Home Test 1 new

1. Solve in S_{10} the equation: $(1,3)(5,9)(5,7)(3,9) \cdot x^2 = (2,4,6,8,10).$

2. For which n, can the cycle (1, 2, ..., n) be represented as a product of cycles of length 3? Find such a representation whenever possible.

3. Let $G \leq \text{Sym}(n)$. Prove that

(a) for $\alpha \in \Omega$, the subset $\Delta = \{\beta \in \Omega | (\alpha, \beta) \in G\} \cup \{\alpha\}$ of Ω is a block;

(b) if G is primitive and contains a transposition, then G = Sym(n).

4. Let H be a normal subgroup of $G \leq \text{Sym}(n)$. Prove that

(a) if G is 2-transitive, then G is primitive;

(b) if G is primitive, then H is transitive;

(c) if G is 2-transitive, then H is $\frac{3}{2}$ -transitive, that is H is transitive and the orbits (distinct from $\{\alpha\}$) of a point stabilizer H_{α} are of the same size.

5. A regular triangular prism \mathcal{P} is a triangular prism whose bases have regular triangles and the side faces are rectangles.

(a) Find the order and some generating set of the group of symmetries of \mathcal{P} .

(b) Find the order and some generating set of the group of rotations of \mathcal{P} .

(c) How many fundamentally different prisms \mathcal{P} with faces painted in 3 colors are there?

6. For the graph Γ from the figure below,

(a) find the order of $Aut(\Gamma)$;

(b) find some set of generators of $Aut(\Gamma)$;

(c) prove that $\operatorname{Aut}(\Gamma)$ is transitive and find a point stabilizer;

(d) prove that $\operatorname{Aut}(\Gamma)$ is primitive.

