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The plan of the lecture

At present the k-closure problem in the class of all solvable groups
is open. We will talk about polynomial-time algorithms for

@ reduction to basic primitive groups,

@ odd order groups and all k,

@ all solvable groups and k > 3,

@ all supersolvable groups and k = 2 (briefly).

Recall that a permutation group is nonbasic if it is contained in a
wreath product with the product action; it is basic otherwise.
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The embedding problem: statement

The signs x,?, and 1 denote the operations of direct and wreath
product in imprimitive action and primitive action, respectively.

*-embedding problem: given G < Sym(Q) and % € {x,,1} test
whether there exists an embedding of G — K x L for some
sections K < Sym(A) and L < Sym(I') of G, such that |A] < |Q]
and |I'| < |Q|, and if so, then to find the embedding explicitly.

Under the embedding G — K x L, a bijection f from € to the
underlying set of the permutation group K % L, such that

FIGF < Kx L.

V.

Exercise 1. Solve the x-embedding problem for intransitive G and
* = X, and for imprimitive G and * = {, see also [Seress, 2002].
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The embedding problem: theorem

Theorem [Pon—Vasil'ev, 2024] Let G < Sym(n), x € {x,,1}.
Assume that G is imprimitive if x =, and primitive if x =1. Then
the x-embedding problem for G can be solved in time poly(n).

Sketch of the proof (for x =1).
@ Find S = Soc(G) of G and test whether or not S is abelian.

@ If S is abelian, then S = C, x --- x C, (d times) and can be
identified with a d-dim linear space over F,, (n = p9).

® Find a minimal subspace A C Q so that Q is the direct sum
of the subspaces belonging to the set I = {A8: g € G}.

@ Set L = G" and K to be the restriction of the setwise
stabilizer of A in G to A.

® Now G embedsto K T L or A =Q.

® If S is not abelian, then the proof is more complicated.
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Primitive odd order groups

Let G be a primitive odd order group. By the Suprunenko theory,
we may assume that G < AGLy4(p) for some d > 1 and prime p.

Theorem [Evdok-Pon, 2001] Suppose that the group G is basic.
Then G = G® or G < ATL1(p?) < AGLy(p).

Proof. Let a € Q and G = G,
@ Assume that G is not embedded to ATL;(p9).
@ By [Seress, 1996], G, and G, have a faithful regular orbit A.
@ Hence |G,| = |A] = |Gyl, and so |G| = |G].
@ Since G < G, we conclude that G = G = G,

Corollary. Given G as in the theorem, one can efficiently find an
odd order group H such that G@ < H.

Proof. If G < ATL;(p?), then H is the Hall 2’-subgroup of
ArLl(pd); otherwise, H := G = G2,
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The k-closure problem for odd order groups

Theorem [Evdok-Pon, 2001]. Let K > 1. Then given an odd
order group G < Sym(n), one can find G = G(¥) in time poly(n).

Let kK > 2. BY the Babai-Luks theorem, it SLiffices_to find an odd
order group G < H < Sym(n), and output G := G N H.
Algorithm (finding the group H).
@ If G is basic primitive, then output H as in the corollary.

@ By the x-embedding theorem, find groups K and L, and an
embedding G < K % L, where x € {x,,1}.

@ Recursively find K = K(K) and [ = L),
@ Output H =K = L.

Correctness: G(9) < (K « L)) < K(K) 4 [ (K),

Exercise 2. Verify the time bound.
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General reduction: statement

Given a class R of (abstract) groups, denote by £, the class of all
permutation groups of degree at most n that belong to K.

Theorem [Pon—Vasil’'ev, 2024] Let k,n € N, k >3, and 8 a
complete class of groups. Then

@ R, is closed with respect to taking the k-closure if and only if
RKn contains the k-closure of every primitive basic group in K,

@ the k-closure of any group in £, can be found in time poly(n)
by accessing oracles for finding the k-closure of every primitive
basic group in K, and the relative k-closure of every group
in K, with respect to any group in K.

