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Reduction for complete classes of groups

A class X of groups is complete if it is closed with respect to
taking subgroups, quotients, and extensions. Classes of the
solvable and Alt(d)-free groups are complete.

Xn is the class of permutation groups from X of degree at most n.

[Ponom.–V., 2024]: Let X be a complete class and k, n ∈ N,
where k ≥ 3. Then Xn is closed with respect to taking k-closures
if and only if Xn contains k-closure of every basic group in Xn.

Permutation groups =⇒ Transitive groups =⇒
=⇒ Primitive groups =⇒ Basic groups

2 / 22



Preliminary lemma

Lemma. Let G ≤ Sym(Ω) and α ∈ Ω.

1 If k ≥ 2 and Gα is (k − 1)-closed, then G is k-closed.

2 If Gα has a faithful regular orbit, then G is 3-closed.

Proof. Let H = G (k). From Lecture 2:

For k ≥ 2, if G ≈k H and α ∈ Ω, then Gα ≈k−1 Hα.

Gα is (k − 1)-closed =⇒ Hα ≤ H
(k−1)
α = G

(k−1)
α = Gα.

Hα ≤ Gα and G ≤ H =⇒ Hα = Gα.

G and H have the same orbits =⇒ αG = αH . Hence

|G | = |αG ||Gα| = |αH ||Hα| = |H| =⇒ G = H proving (1).

(2) follows from (1) or directly from Wielandt’s criterion.
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Solvable groups: outline of the proof

[O’Brien–Ponom.–V.–Vdovin, 2022]: If G is a solvable group,
then G (k) is solvable for k ≥ 3.

Let G be a counterexample of the least possible degree.

Since G (k) ≤ G (3) for k ≥ 3, it suffices to prove that G (3) is
solvable.

By the above, G is basic, i. e. G is primitive and does not
preserve any nontrivial product decomposition of Ω.

Since G is primitive and solvable, G is affine.

Exercise 1. If a permutation group G is primitive and solvable,
then G = V o G0 is semidirect product of a regular normal
elementary abelian p-subgroup V and a point stabilizer G0.
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Affine permutation groups

We say that G = V o G0 ≤ AGLd (p) ≤ Sym(Ω) is affine, if

Ω = V ' (Fp)d is a linear space over a prime field Fp

G0 ≤ GL(V ) = GLd (p)

G acts on V by maps of the form x 7→ ax + b,
where a ∈ G0 ≤ GLd (p), b ∈ V .

By the lemma, it suffices to prove that G0 ≤ GL(V ) is 2-closed.

Sometimes it is convenient to enlarge the field (if possible):

Ω = V is a linear space over a field Fq, |V | = qa = pd .

G = V o G0 ≤ AΓL(V ) = AΓLa(q),
where G0 ≤ ΓL(V ) = ΓLa(q) = GLa(q)o Aut(Fq)

G acts on V by maps of the form x 7→ axφ + b,
where a ∈ GLa(q), φ ∈ Aut(Fq), aφ ∈ G0, b ∈ V .
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Primitive solvable linear groups
G = V o G0 is affine and G0 ≤ GL(V ).

Since G is primitive, G0 is irreducible,

Since G is basic, G0 is primitive.

An irreducible group H ≤ GL(V ) is imprimitive (as a linear group),
if there is a subspace U ⊂ V such that V is a direct sum of Uh,
h ∈ H, and primitive otherwise.

[Yang–Vasil’ev A.S.–Vdovin, 2020]: If H ≤ GL(V ) = GLd (p) is
a primitive solvable linear group, then one of the following hold:

1 H has a faithful regular orbit;

2 H ≤ ΓL1(pd );

3 H is transitive on V \ {0};
4 H lies in one of 102 known ‘small’ groups.

[Suprunenko, 1976]: description of max prim solv subgr in GL(V ).
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End of the proof

G = V oG0 is affine and G0 ≤ GL(V ) = GLd (p) primitive solvable.

