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1 A Needle in a Haystack

1.1 Haystack

We deal with finite groups, and there is a lot of them.
Indeed, a lot.

Put gnu(k) = group number of k, that is the number of pairwise non-isomorphic groups of order k (John Conway’s
terminology), and define

Gnu(m) =
m∑

k=1

gnu(k).

Now, let us see
Gnu(1) = 1

Gnu(10) = 18

Gnu(100) = 1 048

Gnu(1000) = 11 758 814

Gnu(2000) = 49 910 529 484

(H.U. Beshe, B. Eick, and E. A.O’Brien, 2001)

1.2 Finding a Needle

How can we recognize the specific group among the others?

How can we find a needle in a haystack?

Clearly, every finite group is completely characterized by its own multiplication table. However, there are two
problems here.

• If |G| = n (and large), then the multiplication table of G contains n3 entries (and huge).

• If we even have the multiplication tables of G and H, how (or how fast) can we determine whether G and H are
isomorphic?

Can we choose a substantially smaller set of group parameters to determine the group uniquely (and effectively)?

Or, at least,

can we do this for most valuable groups?

What a magnet is able to retrieve a needle from a haystack?
First of all, what does the phrase “given the group G” mean?

In fact, it always implies that G is represented in some way:

• as a matrix group

• as a permutation group

• as a group of automorphisms of some object (graph, polygon etc.)

• as an abstract group with the list of generators and relations.

At present, if the last representation is used for finite groups, a group G is usually treated as a black-box group.
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1.3 Black Box

A notion of a black-box group was invented by László Babai in the late 1970’ies and firstly introduced by L. Babai
and E. Szemerézdi in “On the complexity of matrix group problems” in 1984. It plays a crucial role in the modern
Computational Group Theory and influences the Theoretical Computer Science as well.

Scott Aaronson (MIT), 2010:
“Beautiful mathematical structures (like finite groups) do useful things in TCS (like giving natural examples where

quantum computing seem to outperform classical). Laci (László Babai) did a quantum stuff before it ever exists...”
A black-box group G is a finite group whose elements are encoded, not necessarily uniquely, by (0, 1)-strings of

uniform length n, with an oracle to perform group operations on the codewords, including the decision whether or not
a string encodes the identity.

Black Box

x, y

x

x = 1?

xy

x
−1

true or false

A black-box group G (or its subgroup) is given if a list of its generators x1, . . . , xk (strings corresponding to
generators) is given:

G = 〈x1, . . . , xk〉.

Definition (Babai, Beals, Seress, 2009). Let G be a finite group. A black-box representation of G with code-length
n is a surjection f : S → G for some subset S ⊆ {0, 1}n of valid strings, along with an oracle that performs the
group operations: given two valid strings x, y, the oracle produces valid strings z, u such that f(x)f(y) = f(z) and
f(x)−1 = f(u), and also answers the question whether or not f(x) = 1. We say that G is given as a black-box group
if in addition a list of valid strings x1, . . . , xk is given such that 〈f(x1), ..., f(xk)〉 = G.

Note that |G| 6 2n where n is the code-length. The complexity of black-box group algorithms is always relative
to the input length, which is |A|n if G is given as G = 〈A〉.

1.4 Spectrum and its Apex

If G is given as a black-box group, then for every element x of G we can determine its order |x| that is the least
natural number n with xn = 1. Thus, we can determine (or partially determine or with a high probability determine)
the set of element orders of G.

For a group G the set ω(G) = {n ∈ N | ∃x ∈ G : |x| = n} is called the spectrum of G.

If k divides n and n ∈ ω(G) then k ∈ ω(G). Therefore, the spectrum of G is determined by the set µ(G) of maximal
under divisibility elements of ω(G). Till now the set µ(G) was unnamed.

Let us call it the apex of spectrum of G or, briefly, the apex of G.

1.5 Groups with a Nontrivial Normal Abelian Subgroup

Is a finite group G uniquely determined by ω(G)?

Generally, the answer is, “No.”

It is not determined, even among the groups of the same order.

Indeed, the abelian group Z4 × Z2, the dihedral group D8, and the quaternion group Q8 have the order 8, the
spectrum {1, 2, 4}, but are pairwise non-isomorphic.

Moreover, now we’ll prove the following
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Proposition (Shi, Mazurov, 1998). If the soluble radical (the maximal soluble normal subgroup) K of a finite group
G is nontrivial, then there exist infinitely many finite groups H with ω(H) = ω(G).

Lemma. If V is a nontrivial elementary abelian normal subgroup of G, G1 = V h G is the natural semidirect product
under the action of G on V by conjugation, then ω(G) = ω(G1).

Proof. Obviously, ω(G) ⊆ ω(G1).

Suppose (g, v) ∈ G1, where g ∈ G and v ∈ V , a prime p is the period of V , and n is the order of V g in G/V .

If gn 6= 1, then (g, v)n = (gn, vgn−1
. . . vgv) and gn are nontrivial, and so they have the order p. Hence |(g, v)| =

|g| = pn.

If gn = 1 and (g, v)n = 1, then |(g, v)| = |g| = n.

If gn = 1 and (g, v)n = (1, vgn−1
. . . vgv) 6= 1, then (gv)n = vgn−1

. . . vgv 6= 1, so |(g, v)| = |gv| = pn.

Anyway, |(g, v)| ∈ ω(G), as required.

Proposition (Shi, Mazurov, 1998). If the soluble radical (the maximal soluble normal subgroup) K of a finite group
G is nontrivial, then there exist infinitely many finite groups H with ω(H) = ω(G).

Lemma. If V is a nontrivial elementary abelian normal subgroup of G, G1 = V h G is the natural semidirect product
under the action of G on V by conjugation, then ω(G) = ω(G1).

Proof of Proposition. Since K 6= 1, there is an elementary abelian normal subgroup V of G. By lemma the
spectrum of every group from infinite series G = G0, G1, G2 . . ., where Gi+1 = V h Gi, coincides with ω(G).

1.6 Determination of Simple Groups

Does it mean that the spectrum is useless?

Must a magnet attract every straw in a haystack?

What about simple groups, building stones of the Group Theory?

Can we recognize them using their spectra?

It turns out that the answer is, “Yes.”

At least, if we search among the groups of the same order.

Theorem (2009). If L is a finite simple group, and G is a finite group with |G| = |L| and ω(G) = ω(L), then G ' L.

