cm+1(x) < cm+1(x
′) ⇔ cm(x) < cm(x

′) or s(x) < s(x ′).

Step 4. If |cm| ≠ |cm+1|, then m := m + 1 and go to Step 2, else
output c = cm.

The algorithms runs in time O(k2n2k+1 log n), where n = |Ω|.
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The k-dim WL and graph isomorphism: graph colorings

Let k ≥ 2, X be a graph on Ω, and c0 = c0(X) be the initial
coloring of the k-tuples x ∈ Ωk : c0(x) = c0(y) if and only if

xi ∼ xj (resp., xi = xj) ⇔ yi ∼ yj (resp., yi = yj), 1 ≤ i , j ≤ k ,

where ∼ is the adjacency relation of X.

The initial coloring is invariant:

f ∈ Iso(X,X′) ⇒ c0(x) = c ′0(x
′) for all x ,

where c ′0 = c0(X
′) and x ′ = (x f1 , . . . , x

f
k ).

Let c = c(X) be the (invariant!) coloring constructed by the k-dim
WL applied to c0 = c0(X). If Iso(X,X

′) ̸= ∅ and c ′ = c(X′), then

Im(c) = Im(c ′) and |c−1(i)| = |c ′−1(i)| for any color i ∈ Im(c).
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The k-dim WL and graph isomorphism: algorithm

Testing isomorphism of X and X′ by the k-dim WL

Step 1. Construct c0 = c0(X) and c ′0 = c0(X
′).

Step 2. Construct c = c(X) and c ′ = c(X′) by the k-dim WL.

Step 3. Declare Iso(X,X′) ̸= ∅ iff conditions (7) are satisfied.

In many cases, the above procedure correctly tests the
isomorphism of X and X′; for example, if the graph X is planar and
k = 3 (see, [Kiefer at al, 2017]), or k ≥ n.

However, there is a constant ε > 0 and infinitely many pairs of
graphs X and X′ such that the above procedure is not correct for
all k ≤ εn [Cai at al, 1992].
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The k-closure problem: preparation

Let k ≥ 1 be an integer and G ≤ Sym(Ω). It has a natural action
on the set Ωk of all k-tuples of Ω, namely:

(x1, . . . , xk)
g = (xg1 , . . . , x

g
k ), g ∈ G .

We extend the action of G to all k-ary relations X ⊆ Ωk by setting
X g = {xg : x ∈ X} for all g ∈ G . The relation X is invariant with
respect to G , or G-invariant, if X g = X for all g ∈ G .

The set of all G -invariant k-ary relations is denoted by Relk(G ).
Clearly, it is closed with respect to the union, intersection, etc.

Exercise 2. Let X be a graph and WLk(X) the partition of Ωk

into the color classes of the coloring c(X). Then
1 every class of WLk(X) is an Aut(X)-invariant relation;
2 the group Aut(WLk(X)) of all g ∈ Sym(Ω) such that X g = X

for all X ∈ WLk(X) coincides with the group Aut(X).
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The k-closure problem: statement

A set xG = {xg : g ∈ G} with x ∈ Ωk is called a k-orbit of G , the
set of all of them denote by Orbk(G ).

Clearly, Orbk(G ) ⊆ Relk(G ), each G -invariant relation is a union
of k-orbits, and the k-orbits form a partition of Ωk .

The partitions WLk(X) and Orbk(G ) are examples of k-ary
coherent configurations in the sense of [Babai, 2015].

The k-closure G (k) = Aut(Orbk(G )) of the group G is the group
of all g ∈ Sym(Ω) such that X g = X for all X ∈ Orbk(G ).

If k = 2 and WL2(X) = Orb2(G ) for some G ≤ Sym(Ω), then
Aut(X) = G (k). This motivates the computation problem.

The k-closure problem: given a permutation group G , find the
k-closure G (k) of G .
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The Babai–Luks algorithm: the relative k-closure
The problem below was implicit in solving isomorphism problems
for vertex-colored graphs with small color classes [Babai, 1979],
graphs of bounded degree [Luks, 1982], tournaments [Baba–Luks,
1983], arbitrary graphs in quasipolynomial time [Babai, 2019].

The relative k-closure problem: given groups H,G ≤ Sym(Ω),
find the intersection G (k) ∩ H.

For H = Sym(Ω), it is just the k-closure problem.