Remark. If R is the class of solvable groups, then statement (1)
does not true for k < 3 (hint: the 2-closure of a 2-transitive
solvable group of degree > 5 is not solvable).
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General reduction: algorithm (1)

Step 1. If G < Sym(Q) is intransitive, imprimitive, or primitive,
we set x = X, , or T, respectively. Test in time poly(n) whether
there exists an embedding of G to K % L for some sections

K <Sym(A) and L < Sym(T)

of G, such that the numbers ng = |A| and n. = || are less than
n = |Q|, and if so, then find the embedding explicitly.

Step 2. If there is no such embedding, then G is primitive basic,
belongs to K, and the k-closure of G can be found for the cost of
one call of the corresponding oracle.

Now G is not primitive basic and we have a bijection f from Q to
the underlying set of K % L, such f~1Gf < K L. Since
fLGRf = (F1GF)K), we may assume that

G<KxL.
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General reduction: algorithm (2)

Step 3. Since K € R, and L € R, (the class R is complete), we
apply the algorithm recursively to K and L to find the groups K ()
and L) in time poly(nk) and poly(n;), respectively, and then the
group K x LK) in time poly(n).

Step 4. By induction, K(K) ¢ Ry and L) = R, whence
K®) & LK) € ®,. By theorems about the closures, we have
G < (K * L)(k) < KK (K,

Accessing (one time) the oracle for finding the relative k-closure of
G with respect to K(K) x L(K)| we find the group G(K).

v
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General reduction: running time

Let us estimate the number of the oracles calls. Each recursive call

divides the problem for a group of degree n to the same problem for

a group K of degree nk and for a group L of degree n;. Moreover,

ng +n  if x= x,
n=<ng-n. ifx=}
ng"t if x =1.

Thus the total number of recursive calls and hence the number of
accessing oracles is at most n.

Exercise 3. Prove that if statement (1) of the theorem holds also
for the class R and k = 2, then statement (2) holds for k = 2 too.
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The k-closure problem for solvable groups (k > 3)

Theorem [Pon—Vasil’ev, 2024] Given an integer k > 3, the

k-closure of a solvable permutation group of degree n can be
O(k)

found in time n :
Proof

@ The class R of all solvable groups is complete.

@ The relative k-closure of any G € K, wrt any H € K, can be
found in time poly(n) by the Babai-Luks algorithm.

@ By the reduction theorem, it suffices to find G(3) in time
poly(n) for any primitive basic group G € K.

@ If b(G) = 2, then G = G®) by the Wielandt theorem.

® If b(G) > 3 and n > ng for some large enough ng € N, then
G < ATLy(q) and G = G® by [Yang et al, 2020].

® Find G®) by inspecting all permutations of Sym(ng).
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The 2-closure of supersolvable groups (1)

Recall that a finite group is supersolvable if it contains a normal
series with cyclic factors. [Example: the group AGL(q) is
supersolvable iff g is a prime.]

The class of supersolvable groups is not invariant with respect to
taking the 2-closure: if p is a prime, then AGL1(p)® = Sym(p).

Theorem [Ponom—Vasil’ev, 2020] Given a supersolvable group
G < Sym(n), the group G can be found in time poly(n).

The main idea of the algorithm is a consequence of the following
fact also proved in [Ponom—Vasil'ev, 2020]: every composition
factor of the 2-closure of a supersolvable group is either a cyclic
group or an alternating group of prime degree.
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The 2-closure of supersolvable groups (2)

A sketch of the algorithm finding the 2-closure of a (transitive)
supersolvable group G < Sym(n).

@ Find an embedding of G into the iterated wreath product of
s > 1 groups G; < AGL1(p;) with prime p;:

Wr(Gy,...,Gs) = G11Gyl... 0 Gs < Sym(n),

@ The group G = G® has sections G; < G; < Sym(p;) such
thatWr(Gl,...,G)< G<Wr(G1,...,G).

® Foreachi=1,...,s, put

(o, i) = (Cp, Wr(...,1,G;,1,...)) if G; = Sym(p;),
A (G;,1) otherwise.

@ Construct the relative 2-closure H of the group G with
respect to Wr(Hy, ..., Hs) and output G = (H, Hy,..., Hs).
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What's next?

Recall that the class R of the Alt(d)-free groups with d > 25 is
closed with respect to the k-closure for k > 4, see [Ponom et al,
2025]. Whether the k-closure problem can be solved for a group in
R in polynomial time? [an ongoing project with A. V. Vasil'ev].