This result has a long history that we’ll discuss later. Now let us prove it. A little bit of it, for a start.
Let L be a finite simple group, and G be a finite group with |G| = |L| and ω(G) = ω(L).

If L is a group of the prime order, then obviously G ' L. So we assume further that L is nonabelian.

Let L be the smallest nonabelian simple group. L can be considered as

• alternating group Alt5 of permutations on 5 letters

• special linear group SL2(4) over the field of order 4

• projective linear group PSL2(5), that is the factor group of SL2(5) by its center of order 2.

We have

• ω(L) = {1, 2, 3, 5}

• |L| = 60 = 22 · 3 · 5

• gnu(60) = 13

Our nearest goal is to prove that G ' L in this case.
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1.7 Graphs and Cocliques

• G is a finite group

• π(G) is the set of prime divisors of |G|

• GK(G) is the prime graph of G with the vertex set π(G) and p ∼ q ⇔ pq ∈ ω(G)

• A coclique is a subset ρ of the graph vertex set which vertices are pairwise non-adjacent.

Lemma. Suppose that a finite group G has a normal series of subgroups 1 6 K 6 M 6 G, and primes p, q and r are
such that p divides |K|, q divides |M/K| and r divides |G/M |. Then {p, q, r} cannot be a coclique in GK(G).

Proof. Assume G is a minimal counterexample (by order). Using the Frattini argument, we show that K is a
p-group, and M/K is a q-group, and then consider the action of element of order r on the {p, q}-group M .

Let P be a Sylow p-subgroup of K, and N = NG(P ).
By the Frattini argument, G = KN and N/(N ∩ K) ' G/K. So 1 6 P 6 N ∩ M 6 N is the normal series of

N , and its factors satisfy the conditions of the lemma. The set {p, q, r} is the coclique in GK(G) ⇒ it is the coclique
in GK(N).

G is a minimal counterexample ⇒ G = N , M = N ∩M , K = P .

Put G = G/K, M = M/K, Q ∈ Sylq(M), and N = NG(Q).
By the Frattini argument, N/(N ∩M) ' G/M , so r divides |N/Q|.
Let Q and N denote the preimages of Q and N in G. Then N has the normal series 1 6 K 6 Q 6 N , and its

factors satisfy the conditions of the lemma. Hence G = N , and M = Q.

Let x be an element of order r in G. Since G does not contain elements of order pr and qr, the element x induces
a fixed-point-free automorphism of order r of M . By the Thompson Theorem, M is nilpotent. Therefore, it contains
an element of order pq; a contradiction.

Corollary. Suppose that G is a finite group, and ρ is a coclique in GK(G) of size at least 3. Then at most one prime
from ρ can divide the order of the soluble radical K of G. In particular, G is insoluble.

Proof. Assume to the contrary that two distinct primes p, q lie in ρ ∩ π(K). |ρ| > 3 ⇒ the coclique ρ contains a
third prime r.

Let R ∈ Sylr(G), and put H = 〈K, R〉. H/K is a r-group ⇒ H is soluble ⇒ there is a chief series of H, whose
factors are elementary abelian. It follows that H satisfies the conditions of the lemma, so {p, q, r} cannot be a coclique;
a contradiction.

Corollary. Suppose that G is a finite group, and ρ is a coclique in GK(G) of size at least 3. Then at most one prime
from ρ can divide the order of the soluble radical K of G. In particular, G is insoluble.

Return to L ' Alt5 and G with ω(G) = ω(L) and |G| = |L|.

ω(G) = ω(L) = {1, 2, 3, 5} ⇒ GK(G) = GK(L) is the coclique.
So a composition series of G must contain a nonabelian factor S.

|L| 6 |S| 6 |G| and |G| = |L| ⇒ G = S ' L.

Now we understood why L is uniquely determined by its spectrum among the groups of order 60.
Modulo two facts:

• the smallest nonabelian simple group is unique and isomorphic to Alt5.

• the Thompson Theorem on nilpotency of a group admitting a fixed-point-free automorphism of prime order

Who can prove the Thompson Theorem here and now?
Is it necessary to use here so powerful resource as the Thompson Theorem? The choice among 13 groups seems

easy and regardless.

Let’s take the simple group L = GL5(2).

• the apex µ(L) = {8, 12, 14, 15, 21, 31}
(recall ω(L) is the set of all divisors of elements from µ(L))

• |L| = 9 999 360 = 210 · 32 · 5 · 7 · 31
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• gnu(9 999 360) > 100 000 000 000

The last inequality holds, since gnu(210) = 49 487 365 422

The prime graph GK(L) includes the coclique {5, 7, 31}, so a group G with the same prime graph is insoluble.
It follows that a composition series of G contains a nonabelian factor S with π(S) ⊆ π(L). There are finitely many
simple groups that can be isomorphic to S (in fact, there are 24 such groups). This observation does not solve the
problem, but obviously allows to restrict a selection field. Later, we’ll see how one can use such restriction to recognize
a simple group.

1.8 Infinite Haystack

Returning to a determination of L ' Alt5, what happens if we omit the condition |L| = |G|?

What can we say about G with ω(G) = ω(L)?

ω(G) = ω(L) = {1, 2, 3, 5} ⇒ G insoluble.

Let K be the soluble radical of G, then G = G/K is nontrivial. If M is the minimal normal subgroup of G, then
M is a direct product S1 × . . .× Sk of nonabelian simple groups. If k > 1, then GK(G) cannot be a coclique, which
is impossible. Thus, there is a nonabelian simple group S such that

S ' Inn(S) 6 G 6 Aut(S).

Such configuration arises for most of simple groups L (see soon)

ω(S) ⊆ ω(L) ⇒ π(S) = {2, 3, 5}.

There are only three such nonabelian simple groups, and two of them, non-isomorphic to L, contain an element of
order 4.

So S ' L ⇒ L 6 G 6 Aut(L).
Thus, L 6 G 6 Aut(L).

L ' Alt5 ⇒ Aut(L) ' Sym5.

4 ∈ ω(Sym5) ⇒ G = L.

ρ = {2, 3, 5} is the coclique of GK(G) ⇒ at most one prime from ρ can divide |K|.

So K is a p-group for p ∈ ρ. For the Frattini subgroup Φ(K) put K̃ = K/Φ(K) and G̃ = G/Φ(K). Then G̃ is an
extension of an elementary abelian p-group K̃ by L. Since C = C

eG(K̃) C G̃, we have C = K̃ or C = G̃. In the last
case GK(G) is not a coclique; a contradiction. Thus, L acts faithfully on K̃ by conjugation, and we can consider G̃
as a faithful L-module over Fp. Using the linear representation theory, one can show (and we’ll do that later) that
2p ∈ ω(G̃) ⊆ ω(G) = ω(L); a final contradiction. Thus, G ' L.