1 G0 has a faithful regular orbit =⇒ G0 is 2-closed.

2 G0 ≤ ΓL1(pd ) =⇒ G0 is 2-closed
[Xu–Giudichi–Li–Praeger, 2011].

3 G0 is transitive on V \ {0} and G0 � ΓL1(pd ) =⇒
pd ∈ {32, 52, 72, 112, 232, 34} [Huppert, 1957].

If G is a sufficiently large basic solvable group, then G is 3-closed.

In order to complete the proof of the main theorem, we check with
the help of computer computations that G (3) is solvable for all
’small’ exceptions (|V | = 518 for the largest of them).

Tools: GAP packages IRREDSOL and COCO2, and for some
‘large small’ groups additional computations in MAGMA.
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Alt(d)-free groups

(Abstract) group is called Alt(d)-free, d ≥ 5, if it does not contain
section isomorphic to the alternating group of degree d .

If d ≥ 25, then list of simple Alt(d)-free groups includes

the groups of order p for all primes p;

all sporadic groups;

all exceptional groups of Lie type;

all classical groups of dimension less than d − 2;

all alternating groups of degree less than d .

If the composition width cw(G ) of G is less than d , then G is
Alt(d)-free, but not vice versa. Nevertheless, we have

[Babai–Cameron–Palfy, 1982]: The order of a primitive
Alt(d)-free group of degree n is at most nf (d).

In this form the statement is taken from [Pyber–Shalev, 1997].
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Closures of Alt(d)-free groups

[Ponom.–Skresanov–V., 2025]: Let X be a complete class
including all Alt(25)-free groups. Then the k-closure of every
permutation group from X belongs to X for each k ≥ 4.

Corollary. If G is an Alt(d)-free group with d ≥ 25, then G (k) is
Alt(d)-free group for k ≥ 4.

k = 4 is the best possible, because AGLm(2)(3) = Sym(2m).

d = 25 is the best possible (for k = 4), because 4-closure of the
Alt(9)-free Mathieu group M24 is Sym(24).

Corollary. If cw(G ) < d , then cw(G (k)) < d for k ≥ 15, d ≥ 25.

9 / 22



Outline of the proof

Let G ∈ X be a counterexample of the least possible degree n.

Since X includes all Alt(25)-free groups, n > 24.

Since G (k) ≤ G (4) for k ≥ 4, it suffices to prove that
H := G (4) ∈ X.

Since k ≥ 3 and X is complete, G is basic.

G is nonsolvable, otherwise H is solvable and H ∈ X.

Soc(G ) = the product of all minimal normal subgroups of G .

Soc(G ) = Soc(H) (1)

Proof. By [Praeger–Saxl, 1992], Soc(G ) = Soc(H) for k ≥ 4
unless G is 4-transitive. If G is 4-transitive and n > 24, then
G ≥ Alt(n), so Alt(n) ∈ X and hence H = Sym(n) ∈ X,
a contradiction.
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O’Nan–Scott theorem for basic groups

Recall that a group G is basic, if G is primitive and does not
preserve any nontrivial product decomposition.

[Liebeck–Praeger–Saxl, 1988]: If G is a basic permutation
group, then one of the following hold:

(i) G is almost simple,

(ii) G is in a diagonal action,

(iii) G is an affine group.

G is almost simple if S = Soc(G ) is a nonabelian simple group, in
this case S ≤ G ≤ Aut(S), so G/S ≤ Out(S).

G is in a diagonal action, if S = Soc(G ) = Tm, where T is a
nonabelian simple group, and G/S is a subgroup of Out(T )× L,
where L = Sym(m) is the symmetric group acting faithfully on the
set of simple factors of the socle by conjugation.
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Reduction to affine groups

G is not almost simple.

By (1), S = Soc(H) = Soc(G ). In view of the validity of the
Schreier conjecture, H/S ≤ Out(S) is solvable =⇒ H ∈ X.