Composition width cw(H) of a group H is the minimal positive
integer d such that every nonabelian composition factor of the
group H can be embedded in Sym(d).

Theorem [Babai–Luks, 1983]

For a fixed k, there exists a function f = fk(x) such that the
relative closure of G with respect to H can be found in time nf (d),
where n = |Ω| and d = cw(H).
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The Babai–Luks algorithm: reductions
1. We may assume that k = 1: indeed, replace Ω by Ωk , and G
and H by the permutation groups induced by the componentwise
actions of them on Ωk . Thus we need to find the subgroup

G (1) ∩ H = {h ∈ H : X h = X for all X ∈ Orb1(G )}

of the group H that leaves any orbit of G fixed.

2. To use recursion, given a set ∆ ⊆ Ω and a coset Ug ≤ Sym(∆)
such that ∆U = ∆, put

C∆(Ug) = {h ∈ Ug : (X ∩∆)h = X ∩∆ for all X ∈ Orb(G )},

where Orb(G ) = Orb1(G ). It is assumed that ∆ is U-invariant.

3. Our goal is to present algorithm constructing the coset C∆(Ug)
for any given ∆, U, and g . This would solve our problem, because

G (1) ∩ H = CΩ(H).
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The Babai–Luks algorithm: description

Step 1. If U is primitive, then find C∆(Ug) by the exaustive
search in the coset Ug .

Step 2. If U is intransitive and Γ ∈ Orb(U), then recursively find
C := CΓ(Ug) and output C∆\Γ(C ).

Step 3. Find an imprimitivity system e for U, such that Ū := U∆̄

is primitive, where ∆̄ = ∆/e. Put ḡ := g ∆̄.

Step 3.1. For each h̄ ∈ Ūḡ , choose h ∈ Ug such that h∆̄ = h̄.

Step 3.2. Let U0 = {u0 ∈ U : Γu0 = Γ for all Γ ∈ ∆̄}.

Step 3.3. For each h̄ ∈ Ū, find recursively Ch̄ = C∆(U0h).

Step 3.4. Output the union of Ch̄, h̄ ∈ Ū.
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The Babai–Luks algorithm: analysis

Correctness. Induction on the number of recursive calls. Take
into account that at Step 3, the group U is a disjoint union of the
cosets U0h, where h̄ runs over Ū.

Running time. The proof is based on the following statement.

Theorem [Babai–Cameron–Palfy, 1982]

The order of a primitive group of degree n and composition width
d is at most nf0(d) for some function f0 = f0(x).

It follows that Step 1 runs in time mf0(d), whereas at Step 3, we
have |Ū| ≤ mf0(d), where m = |∆| and m̄ = |∆̄|.

The recursion divides the problem into
– two subproblems of sizes |Γ| and |∆ \ Γ| (Step 2).
– m̄f0(d) · |e| subproblems of size m

|e| (Step 3.3).

Thus, by induction, the running time is mf (d) for a suitable f .
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A method of invariant relations

In 1969, Helmut Wielandt wrote in [Wielandt, 1969b]:

There are three major tools that have been developed for the
purpose of studying the actions of a group G on a set Ω. The first
of these is the well known theory of linear representations over a
field.. . . The second method is due to Schur, and dates from 1933:
this is the method of Schur rings.. . . There is one more method, of
rather recent origin. This is the study of those relations between
points of Ω that remain invariant under the action of G. By
studying these invariant relations, we hope to get information on
the action of G .

In other words, what can be said about the group G from studying
the sets Relk(G ) and Orbk(G ) for small (or specific, or all k)?
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k-equivalence of permutation groups

Two permutation groups G ,H ≤ Sym(Ω) are called k-equivalent,
G ≈k H, if they have the same k-orbits, i.e. Orbk(G ) = Orbk(H).

Obviously,
G ≈k H ⇔ Relk(G ) = Relk(H). (1)

One can see that if G ≈k H and k ≥ n = |Ω|, then G = H. On
the other hand, all k-transitive groups on Ω are k-equivalent (in
particular, any two transitive groups are 1-equivalent). Moreover,
there is a number of 2-equivalent groups which are not equal.