We say that L is recognizable by spectrum in that case.

It turns out that many finite simple groups are recognizable by spectrum.

1.9 Recognition by Spectrum: Problem Statement

• G is a finite group

• h(G) is the number of pairwise non-isomorphic finite groups H with ω(H) = ω(G)

• G is recognizable (by spectrum) if h(G) = 1

• G is almost recognizable if h(G) < ∞

• G is non-recognizable if h(G) = ∞

Recognition Problem
Given a finite group G, find h(G). If h(G) is finite, describe finite groups H with ω(H) = ω(G).
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2 Visit to the Zoo

2.1 Classification Theorem

Every finite group G has a composition series

1 = G0 6 G1 6 . . . 6 Gt−1 6 Gt = G,

where Gi−1 E Gi and Gi/Gi−1 is a simple group for i = 1, . . . , t.

Thus every finite group can be constructed from simple groups.

The fact that we have the classification of finite simple groups (CFSG) is quite overwhelming. It is one of the
Wonders of the mathematical World.

Since simple groups are highlights of our discussion we’ll consider them and their classification today.

This does not pretend to be a serious investigation, it’s rather a visit.

Visit to the Zoo
The Classification Theorem asserts

Finite Simple Groups:

• groups of prime order

• alternating groups

• groups of Lie type

– classical

– exceptional

• 26 sporadic groups

If G is a group of prime order, then it is uniquely determined by its order. On the other hand, it is obvious that
there are infinitely many finite group with the same spectrum as spectrum of G.

Further, simple means nonabelian simple.

2.2 Sporadic groups

Sporadic Groups
In fact we skip sporadic groups at the present visit. There are two reasons.

First, for all sporadic groups the recognition problem has been completely solved. Namely,

Shi, 1988, . . . , Shi-Mazurov, 1998

Let L be a sporadic simple group.

• If L 6= J2, then h(L) = 1.

• If L = J2, then ω(L) = ω(V h GL4(2)), where V is the elementary abelian group of order 26, and h(L) = ∞.

Second, every sporadic group requires a special sporadic approach to be presented. Unfortunately, we have not
enough time for this.
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2.3 Permutation Groups

Permutation Groups
Altn is the subgroup of all even permutations of the group Symn of all permutations on n letters.

Evariste Galois:

The groups Altn are solvable for n 6 4 and nonabelian simple for n > 5.

So a general polynomial equation of degree n in one variable is solvable by radicals ⇔ n 6 4.
Spectra of permutation groups
Let m = pα1

1 . . . pαs
s , k = pα1

1 + . . . + pαs
s , where pi are primes, and αi are positive integers.

If G = Symn, then m ∈ ω(G) ⇔ k 6 n.

Let G = Altn.
If m is odd, then m ∈ ω(G) ⇔ k 6 n.
If m is even, m ∈ ω(G) ⇔ k 6 n− 2.
Put Ω = {1, . . . , n}. Any subgroup G of the symmetric group Sym(Ω) = Symn is called a permutation group of Ω.

An arbitrary group G acts on a set Ω if there is a homomorphism ϕ from G to Sym(Ω). The image αg of α ∈ Ω
under action of g ∈ G is an element β ∈ Ω such that β = α(gϕ).

G acts faithfully on Ω iff ker(ϕ) = 1.

G acts k-transitively on Ω if for every two k-tuples of elements of Ω there is an element g ∈ G transferring one of
them to another. 1-transitive group G is said to be transitive (on Ω).

If G acts on Ω, α ∈ Ω, then the subgroup H = Gα = = {g ∈ G | αg = α} is a point stabilizer, and |G : H| is
equal to the size of the orbit αG = {αg | g ∈ G}. If G is a transitive permutation group on Ω then αG = Ω and
all point stabilizers H are conjugate in G. The action of G on the factor set G/H by right multiplication, that is,
(Hx)g = H(xg) for all right cosets Hx of G/H and elements g ∈ G, is similar to the natural action of G on Ω.

If G acts on Ω (of size at least 3) such that it preserves some nontrivial partition of G, then this partition is called
a system of imprimitivity for G, and G is called imprimitive. If G is not imprimitive, it is called primitive.

G is 2-transitive ⇒ G is primitive ⇒ G is transitive

If G is transitive, then
G is primitive ⇔ a point stabilizer is a maximal subgroup of G

If n > 5, and n 6= 6, then every subgroup H of G = Altn isomorphic to Altn−1 must be a point stabilizer. It
follows that there is a one-to-one correspondence between the set M of these subgroups and letters from Ω. Every
automorphism of G permutes subgroups of M , so it permutes letters from Ω. Therefore, there is a homomorphism
from G to Symn. On the other hand, Symn 6 Aut(G). Thus, Symn = Aut(G).

2.4 Groups of Lie type

Groups of Lie type
Simple groups of Lie type arise as a groups of automorphisms (of special form) of simple Lie algebras over finite

fields. Thus their classification is connected with the classification of simple Lie algebras.

There are four infinite series of such algebras: An, Bn, Cn, Dn,
and five exceptional algebras: G2, F4, E6, E7, E8.

Groups corresponding to infinite series of simple algebras have a natural matrix presentations and are called
classical.

Groups corresponding to exceptional algebras form series of exceptional groups of Lie type.

Thus, we have the following classification of simple groups of Lie type.

Classical groups:

• linear: An−1(q) ' PSLn(q), n > 2, (n, q) 6= (2, 2), (2, 3);

• unitary: 2An−1(q) ' PSUn(q), n > 3, (n, q) 6= (3, 2);

• symplectic: Cn(q) ' PSp2n(q), n > 2, (n, q) 6= (2, 2);

• orthogonal: Bn(q) ' PΩ2n+1(q), n > 3, q odd;

• orthogonal: Dn(q) ' PΩ+
2n(q), n > 4;

9



• orthogonal: 2Dn(q) ' PΩ−
2n(q), n > 4

where q is a power pα of a prime p.

Exceptional groups:

• G2(q), q > 3; F4(q); E6(q); E7(q); E8(q)

where q is a power pα of a prime p;

• Suzuki groups: 2B2(22n+1), n > 1;

• Ree groups: 2G2(32n+1), n > 1; 2F4(22n+1), n > 1;

• the Tits group 2F4(2).

