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Closures of transitive abelian groups

Theorem. A transitive abelian group is k-closed for every k ≥ 2.

Proof. Let G ≤ Sym(Ω) be abelian and transitive on Ω.
By Wielandt’s criterion it suffices to prove that G is regular
(regular =⇒ Gx = 1 for some x ∈ Ω =⇒ b(G ) = 1).
Let x , y be arbitrary elements of Ω.
G is transitive =⇒ there is g ∈ G such that y = xg .
It follows that Gy = g−1Gxg , because yh = y ⇔ (xg )h = xg .
G is abelian =⇒ Gy = Gx .
Since x , y are arbitrary, it follows that Gx = 1, as required.

Example (Churikov). G = 〈(1, 2)(3, 4), (12)(5, 6)〉 ' C2 × C2

G has three orbits {1, 2}, {3, 4}, {5, 6} and
G < G (2) = 〈(1, 2), (3, 4), (5, 6)〉 ' C2 × C2 × C2.

Exercise 1. a) Check the statements in the example;
b) For every k , find an (abelian) group G which is not k-closed.
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Closure of a direct product

Theorem. Let G1 ≤ Sym(∆1), G2 ≤ Sym(∆2), and let G1 × G2

be a permutation group acting on the disjoint union ∆1 ∪∆2.
Then for each k ≥ 1,

(G1 × G2)(k) = G
(k)
1 × G

(k)
2 . (1)

Proof. We prove only the ≤-part. Let G = G1×G2 and H = G (k).
Since G ≈k H, they have the same orbits, in particular,
H ≤ Sym(∆1)× Sym(∆2). Thus, h = (h1, h2), hi ∈ Sym(∆i ).

Recall the closure argument from Lecture 2:
h ∈ H iff for any x ∈ Ωk there is g = (g1, g2) ∈ G s.t. xh = xg .

Assume that x = (x1, . . . , xk ), where x1, . . . , xk ∈ ∆1. Then
(x1, . . . , xk )h1 = xh = xg = (x1, . . . , xk )g1 . Applying the closure

argument once again, we have h1 ∈ G
(k)
1 and, similarly, h2 ∈ G

(k)
2 .

Exercise 2. Prove the ≥-part.
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Closures of abelian groups

Theorem. Let G ≤ Sym(Ω), Ω = ∆1 ∪ . . . ∪∆t , ∆i ∈ Orb(G ),
and Gi = G∆i transitive constituents of G . If G is abelian, then
G (k) ≤ G1 × · · · ×Gt , in particular, G (k) is abelian for every k ≥ 2.

Proof. G ≤ G1 × . . .× Gt =⇒ G (k) ≤ (G1 × . . .× Gt)(k).

By the previous theorem, G (k) ≤ G
(k)
1 × · · · × G

(k)
t .

Gi ≤ Sym(∆i ) are transitive and abelian =⇒ Gi = G
(k)
i for all i .

Example. G = 〈(1, 2) · · · (2t − 1, 2t)〉 = G (2) 6=
6= 〈(1, 2)〉 × · · · × 〈(2t − 1, 2t)〉 = G1 × · · · × Gt .

The explicit criterion for abelian group to be k-closed is unknown,
see [Churikov–Praeger, 2021] and [Churikov–Ponom., 2022].

Theorem. For a fixed k , the k-closure of an abelian group
G ≤ Sym(Ω) can be found in time polynomial in n, where n = |Ω|.

Proof. Apply the Babai-Luks algorithm for H = G1 × · · · × Gt .
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Systems of blocks

Let G ≤ Sym(Ω) and ∆ ⊆ Ω.

G(∆) = {x ∈ G | δx = δ for all δ ∈ ∆} is pointwise stabilizer

G{∆} = {x ∈ G | ∆x = ∆} is setwise stabilizer of ∆ in G .

A subset ∆ of Ω is called a block for G if for each x ∈ G either
∆x = ∆ or ∆x ∩∆ = ∅.

Every one-element subset of Ω and Ω itself are blocks for G , they
are called trivial blocks. A block called minimal, if it is nontrivial
and does not include any other nontrivial block.

Lemma. Let G ≤ Sym(Ω) be transitive, ∆ a block for G . Then

1 ∆x is a block for every x ∈ G .

2 the blocks from Σ = {∆x | x ∈ G} form a partition of Ω
called the system of blocks for G , containing ∆.

3 |Σ| = |G : G{∆}| and |∆| = |G{∆} : Gα|, where α ∈ ∆.
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Inclusion to a wreath product
Let G ≤ Sym(Ω) be transitive, Σ a system of blocks for G , ∆ ∈ Σ.

Define ρ : G{∆} → Sym(∆) by x 7→ x∆ with δx∆
:= δx . Then

ρ is a homomorphism, ker ρ = G(∆), G∆ := (G{∆})
ρ ' G{∆}/G(∆).