Lemma

Let k ≥ 2 and G ≈k H. Then

i G ≈k−1 H,

ii G and H have the same orbits and systems of imprimitivity,

iii Gα ≈k−1 Hα for all α ∈ Ω.
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The k-closure

Let k ≥ 1 and G ≤ Sym(Ω). The class of all groups k-equivalent
to G contains the largest element, namely, G (k) := Aut(Orbk(G ));
it is called the k-closure of G .

We have

G ≈k G (k) and G ≈k H ⇒ G (k) = H(k). (2)

Note that taking the k-closure is indeed a closure operator, namely,

G ≤ G (k), G (k) = (G (k))(k), G ≤ H ⇒ G (k) ≤ H(k), (3)

Using these statements, one can easily verify that

G (1) ≥ G (2) ≥ · · · ≥ G (k) = G (k+1) = · · · = G (4)

for some k < |Ω|. In this sense, the k-closure can be considered as
a natural approximation of G .

Exercise 3. For any G : G (1) = Sym(Ω1)× · · · × Sym(Ωm), where
Ω1, . . .× Ωm are the orbits of G .
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Closure argument and closed groups

Lemma (The closure argument, [Wielandt, 1969a]

Let G ≤ Sym(Ω), f ∈ Sym(Ω), and k ∈ N. Then f ∈ G (k) if and
only if for every x ∈ Ωk there is g ∈ G such that x f = xg .

Proof. Set Ḡ = G (k). If f ∈ Ḡ and x ∈ Ωk , then x Ḡ = xG .
Hence, x f ∈ xG . Conversely, assume that for every x ∈ Ωk there is
g ∈ G such that x f = xg . Then X f = X for all X ∈ Orbk(G ).
Therefore, f ∈ Aut(Orbk(G )) = Ḡ .

A permutation group G is said to be k-closed if G = G (k). Clearly,
the 1-closed groups are exactly the direct products of symmetric
groups and the 2-closed groups are the automorphism groups of
arc-colored graphs. In general, G is k-closed iff G = Aut(Relk(G )).
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Base of permutation group

A set ∆ ⊆ Ω is called the base of a permutation group
G ≤ Sym(Ω) if the pointwise stabilizer of ∆ in G is trivial.

Any subset of Ω that contains a base of G , is also the base of G .

The minimum cardinality of a base is called the base number of G
and is denoted by b(G ).

Clearly, 0 ≤ b(G ) ≤ n − 1 and the bounds attain for the identity
and symmetric group, respectively.

Let X ∈ Orbk(G ), x = (x1, . . . , xk) ∈ X , and ∆ = {x1, . . . , xk} is a
base of G . Then the action of G on X is regular and faithful: if
xg = x for some g ∈ G , then g ∈ Gx1,...,xk = 1. Thus,

|G | = |X | ≤ nb(G),

and the equality attains for any regular group.
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The Wielandt criterion for the k-closedeness

Theorem [Wielandt, 1969a] A permutation group G is
(b + 1)-closed for any b ≥ b(G ).

Proof. Let k = b + 1. To verify that G (k) ≤ G , take h ∈ G (k).
Let {x1, . . . , xb} be a base of G . By the closure argument,

(x1, . . . , xb)
h = (x1, . . . , xb)

g . (5)

for some g ∈ G , and given α ∈ Ω,

(x1, . . . , xb, α)
h = (x1, . . . , xb, α)

gα (6)

for some gα ∈ G . From (5) and (6) it follows that

(x1, . . . , xb)
g = (x1, . . . , xb)

h = (x1, . . . , xb)
gα .

So gg−1α ∈ Gx1,...,xb = 1 (since {x1, . . . , xb} is a base of G ). Hence
g = gα, and by (6), αh = αg for all α ∈ Ω. Thus, h = g ∈ G .
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Some corollaries of the Wielandt criterion

Corollary 1. Any regular group is 2-closed.

Proof. If G is a regular group of degree > 1, then b(G ) = 1 and
we are done by the Wielandt criterion.

Corollary 2. Let G and H be permutation groups of the same
degree n and G (n) = H(n). Then G = H.

Proof. Clearly, b(G ) ≤ n − 1 and b(H) ≤ n − 1. From the
Wielandt criterion, it follows that G and H are n-closed. Thus
G = G (n) = H(n) = H.

Exercise 4. Prove that

1 the automorphism group of any (finite) group is 3-closed,

2 if G is abelian, then b(G ) ≤ |Orb(G )| and the bound is sharp.
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