2.5 Finite Fields

Finite fields
Even the overview of Lie approach requires time that we have no it, so we concentrate on groups with natural

matrix representation. Since our groups are defined over the finite fields, we recall some basic facts on these fields.

• Finite field F has the positive characteristic p, where p is a prime, and contains the prime subfield Fp of order p.

• F is a vector space over Fp, so |F | = q, where q = pα.

• For every prime p and positive integer α there is the unique field Fq of order q = pα. If f is any irreducible
polynomial over Fp of degree α, then Fq ' Fp[x]/(f), in particular, Fq does not depend on the choice of f .

• Multiplicative group F∗q of the field Fq is cyclic.

• Automorphism group Aut(Fq) has order α and is generated by the Frobenius automorphism σ given by xσ = xp

for all x ∈ Fq.

2.6 Linear Groups and Simplicity

The linear groups and their orders Let V be a vector space over the field Fq.

The general linear group GLn(q) consists of all non-singular linear transformations of V . Since there is a one-to-
one correspondence between such transformations and basises of V , the order of this group is given by |GLn(q)| =
(qn − 1)(qn − q) . . . (qn − qn−1). The center Z(GLn(q)) of GLn(q) consists of all scalar transformations, so is of order
q − 1. The factor group GLn(q)/Z(GLn(q)) is called the projective general linear group and denoted by PGLn(q).

The transformations of determinant 1 form a normal subgroup SLn(q) of index q−1, the special linear group. The
center Z(SLn(q)) equals Z(GLn(q)) ∩ SLn(q) and has order equal to (n, q − 1). The factor group SLn(q)/Z(SLn(q))
is called the projective special linear group and denoted by PSLn(q).

|PSLn(q)| = 1
(n, q − 1)

qn(n−1)/2
n∏

i=2

(qi − 1).

Simplicity

Theorem. The group PSLn(q), n > 2, q = pα, p is a prime, iff (n, q) 6= (2, 2), (2, 3).

The key lemma is the following

Lemma (Iwasawa, 1941). If G is a finite perfect group (that is G = G′), acting faithfully and primitively on a set Ω,
such that the point stabilizer H has a normal abelian subgroup A whose conjugates generate G, then G is simple.

Now to prove the theorem is enough to check that the group PSLn(q) satisfies the conditions of the lemma.
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2.7 Other Classical Groups

The unitary groups A finite field admits an automorphism of order 2 if its order is equal to q2 for some prime-power
q, and the involutary automorphism is given by λ 7→ λq and called conjugation. Let V be a vector space over the field
Fq2 which is endowed with a non-singular Hermitian scalar product. Thus (x, y) is linear in x, conjugate linear in y,
and

(y, x) = (x, y).

The group of non-singular linear transformations of V preserving this product is called the general unitary group
GUn(q). Groups PGUn(q), SUn(q), PSUn(q) are defined and called simultaneously to corresponding linear groups.

Groups PSL2(q) and PSU2(q) are isomorphic for all q.

Groups PSUn(q), n > 3, are simple except PSU3(2).
The symplectic groups Let V be a vector space of dimension 2n over the field Fq which is endowed with a non-

singular bilinear scalar product. We assume that this scalar product is skew-symmetric, so that

(y, x) = −(x, y)

for all x, y ∈ V .

The group of non-singular linear transformations of V preserving this product is called the symplectic group Sp2n(q).
This group is, to within isomorphism, independent of the choice of the scalar product.

Every symplectic transformation has determinant 1. The center of the group Sp2n(q) consists of transformations
ϕ such that xϕ = λx for all x ∈ V where λ = ±1. The factor group Sp2n(q)/Z(Sp2n(q)) is called the projective
symplectic group PSp2n(q).

Sp2(q) = SL2(q).

PSp2(q) = PSL2(q).

Groups PSp2n(q), n > 2 is simple except for PSp4(2).

The orthogonal groups over odd characteristic Let V be a vector space of dimension n over the field Fq of odd
characteristic which is endowed with a non-singular bilinear scalar product. We assume that this scalar product is
symmetric, so that

(y, x) = (x, y)

for all x, y ∈ V .

The group of non-singular linear transformations of V preserving this product is called the general orthogonal
group. If n is odd this group is, to within isomorphism, independent of the choice of the scalar product and is denoted
GOn(q). If n is even there are two inequivalent non-singular symmetric scalar products on V which give rise to distinct
orthogonal groups. This groups are denoted GO+

n (q) and GO−
n (q).

Let ε be the empty symbol if n is odd and ε ∈ {+,−} if n is even.

Every orthogonal transformation has determinant 1 or −1. The special orthogonal group SOε
n(q) is the group of

orthogonal transformations with determinant 1. The commutator subgroup of SOε
n(q) is denoted by Ωε

n(q). If n is odd
this group have trivial center and is simple except for Ω3(3). If n is even Ωε

n(q) has the center of order (4, qn/2−ε1)/2,
corresponding projective group Ωε

n(q)/Z(Ωε
n(q)) is denoted by PΩε

n(q). These groups are not simple or isomorphic to
some linear or unitary groups if n < 4, and are always simple for n > 4.

The orthogonal groups over characteristic 2 Let V be a vector space of dimension n over the field Fq of characteristic
2. In this case the notions of symmetric and skew-symmetric form coincide. Thus if we proceed in the way described
above we will come to the symplectic groups again. Here quadratic forms come to the first place. The quadratic form
on V is a function f : V → Fq such that

f(λx + µy) = λ2f(x) + µ2f(y) + λµ(x, y)

for all λ, µ ∈ Fq and x, y ∈ V and some symmetric bilinear form (x, y).
Now the orthogonal group is the group of non-singular linear transformations of V preserving the quadratic form:

f(Tx) = f(x). Again there is only one group GOn(q) ' Spn−1(q) in odd dimension and there are two groups GO+
n (q)

and GO−
n (q) in even dimension. The commutator subgroup Ωε

n is generally simple.

11



3 Spectra of finite simple classical groups

The spectrum ω(G) of a group G is the set of element orders.
G = S6. The order of an element is determined by its decomposition into product of independent cycles. Thus

ω(G) = {1, 2, 3, 4, 5, 6}.
ω(G) is closed under taking divisors, i.e., for every n ∈ ω(G) and every d dividing n, d lies in ω(G).