Define σ : G → Sym(Σ) by x 7→ xΣ with ∆xΣ
:= ∆x . Then

σ is a homomorphism, GΣ := Gσ ' G/GΣ, where

GΣ = ker σ =
⋂

∆∈Σ

G{∆} ' G∆ × · · · × G∆︸ ︷︷ ︸
|Σ| times

.

Theorem. There is a bijection between Ω to ∆× Σ which induces
an embedding of G into the (imprimitive) wreath product G∆ o GΣ

of G∆ and GΣ, that is the semidirect product GΣ o GΣ.

Here the action of GΣ on GΣ = G∆ × · · · × G∆ is given by
(x1, . . . , xs)g = (x1σ(g−1), . . . , xsσ(g−1)), where s = |Σ|.

6 / 20



Primitivity
Let G ≤ Sym(Ω) be transitive, |Ω| ≥ 2. A group G is imprimitive
if it has a nontrivial system of blocks, and primitive otherwise.

Corollary. Every transitive permutation group G is permutation
isomorphic to a subgroup of an iterated wreath product
G1 o · · · o Gt , where Gi = G∆i are primitive groups isomorphic to
some sections of a group G .

Recall that H is a section of an (abstract) group G if there is a
subgroups K and L of G such that K E L and L/K ' H.

Lemma (Criterion of primitivity). A transitive permutation
group G is primitive if and only if a point stabilizer is a maximal
subgroup of G .

Corollary. Every primitive p-group is a regular group of order p.

Exercise 3. Prove the lemma and its corollary.
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Closure of an imprimitive wreath product

[Kalužnin–Klin, 1976]: Let G ≤ Sym(Ω) be transitive group with
a nontrivial system of blocks Σ and ∆ ∈ Σ. Then for each k ≥ 2,

G (k) ≤ (G∆ o GΣ)(k) = (G∆)(k) o (GΣ)(k). (2)

Proof. The inclusion follows from the above arguments. The
equality can be derived applying the closure argument.

Corollary 1. For k ≥ 2, the k-closure of a transitive group G can
be embedded into an iterated wreath product of primitive sections
of G .

Corollary 2. For every prime p and integer k ≥ 2, the k-closure of
a p-group is a p-group.
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Closures of nilpotent groups

Theorem. Let G1 ≤ Sym(∆1), G2 ≤ Sym(∆2), and let G1 × G2

be a permutation group acting on the Cartesian product ∆1 ×∆2.
Then for each k ≥ 2,

(G1 × G2)(k) = G
(k)
1 × G

(k)
2 . (3)

Recall that a finite group G is nilpotent ⇐⇒ G is the direct
product of its Sylow subgroups.

[Churikov, 2021]: Let G ≤ Sym(Ω) be a nilpotent group. Then
for each k ≥ 2, G (k) is the direct product of the k-closures of the
Sylow subgroups of G , in particular, G (k) is nilpotent.

[Ponom., 1994]: For a fixed k , the k-closure of an nilpotent group
G ≤ Sym(Ω) can be found in time polynomial in n, where n = |Ω|.
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Solvable groups

A group G is solvable (supersolvable, respectively) if it has a series

G = G0 ≥ G1 ≥ . . . ≥ Gn−1 ≥ Gn = 1,

where Gi E Gi−1 (Gi E G respectively) and Gi−1/Gi is cyclic for
every i = 1, . . . , n.

The Babai-Luks argument works inside solvable groups. The
problem is that there are solvable, supersolvable and even
metacyclic groups such that their 2-closures include large
nonabelian composition factors.

Exercise 4. If G ≤ Sym(Ω) is k-transitive, then G (k) = Sym(Ω).

Example. For a field Fp, where p is a prime,
G = AGL1(p) = {x 7→ ax + b, a ∈ F×p , b, x ∈ F} ' F+ o F× is

2-transitive, so G (2) = Sym(p).
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Closures of groups with restricted composition factors

[O’Brien–Ponom.–V.–Vdovin, 2022]: If G is a solvable group,
then G (k) is solvable for k ≥ 3.

[Ponom.–Skresanov–V., 2025]: If G is an Alt(d)-free group
with d ≥ 25, then G (k) is Alt(d)-free group for k ≥ 4.

(Abstract) group is called Alt(d)-free, d ≥ 5, if it does not contain
section isomorphic to the alternating group of degree d .

Alt(d)-free groups are ‘good enough’ for the Babai–Luks
algorithm, as it follows from

[Babai–Cameron–Palfy, 1982]: The order of a primitive
Alt(d)-free group of degree n is at most nf (d).
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Wreath products in product action
As a direct product of groups can act naturally in two ways,

a wreath product H o L of groups H ≤ Sym(∆) and L ≤ Sym(Σ)

can act not only on ∆× Σ =
⊔
σ∈Σ

∆σ but on ∆Σ =
∏
σ∈Σ

∆σ.

Let H ↑ L denote the permutation group induced by the action of
H o L on ∆Γ, this action is called a product action. As an abstract
group H ↑ L is isomorphic to H |Σ| o L, where H |Σ| acts on ∆Σ

componentwise and L permutes the coordinates.