G is not in a diagonal action.

Otherwise, S = Soc(G ) = Tm, T is a nonabelian simple group,
and G/S ≤ Out(T )× L, and L = Sym(m) acts faithfully on the
set of simple factors of S by conjugation.

By (1), Soc(H) = S , so H/S ≤ Out(T )× L. If m ≤ 4 or G/S
includes the alternating subgroup of L, then the nonabelian
composition factors of G and H are the same, and we are done.

Otherwise, G has a base of size 2 in view of [Fawcett, 2013], and
G (3) = G by Wielandt’s criterion. Hence H = G ∈ X.
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Affinity of the closure

By above, G = V o G0 is affine, and G0 ≤ GL(V ) = GLp(d).

For H = G (4), we have H = V o H0 and H0 = G
(3)
0 ≤ GL(V ).

Since G is primitive, V is the unique minimal normal subgroup
of G . Hence V = Soc(G ). Then Soc(H) = Soc(G ) = V is the
regular normal subgroup of H. Therefore, for a point stabilizer H0

in H, we have H0 ∩ V = 1 and n = |V | = |H : H0|. Thus,
H = V o H0, and we may identify H0 with a subgroup of GL(V ).

The equality H0 = G
(3)
0 can be verified by applying the closure

argument.

Corollary. It suffice to prove that H0 = G
(3)
0 ∈ X.

We reduce our problem to the matrix groups.
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Aschbacher’s classification

[Aschbacher, 1984]: If SL(V ) � G0 ≤ GL(V ), where V is vector
space over a finite field, then G0 belongs to one of the classes C i :
C1: Groups preserving a nontrivial proper subspace.
C2: Groups acting imprimitively on the vector space.
C3: Groups preserving the structure of an extension field.
C4: Groups preserving a nontrivial decomposition of the vector
space into the tensor product of two spaces of unequal dimensions.
C5: Groups preserving the structure of a proper subfield.
C6: Groups normalizing a subgroup of symplectic type.
C7: Groups preserving a nontrivial decomposition of the vector
space into the tensor product of several spaces of equal dimensions.
C8: Groups preserving a nondegenerate symplectic, unitary or
quadratic form. We note the subclasses of C8 as CSp, CU and CO,
respectively, depending on the form preserved.
C9: Groups which are not contained in any of C1, . . . , C8. These
groups are almost simple modulo center.
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Xu’s theorem and further reduction

[Xu–Giudichi–Li–Praeger, 2011]: If G0 ∈ C i , then H0 ∈ C i .

Let |V | = ps , where p is a prime. Choose the minimal a ≥ 1
dividing s such that G0 ≤ ΓLa(q), where q = ps/a. Note that
a ≥ 2 since G is not solvable. Applying Xu’s theorem, we conclude
that H0 ≤ ΓLa(q) (class C3 in GLd (p)).

We also assume that F×q ≤ G0, since F×q ·G0 still lies in the class X
and the group V o (F×q · G0) is a counterexample of degree n.

If SLa(q) ≤ G0, then SLa(q) ≤ H0 ≤ ΓLa(q), so G0 and H0 have
the same nonabelian composition factors, and H0 ∈ X, a
contradiction. No we apply Aschbacher’s classification and Xu’s
theorem in ΓLa(q).

Since G is basic, G0 is primitive, so G0,H0 /∈ C i , i = 1, 2.

The minimality of a yields G0,H0 /∈ C3.

If G0,H0 ∈ C i , i = 4, 5, 7, then we are done by induction, applying
results on the closure of a tensor decomposition of V (see further).

15 / 22



Groups preserving a tensor decomposition

Lemma. Let X and Y be vector spaces over a finite field F,
V = X ⊗ Y , and G ,H ≤ (GL(X ) ◦ GL(Y ))o Aut(F) ≤ ΓL(V ).
Assume that F× ≤ G and F× ≤ H. If G ≈k H for some k ≥ 1.
Then GX ≈k HX , and GY ≈k HY .