If |g| = n, then |gn/d| = d.

µ(G) is the set of maximal under divisibility elements of ω(G).
ω(S6) = {1, 2, 3, 4, 5, 6} ⇒ µ(S6) = {4, 5, 6}
ω(G) is uniquely determined by any set ν(G) such that

µ(G) ⊆ ν(G) ⊆ ω(G)

and consists of all divisor of elements of ν(G).

3.1 Nonabelian simple groups

— 26 sporadic groups
— alternating groups
— groups of Lie type

— classical
— exceptional

The simple classical groups.
GLn(q) → SLn(q) → PSLn(q), GUn(q) → SUn(q) → PSUn(q)
Sp2n(q) → PSp2n(q), GO2n+1(q) → SO2n+1(q) → Ω2n+1(q),
GO±

2n(q) → SO±
2n(q) → Ω±

2n(q) → PΩ±
2n(q)

Linear groups
GLn(q) is the group of all non-degenerate matrices of size n× n over a field Fq of order q.
SLn(q) = {g ∈ GLn(q)|det g = 1}.
Z(GLn(q)) = {λE|λ ∈ Fq} ⇒ Z(SLn(q)) = {λE|λ ∈ Fq, λ

n = 1}. Thus |Z(SLn(q))| = (n, q − 1).
PSLn(q) = SLn(q)/Z(SLn(q)).

3.2 Unipotent elements

Let F be a field of characteristic p > 0.

GLn(F ) 3 g =


1 1

1 1
. . . . . .

1 1
1

 = E + J,

E is the identity matrix and J =


0 1

0 1
. . . . . .

0 1
0

 .

(E + J)k = E + C1
kJ + C2

kJ2 + · · ·+ Cn−1
k Jn−1

Thus (E + J)k = E iff p divides Ci
k for 1 6 i 6 n− 1.

The least number k for which (E + J)k = E equals the least power of p which is greater then n− 1.
Thus |g| = pl+1 where pl 6 n− 1 < pl+1.

3.3 Semisimple elements

GLn(F ) 3 g =


λ1

λ2

. . .
λn

 ,
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|λ1| = m1, |λ2| = m2, . . . , |λn| = mn.

⇓

|g| = [m1,m2, . . . ,mn].

3.4 Elements of composite orders

GLn(F ) 3 g =


λ 1

λ 1
. . . . . .

λ 1
λ

 =

=


λ

λ
. . .

λ
λ




1 1

λ
1 1

λ
. . . . . .

1 1
λ
1

 = su.

s semisimple, u unipotent, and since su = us, we have |g| = |s||u|.

3.5 Spectrum of a group of Lie type

Let G be a finite group of Lie type over a field of order q and characteristic p.

ω(G) = ωp(G) ∪ ωp′(G) ∪ ωm(G)

ωp(G) is the set of orders of p-elements
ωp′(G) is the set of orders of p′-elements
ωm(G) is the set of the rest “composite” orders
Define sets µp(G), µp′(G) and µm(G) to be the intersections of µ(G) and the corresponding subsets of ω(G).

3.6 Algebraic closure of Fp

For a prime p denote by F p the algebraic closure of the field Fp. Recall that for every irreducible polynomial
f(x) ∈ Fp[x] there exists a finite field Fq such that Fq contains a root of f(x). Let I be the ideal of Fp[x] generated by
f(x). Since f(x) is irreducible, the factor ring Fp[x]/I is a field of order pk where k is the degree of f(x). In this field
f(x) = 0. Thus x is a root of f(x). Therefore, we can define F p to be the union of field Fpk over all possible values
of k. But how one can combine two different fields?

Let Fr be a subfield of Fq where q = pk. Then r = pl and l divides k. Indeed, Fq is a vector space over Fr. Thus
Fq is isomorphic to Fm

r for some m. Moreover, a field of order pk contains a subfield of order pl for every natural
number l dividing k.

Now it is clear how to construct the union. Let us take, for example, fields Fp2 and Fp3 . Both of them can be
embedded into the field Fp6 . Thus we can add and multiply elements of these fields.

F p =
⋃
k>1

Fpk .

3.7 Frobenius map

GLn(q) can be embedded into GLn(F p). Hence we can speak about Jordan form of element of GLn(q) in GLn(F p).
Let σ be an automorphism of the field Fpk given by λ 7→ λpl

. If k divides l this automorphism is trivial and
nontrivial otherwise. The elements of the field F p which are invariant under the action of the map σ form the field
Fpl .

A standard Frobenius map σq of GLn(F p): (aij) 7→ (aq
ij) where q is a power of p. σq is an endomorphism of

GLn(F p) into itself. The elements of GLn(F p) which are invariant under the action of σq forms the group GLn(q).
A homomorphism σ : GLn(F p) → GLn(F p) is called a Frobenius map if some power of σ is a standard Frobenius

map.
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3.8 Unipotent elements

Let G = GLn(q) where q is a power of a prime p. Recall that the maximal power of p lying in ω(G) is the least
power of p that is greater than n − 1. n − 1 can be interpreted as the maximal height among the roots of the root
system of GLn(q). It turns out to be true in the general case.

Testerman D. M. A1-Type overgroups of order p in semisimple algebraic groups and the associated finite groups,
J. Algebra, 1995, V. 177, N 1, P. 34–76.

Theorem. Let G be a finite group of Lie type over a field of positive characteristic p. Then the maximal power of p
lying in the spectrum of G is equal to the minimal power of p that is greater than the maximal height of the roots in
the root system of G.

The maximal heights
linear and unitary groups of dimension n n− 1
symplectic groups of dimension 2n 2n− 1
orthogonal groups of dimension 2n + 1 2n− 1
orthogonal groups of dimension 2n 2n− 3
Let G = PSL7(25). The characteristic is 5. The height of the highest root is equal to 7 − 1 = 6. We have

5 < 6 < 25. Hence 25 ∈ ω(G) and 125 6∈ ω(G).
Let G = Sp10(9). The characteristic is 3. The height of the highest root is equal to 10−1 = 9. We have 9 6 9 < 27.

Hence 27 ∈ ω(G) and 81 6∈ ω(G).

3.9 Semisimple elements

R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley, New York (1985).
Let G = GLn(F p) and G = GLn(q). Put σ = σq. For a group H and a homomorphism α : H → H denote by Hα

the group of α-fixed points.
Gσ = {g ∈ G|gσ = g} = G.