Ambitious problem: find a polynomial-time algorithm that
constructs the 100-closure of an arbitrary permutation group.

The 2-closure problem for solvable group. As an example

in [Skresanov, 2019] shows there are solvable permutation groups
G such that G has a nonabelian composition factor which is
isomorphic to no alterntaing group. This is an obstacle for the
2-closure problem.

Question. Let G < Sym(n) be a solvable primitive basic group. Is
it true that if n is large enough, then any nonabelian composition

factor of G is an alternating group? )
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Schurian color graphs: definition and problems

For every undirected graph X, the group Aut(X) is 2-closed. The
converse is not true: Co x G < Sym(4) equals Aut(X) for no X.
However, every 2-closed group is Aut(X) for some arc colored X.

v

An arc colored graph X can be thought as a partition X of Q x Q:
each color class of arcs of X is a class of X'. The colored graph X
is schurian if X = Orby(G) for some G < Sym(Q).

Main open problems
@ Recognition: whether a given arc colored graph is schurian?
@ Isomorphism: whether two schurian graphs are isomorphic?

@ Automorphism: given a schurian graph X, find Aut(X).

The recognition problem (with a certain certificate at output) is
polynomially equivalent to the graph isomorphism problem; the

automorphism problem is the 2-closure problem.
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Schurian color graphs: some results

For many “natural combinatorial” classes of graphs, solving the
isomorphism problem implies solving the recognition, isomorphism,
automorphism problems for the corresponding class of schurian
color graphs. Examples: graphs with bounded Hadwiger number
(max degree, max multiplicity of spectra, etc.)

All the problems (recognition, isomorphism, automorphism) are
solved in polynomial time for schurian color graphs coming from:
@ the odd order groups [Ponom, 2012],

@ the groups having regular cyclic subgroup [Evdok-Ponom,
2004], [Ponom, 2006].

The isomorphism and automorphism problems are solved in
polynomial time for 3/2-transitive groups in [Vasil'ev—Churikov,
2019]; the recognition problem is still open.
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Schurian color graphs: the rank 3 case

The rank of a schurian color graph is the number of color classes.
When it equals 3 (the first interesting case), we come to the
rank 3 graphs. Example: the Paley graphs and tournaments.

By [Skresanov, 2021], the automorphism groups of the rank 3
schurian color graphs are known. It seems that the isomorphism
and automorphism problems inside this class can be solved.

By the Skresanov result isomorphism problem in the class of rank 3
schurian color graphs reduces to the recognition problem for this
class, that is still open.

It seems that the recognition problem in the class of rank 3
schurian color graphs can be solved by the k-dim Weisfeiler-Leman
algorithm for k bounded from above by an absolute constant.
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Some problems relating with the k-closure problem

Problem 1. Given group G, H < Sym(n) and k > 1, test whether
G and H are k-equivalent.

Problem 2. Given a group G < Sym(n) and k > 1, test whether
G is k-closed.

The obvious algorithm solves Problems 1 and 2 in time n®¥) and
the real problem is to find an algorithm running in time poly(n, k).

Problem 3. Given a group G < Sym(n), find the smallest kK > 1
such that G is k-closed.

It is not quit clear how to approach Problem 3 even if the group G
is abelian (and hence each transitive constituent of G is regular).

Exercise 4. Prove that all problems 1-3 can be solved in time
poly(n) in the class of all abelian groups G with b(G) < const.
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Linear codes and closures of abelian groups

A linear code of length n is a linear subspace C of an n-dim space
Q over Fy. The elements a € C correspond to the permutations

fo i (X1, yxn) = (1 +0a,. ., xn + an), (x1,...,%,) € V.

C becomes a group G¢ < Sym(f2) with n orbits each of size g.

v

Question 1. What does it mean in code theoretical terms that the

group G¢ associate with a code C is k-closed for some k7
v

Question 2. Is there any relationship between the equivalence of
codes C and D of the same length and the k-equivalence of the
permutation groups G¢ and Gp associated with C and D?

Even the case of prime g = p is interesting (in this case G¢ is an
elementary abelian p-group with n orbits of length p).
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