The complete analog of the Kalužnin–Klin theorem for closures of
imprimitive wreath product does not hold for wreath product in
product action:

Example. (Sym(2) ↑ Alt(3))(2) = Sym(2) ↑ Sym(3) �
� Sym(2) ↑ Alt(3) = Sym(2)(2) ↑ Alt(3)(2).

Particular results for this case: [Praeger–Saxl, 1992],
[Evdokimov-Ponom., 2001], [O’Brien–Ponom.–V.–Vdovin, 2022].
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Closure with respect to partitions

Let Ω[m] be the set of all ordered partitions Π of Ω with |Π| ≤ m.

For G ≤ Sym(Ω), we denote by G [m] the largest permutation group
on Ω having the same orbits as G in its induced action on Ω[m].

Sym(Ω) = G [1] ≥ G [2] ≥ . . . ≥ G [m] ≥ . . . ≥ G [|Ω|] = G .

It is again a closure operator and the closure argument holds.

G [m+1] ≤ G (m) (but not necessarily G [m] ≤ G (m)).

Indeed, given α = (α1, . . . , αm) ∈ Ωm, take Π = (Π1, . . . ,Πm+1),
where Πi = {αi}, i = 1, . . . ,m, and Πm+1 = Ω \ {α1, . . . , αm},
and apply the closure arguments: if f ∈ G [m+1], then there is
g ∈ G with Πg = Πf , so αf = αg and f ∈ G (m), as required.
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Closures of wreath products in product action

[Ponom.–V., 2021]: Let H and L be permutation groups and
k ≥ 2 an integer. Then

(H ↑ L)(k) = H(k) ↑ L[m],

where m = min{mk , d} with mk = |Orbk (H)| and d = deg L.

Corollary. In the same notation, (H ↑ L)(k) ≤ H(k) ↑ L(k), unless
k = 2 and H is 2-transitive.

Exercise 5. Prove the corollary.

Hint: Prove that mk ≥ k + 1 if k ≥ 3 or H(2) 6= Sym(n), and apply
L[k+1] ≤ L(k).
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Groups preserving a product decomposition

A group G ≤ Sym(Ω) preserves a nontrivial product decomposition
if there are ∆ and Σ with |∆| > 1 and |Σ| > 1 and a bijection
between Ω and ∆Σ inducing an embedding of G into a wreath
product G∆ ↑ GΣ, where G∆ ≤ Sym(∆) and GΣ ≤ Sym(Σ).

Note that G∆ and GΣ are sections of G .

A primitive group G is called nonbasic if it preserves some
nontrivial product decomposition, and basic otherwise.

If k ≥ 3 and G ≤ Sym(Ω) is a nonbasic group preserving a product
decomposition Ω = ∆Σ, then G (k) ≤ (G∆)(k) ↑ (GΣ)(k).

Proof. G ≤ G∆ ↑ GΣ =⇒ G (k) ≤ (G∆ ↑ GΣ)(k). For k ≥ 3,
(G∆ ↑ GΣ)(k) ≤ (G∆)(k) ↑ (GΣ)(k).
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Reduction to basic groups

A: If G is a solvable group, then G (k) is solvable for k ≥ 3.

B: If G is an Alt(d)-free group with d ≥ 25, then G (k) is
Alt(d)-free group for k ≥ 4.

The main achievement of the today lecture is that we are ready to
prove the following

Claim. It suffices to prove (A) and (B) for basic groups.
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Complete classes of groups
According to [Wielandt, 1964], a class X of (abstract) groups is
said to be complete if it is closed with respect to taking

subgroups (H ≤ G and G ∈ X =⇒ H ∈ X),

quotients (N E G and G ∈ X =⇒ G/N ∈ X),

extensions (N E G and N,G/N ∈ X =⇒ G ∈ X).

Examples of complete classes:

all (finite) groups,

p-groups,

solvable groups,

Alt(d)-free groups.

Remark. The classes of abelian and nilpotent groups are not
complete, because they are not closed with respect to taking
extensions. But they are closed with respect to taking direct
products.
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Reduction for groups from complete classes

Xn is the class of permutation groups from X of degree at most n.

[Ponom.–V., 2024]: Let X be a complete class and k, n ∈ N.
Then Xn is closed with respect to taking k-closures if and only if
one of the following hold:

(i) Xn contains k-closure of every primitive group in Xn for k ≥ 2

(ii) Xn contains k-closure of every basic group in Xn for k ≥ 3.

Proof. We prove only (ii) by induction on n.

Let ? ∈ {×, o, ↑}, where the signs ×, o, ↑ denote the operations of
direct and wreath product in imprimitive action and product
action, respectively. Suppose that G ∈ Xn. If G is basic, then we
are done. Otherwise G ≤ H ? L for some permutation groups of
degrees strictly less than n. Since X is complete, H, L ∈ X as
sections of G . By induction, H(k), L(k) ∈ X. The results of previous
lectures =⇒ G (k) ≤ (H ? L)(k) ≤ H(k) ? L(k) =⇒ G (k) ∈ Xn.
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