Denote by T the subgroup of G consisting of all diagonal matrices. Since semisimple elements are diagonalizable,
each of them is conjugate to some element of T . T and all its conjugate are called maximal tori of G. Thus every
semisimple element is contained in some maximal torus.

Let S be a σ-stable maximal torus of G. The group S = Sσ is called a maximal torus of G. Every semisimple
element of G is contained is some maximal torus of G. µ(S) consists of one number - the exponent of S. Thus we are
to determine exponents of all maximal tori.

Let T
g

be σ-stable maximal torus of G. We have

(T
g
)σ = T

g
,

(T
σ
)gσ

= T
g
.

Thus gσg−1 normalizes T .

Proposition. Let T
g

be a σ-stable maximal torus of G. The groups (T
g
)σ and T σ◦gσg−1 are conjugate in G.

Proof. Let t be an element of T such that tg lies in (T
g
)σ. We have

(tg)σ = tg,

(tσ)gσ

= tg,

(tσ)gσg−1
= t.

Thus tg lies in (T
g
)σ iff t lies in (T )σ◦gσg−1 .

Moreover, (T )σ◦n for n ∈ NG(T ) is conjugate to some maximal torus of G.
A matrix is called monomial if each column and each row in it contain exactly one non-zero element. A monomial

matrix is called a permutation matrix if all non-zero entries are unities. NG(T ) consists of all monomial matrices.
Every monomial matrix can be presented as a product of a diagonal matrix and a permutation matrix.

Since T acts on itself trivially, the factor group W = NG(T )/T acts on T . This group is independent of the choice
of the maximal torus and called the Weyl group of G. Clearly, W is isomorphic to Symn.

Let π : NG(T ) → W be the natural homomorphism. The proposition we proved implies that (T
g
)σ is conjugate to

T σ◦w where w = π(gσg−1).
Since T is σ-stable, NG(T ) is also σ-stable. Thus σ acts on W . Elements w1 and w2 are called σ-conjugate if there

exists w ∈ W such that w1 = wσw2w
−1.

If w1 and w2 are σ-conjugate then groups T σ◦w1 and T σ◦w2 are conjugate in G. This implies that to describe
the structure of all maximal tori we should describe the structure of groups T σ◦w where w runs over a full system of
representatives of σ-conjugacy classes.
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σ act on W trivially. Thus σ-conjugacy=conjugacy. Two elements of Symn are conjugate if there cyclic types
coincide. W acts on matrices by permuting rows and columns.

Let w = (12 . . . k)w1.

T σ◦w 3



λ1

λ2

. . .
λk

. . .
λn


=

=



λ1

λ2

. . .
λk

. . .
λn



σ◦w

=



λq
k

λq
1

λq
2

. . .
λq

k−1

. . .


.

We have λ1 = λq
k, λ2 = λq

1, . . . , λk = λq
k−1. This system is equivalent to the following one: λqk−1

1 = 1, λ2 = λq
1,

λ3 = λq2

1 , . . . , λk = λqk−1

1 . Hence if the decomposition of w into disjoint cycles contains a k-cycle then each matrix of
T σ◦w contains a block of the form 

λ
λq

λq2

. . .
λqk−1

 ,

where λqk−1 = 1. Now let n = n1 + n2 + · · · + ns. This partition determines a conjugacy class of Symn. Let w be
an element of the conjugacy class given by the partition. Then the decomposition of w into disjoint cycles contains
cycles of lengths n1, n2, . . . , ns.

T σ◦w ' (qn1 − 1)× (qn2 − 1)× · · · × (qns − 1).

Theorem. Let G = GLn(q). Let T be a maximal torus corresponding to the partition n = n1 + n2 + · · ·+ ns. Then

T ' (qn1 − 1)× (qn2 − 1)× · · · × (qns − 1).

3.10 Elements of composite orders

R. W. Carter, Centralizers of semisimple elements in the finite groups of Lie type, Proc. London Math. Soc. (3),
1978, V. 37, N 3, P. 491–507.

R. W. Carter, Centralizers of semisimple elements in the finite classical groups, Proc. Lond. Math. Soc. (3), 1981,
V. 42, N 1, P. 1–41.

Recall that every element in G can be presented as a product of a semisimple element and unipotent element.

g = su = us.

Hence g lies in CG(s). We have CG(s) = (CG(s))σ. CG(s)0 is a connected centralizer. It contains s and all unipotent
elements of CG(s), thus it contains g. The connected centralizer is a reductive subgroup of maximal rank.

Every reductive subgroup of maximal rank in G is isomorphic to a group of the form

GLn1(F p)×GLn2(F p)× · · · ×GLns
(F p),

where n1 + n2 + · · ·+ ns = n.
Every reductive subgroup of maximal rank in G is isomorphic to a group of the form

GLn1(q
k1)×GLn2(q

k2)× · · · ×GLns
(qks),

where n1k1 + n2k2 + · · ·+ nsks = n.
To describe the composite part of the spectrum it suffices to consider all reductive subgroups of the form

GLn1(q)× T,

where T is a maximal torus of GLn−n1(q).
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Theorem. Let q be a power of a prime p. Let νm(GLn(q)) consist of all numbers
pk[qn1 − 1, qn2 − 1, . . . , qns − 1] with s > 1 and pk−1 + 1 + n1 + n2 + · · ·+ ns = n.
Then µm(GLn(q)) ⊆ νm(GLn(q)) ⊆ ω(GLn(q)).

3.11 Spectrum of PSLn(q)

Theorem. Let G = PSLn(q), where n > 2 and q is a power of a prime p. Put d = (n, q − 1). Then ω(G) consists of
all divisors of the following numbers:

1) qn−1
d(q−1) ;

2) [qn1−1,qn2−1]
(n/(n1,n2),q−1) for n1, n2 > 0 such that n1 + n2 = n;

3) [qn1 − 1, qn2 − 1, . . . , qns − 1] for s > 3 and n1, n2, . . . , ns > 0 such that n1 + n2 + . . . + ns = n;

4) pk qn1−1
d for k, n1 > 0 such that pk−1 + 1 + n1 = n;

5) pk[qn1 − 1, qn2 − 1, . . . , qns − 1] for s > 2 and k, n1, n2 . . . , ns > 0 such that pk−1 + 1 + n1 + n2 + . . . + ns = n;

6) pk, if pk−1 + 1 = n for k > 0.

Let G = PSL5(3). d = (n, q − 1) = (5, 3− 1) = 1.

1) qn−1
d(q−1) .