Theorem. Let V be a vector space over a finite field F, G a
primitive affine group with socle V . Set G = V o G0, where G0 is
the zero stabilizer, and assume that F× ≤ G0. Suppose that G0

preserves a nontrivial tensor decomposition V = X ⊗ Y over F,
where dimX 6= dimY . If k ≥ 4 and the k-closures of X o (G0)X

and Y o (G0)Y lie in the class X, then G (k) ∈ X.

Exercise 2. Derive the theorem from the lemma.
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Groups normalizing a subgroup of symplectic type

G0 ∈ C6, so there is a prime r and an r -subgroup R such that
R/Z (R) is elementary abelian of order r2m and G0 ≤ NΓLa(q)(R).

H0 ≤ N := NΓLa(q)(R), because |R| depends on a and H0 ∈ C6.

F×q ≤ G0, so G0 includes the Fitting subgroup F = F×q · R of N.
Note that N0/F ≤ GL2m(r), where N0 = N ∩ GLa(q).

Lemma. If Alt(d) is a section of GLa(q), then a ≥ d − 2 for d ≥ 9.

If Alt(25) is a section of H0, then it is a section of GL2m(r), so
2m ≥ 23. Thus, if m < 12, then N and so H0 are Alt(25)-free.

If m ≥ 12, we show that there is v ∈ V such that the Nv has a
faithful regular orbit on V , so b(G0) = 2 and G0 = H0.

In both cases, H ∈ X, a contradiction.
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Groups preserving a form

Let G0 ∈ C8 and, for definiteness, G preserves the nondegenerate
symplectic form, that is G0 ∈ CSp. By Xu’s theorem, H0 ∈ CSp too.

If Spa(q) ≤ G0, then Spa(q) ≤ H0 ≤ ΓLa(q), so G0 and H0 have
the same nonabelian composition factors, and H0 ∈ X.

Otherwise, we apply Aschbacher classification inside the
corresponding symplectic group. However, if G0 ∈ C i , i = 1, . . . , 7,
then we have classified that group as belonging to the
corresponding class Ci on one of the previous steps.

Thus, either G0 preserves another form as well, or G0 ∈ C9.
Repeating, if necessary, the arguments for another form, we
eventually comes to G ∈ C9.
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End of the proof

If G0 ∈ C9, then H0 ∈ C9 by Xu’s theorem. By Aschbacher’s
classification, G0/Z (G0) and H0/Z (H0) are almost simple groups.
Therefore, the following statement completes the proof.

Lemma. Let P,Q ≤ Sym(Ω) and P ≈3 Q. If P/Z (P) and
Q/Z (Q) are almost simple, then either

Soc(P/Z (P)) = Soc(Q/Z (Q)), or

Soc(P/Z (P)) and Soc(Q/Z (Q)) are subgroups of Alt(24).

There is ∆ ∈ Orb(P) = Orb(Q) such that P∆ is nonsolvable and
so P∆/Z (P∆) is almost simple. Then the same holds for Q∆. So
we can replace P and Q on P∆ and Q∆. Similarly, we reduce to
the case, when P and Q are primitive.

Since P is primitive, P is almost simple. If |Ω| > 24, then

[Liebeck–Praeger–Saxl, 1988b] =⇒ Soc(P) = Soc(P(3)).
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Today’s achievments

[O’Brien–Ponom.–V.–Vdovin, 2022]: If G is a solvable group,
then G (k) is solvable for k ≥ 3.

[Ponom.–Skresanov–V., 2025]: Let X be a complete class
including all Alt(25)-free groups. Then the k-closure of every
permutation group from X belongs to X for each k ≥ 4.

Corollary. If G is an Alt(d)-free group with d ≥ 25, then G (k) is
Alt(d)-free group for k ≥ 4.

Next lecture: Algorithms for these classes...
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