Home Test 1

- 1. Does there exist a permutation x satisfying the following conditions:
- (a) $x \in S_9$,
- (b) $\operatorname{sgn}(x) = 1$,
- (c) |x| = 10?

2. Let $a = (1, 2, ..., n) \in S_n$ be the cycle of length n. Solve in S_n a "quadratic" equation: $x^2 = a$.

- 3. Let G be a finite abelian permutation group. Prove that
- (a) if G is transitive, then it is regular;
- (b) if G is primitive, then G has a prime order.
- 4. Let H be a group. Set $G = H \times H$ and $\Omega = H$. Prove that
- (a) the rule: $x^{(g,h)} = g^{-1}xh$ for all $x \in \Omega$ and $(g,h) \in G$, defines an action of G on Ω .
- (b) the action is always transitive (find the stabilizer G_e of the neutral element $e \in H = \Omega$);
- (c) the action is faithful (has the trivial kernel) \iff the center Z(H) = 1;
- (d) the action is primitive $\iff H$ is a simple group.
- 5. For the graph Γ from Figure 2.1 (a) on Page 39 of [DM],
- (a) find the order of $\operatorname{Aut}(\Gamma)$;
- (b) find some set of generators of $Aut(\Gamma)$;
- (c) prove that $Aut(\Gamma)$ is transitive and find a point stabilizer;
- (d) prove that $Aut(\Gamma)$ is imprimitive and find all nontrivial blocks.
- 6. (a) Find the group of rotations of regular tetrahedron.
- (b) How many fundamentally different tetrahedrons with faces painted in 3 colors are there?