35−1
1(3−1) = 121 = 112.

2) [qn1−1,qn2−1]
(n/(n1,n2),q−1) for n1, n2 > 0 such that n1 + n2 = n.

[34−1,3−1]
(5/(4,1),3−1) = 80 = 24 · 5.

[33−1,32−1]
(5/(3,2),3−1) = [26, 8] = 104 = 23 · 13.

3) [qn1 − 1, qn2 − 1, . . . , qns − 1] for s > 3 and n1, n2, . . . , ns > 0 such that n1 + n2 + . . . + ns = n.

No new elements.

4) pk qn1−1
d for k, n1 > 0 such that pk−1 + 1 + n1 = n.

3(33 − 1) = 78 = 2 · 3 · 13.

32(3− 1) = 18 = 2 · 32.

5) pk[qn1 − 1, qn2 − 1, . . . , qns − 1] for s > 2 and k, n1, n2 . . . , ns > 0 such that pk−1 + 1 + n1 + n2 + . . . + ns = n;

3[32 − 1, 3− 1] = 24 = 23 · 3.

6) pk, if pk−1 + 1 = n for k > 0.

µ(G) = {121, 104, 80, 78, 24, 18}.

3.12 Spectrum of PΩ±2n(q)

Theorem. Let G = PΩε
2n(q), where n > 4, ε ∈ {+,−}, q is a power of an odd prime p, and (4, qn − ε1) = 4. For

k > 1 put n(k) = (pk−1 + 3)/2. Then ω(G) consists of all divisor of the following numbers:

1) qn−ε1
4 ;

2) [qn1−ε11,qn2−εε11]
d , where n1 + n2 = n, ε1 ∈ {+,−}, d = 2, if (qn1 − ε11){2} = (qn2 − εε11){2}, and d = 1

otherwise;

3) [qn1 + 1, qn2 + 1, . . . , qnl + 1, qnl+1 − 1, qnl+2 − 1, . . . , qns − 1] for every s > 2, even l, if ε = +, and odd, if ε = −,
and n1, n2, . . . , ns > 0 such that n1 + n2 + · · ·+ ns = n;

4) pk qn−n(k)±1
2 for every k such that n(k) < n;

5) pk[qn1 + 1, qn2 + 1, . . . , qnl + 1, qnl+1 − 1, qnl+2 − 1, . . . , qns − 1] for every s > 1 and n1, n2, . . . , ns > 0 such that
n(k) + n1 + n2 + · · ·+ ns = n;

16



6) p[q ± 1, qn1 + 1, qn2 + 1, . . . , qnl + 1, qnl+1 − 1, qnl+2 − 1, . . . , qns − 1] for every s > 1, even l, if ε = +, and odd,
if ε = −, and n1, n2, . . . , ns > 0 such that 2 + n1 + n2 + · · ·+ ns = n;

7) p[q ± 1, qn−2−ε1
2 ];

8) pk, if n = n(k) for some k.

µ(PΩ+
10(9)) =?.

A.A.Buturlakin, M.A.Grechkoseeva, The cyclic structure of maximal tori of the finite classical groups, Algebra
and Logic, Springer US, vol. 46, no. 2, pp. 73–89.

A.A.Buturlakin, Spectra of finite linear and unitary groups, Algebra and Logic, Springer US, vol. 47, no. 2, pp.
91–99.

A.A.Buturlakin, The spectra of finite symplectic and orthogonal groups, to appear in Siberian Advances in Math-
ematics.

4 Petroglyphs

4.1 Frobenius Group

Definition (1). Let G be a transitive permutation group of a set Ω. If Gα 6= 1 while Gαβ = Gα ∩ Gβ = 1 for every
α, β ∈ Ω, then G is called a Frobenius group.

Theorem (Frobenius). Let G be a Frobenius group and H be a point stabilizer. If K = {x ∈ G | ∀α ∈ Ω αx 6=
α} ∪ {1}, then K forms a normal subgroup in G of order |G : H|.

Definition (2). Let G be a semidirect product of a normal subgroup K by a subgroup H. If the centralizer CK(h) is
trivial for every nontrivial h ∈ H, then G is called a Frobenius group with kernel K and complement H.

Prove [2] ⇒ [1], considering the action of G on Ω = G/H by right multiplication.
Simple examples: Sym3 ' 3 : 2, Alt4 = 22 : 3.

Proposition. Let G be a Frobenius group with kernel K and complement H. Then

• K is nilpotent, and is abelian if |H| is even.

• π(K) ∩ π(H) = ∅, and |H| divides |K| − 1.

• Sylow p-subgroup of H is cyclic for odd p, and is cyclic or generalized quaternion for p = 2.

G = 〈a, b | a2α−1
= b2 = c, c2 = 1, ab = a−1〉, α > 2, is a generalized quaternion group

Definition. A group G = ABC is called 2-Frobenius, if A E B, B E C, and groups A : B and B : C are Frobenius.

4.2 Definition and Examples

Let G be a finite group

The Gruenberg — Kegel graph GK(G) (the prime graph of G)
Vertex set V (GK(G)) = π(G) Edge set E(GK(G)) = {(r, s)|r, s ∈ π(G), r 6= s, rs ∈ ω(G)}
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Alt5

3

2

5

Alt16

13 3

2

5

11

7

Sporadic Groups

J2

7 5

2

3

M = F1

71

59

41

11

19

5 7 17

2

3

47

13

23

31

29

Linear Groups

PSL5(3)

11 5 2

3

13

PSL4(13)

61

3

2

13 7

17

5

4.3 Gruenberg — Kegel Theorem

• s = s(G) is the number of connected component of GK(G)

• πi(G), i = 1, . . . , s(G), is ith connected component

• if 2 ∈ π(G) put 2 ∈ π1(G)

• ωi(G) = {n ∈ ω(G) | π(n) ⊆ πi(G)}, i = 1, . . . , s(G)

Theorem (Gruenberg — Kegel). If G is a finite group with s(G) > 2, then then one of the following holds:

• s(G) = 2 and G is a Frobenius or 2-Frobenius group;

• there exists a nonabelian simple group S such that

S ≤ G = G/K ≤ Aut(S),

where K is the soluble radical of G; furthermore, K and G/S are π1(G)-groups, s(S) ≥ s(G), and for every i,
2 ≤ i ≤ s(G), there is j, 2 ≤ j ≤ s(S), such that ωi(G) = ωj(S).

Let L = M be the Monster (the largest sporadic group), and G be a finite group with ω(G) = ω(L).

71

59

41

11

19

5 7 17

2

3

47

13

23

31

29

ω(G) = ω(L) ⇒ GK(G) = GK(L) ⇒ S ≤ G = G/K ≤ Aut(S)

s(S) > s(G) > 4 and, up-to renumbering of indices, ω2(S) = {41}, ω3(S) = {59}, ω4(S) = {71}.
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There are no such simple groups S except the Monster itself. It easy to verify due to the classification of simple
groups with disconnected prime graph obtained by Williams and Kondrat′ev.

A nonabelian simple group L is called quasirecognizable (by spectrum) if every finite group G isospectral (= with
the same spectrum) to L has a unique nonabelian composition factor S and S ' L.

Example on the previous slide demonstrates that the Gruenberg — Kegel Theorem not only allows to establish
the existence of nonabelian factor S but helps to prove that L ' S.

The problem is what can be done if the prime graph of G is connected?

First result on the recognition by spectrum of simple groups with the connected prime graph was obtained in 2000
(cf. with the fact that the recognition problem for all sporadic groups has been solved in 1998).

Zavarnitsine, 2000: Alt16 is recognizable.

4.4 Cocliques and 2-cocliques

A coclique (or an independent set of vertices) of a graph Γ is any subset of vertex set consisting of pairwise
non-adjacent vertices.

Let ρ(Γ) be a coclique of maximal size in Γ. Its size t(Γ) = |ρ(Γ)| is called the independence number of Γ.

Let Γ = GK(G) be the prime graph of a finite group G.

• ρ(G) = ρ(Γ) is a coclique of maximal size in GK(G)

• t(G) = t(Γ) is the independence number of GK(G)

By analogy

• ρ(r, G) is a coclique of maximal size in GK(G) containing the prime r

• t(r, G) is the r-independence number of GK(G), i.e., the size of ρ(r, G)

Theorem (V,2005). Let G be a finite group with t(G) ≥ 3 and t(2, G) ≥ 2. Then
(1) There exists a finite simple nonabelian group S such that S ≤ G = G/K ≤ Aut(S) for maximal soluble normal

subgroup K of G.
(2) For every coclique ρ of π(G) with |ρ| ≥ 3 at most one prime in ρ divides the product |K| · |G/S|. In particular,

t(S) ≥ t(G)− 1.
(3) One of the following holds:

(a) every prime r ∈ π(G) non-adjacent in GK(G) to 2 does not divide the product |K| · |G/S|; in particular,
t(2, S) ≥ t(2, G);

(b) there exists a prime r ∈ π(K) non-adjacent in GK(G) to 2; in which case t(G) = 3, t(2, G) = 2, and
S ' Alt7 or A1(q) for some odd q.

Thus, if L is a finite simple group with t(L) ≥ 3 and t(2, L) ≥ 2, and G is a finite group with GK(G) = GK(L),
then for G the conclusion of the theorem holds.

Tools:

• lemma on insolubility of a group G with t(G) > 3 (Lecture 1)

• properties of Frobenius groups

• Brauer — Suzuki’s theorem on a group with generalized quaternion Sylow 2-subgroups

• Gorenstein — Walter’s classification of groups with dihedral Sylow 2-subgroups

• Steinberg’s description of automorphisms of groups of Lie type

Which finite simple groups can the theorem be applied for?

Vasil’ev - Vdovin, 2005
For every finite nonabelian simple group G an arithmetical criterion of adjacency of vertices in the prime graph

GK(G) was given.

Using this criterion we determined for every finite simple group G

• at least one coclique ρ(G) of maximal size in GK(G), and so t(G)

• all cocliques ρ(2, G), and so t(2, G)
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• all cocliques ρ(p, G) for groups of Lie type over a field of characteristic p, and so t(p, G)

Simple groups L with t(L) < 3:

• sporadic J2

• alternating Alt10

• exceptional 3D4(q)

• classical PSL3(q), (q − 1)3 6= 3, q + 1 = 2k; PSU3(3); PSU3(q), (q + 1)3 6= 3, q − 1 = 2k; PSp4(q), q > 3;
PSp6(2); Ω+

8 (2).

Alt10 is the only group from this list with connected prime graph

Simple groups L with t(2, L) = 1 are the alternating groups Altn satisfying the condition: there is no prime among
the numbers n, n− 1, n− 2, n− 3.

4.5 Adjacency criterion

Adjacency criterion
Let L = Altn be an alternating group of degree n, n > 5.

• odd primes r, s ∈ π(L) are adjacent iff r + s 6 n

• odd prime r ∈ π(L) and 2 are adjacent iff 4 + r 6 n

Remark. t(L) increases with a growth of the degree n of L.

The criterion for groups of Lie type is substantially complicated and we need two number-theoretical facts to
formulate it.

Given a prime r and a non-zero integer m, denote by mr the highest r-power dividing m.

Lemma. Let q be an integer, |q| > 1, m be a natural number.
(1) If odd r divides q − 1 then |qm − 1|r = mr|q − 1|r.
(2) If q − 1 is divisible by 4 or m is odd then |qm − 1|2 = m2|q − 1|2. If q + 1 is divisible by 4 and m is even then

|qm − 1|2 = m2|q + 1|2.

Zsigmondy primes
If q is a natural number greater than 1, r is an odd prime and (q, r) = 1, then e(r, q) denotes a multiplicative order

of q modulo r, that is a minimal natural number m with qm ≡ 1 (mod r). For an odd q, we put e(2, q) = 1 if q ≡ 1
(mod 4), and e(2, q) = 2 otherwise.

Zsigmondy’s theorem
Let q be a natural number greater than 1. For every natural number m there exists a prime r with e(r, q) = m but
for the cases q = 2 and m = 1, q = 3 and m = 1, and q = 2 and m = 6.

A prime r with e(r, q) = m is called a primitive prime divisor of qm − 1. By Zsigmondy’s theorem such a number
exists except for the cases mentioned above. Given q we denote by Rm(q) the set of all primitive prime divisors of
qm − 1 and by rm(q) any element of Rm(q).

On adjacency criterion for groups of Lie type
Let G be a finite simple group of Lie type with the base field of order q and characteristic p. It is well-known that

every prime divisor of order of G is a primitive prime divisor of qi−1, where i is bounded by some function depending
on the Lie rank of G. For simplicity suppose that G is not Suzuki or Ree group. Given a finite simple group G of Lie
type, define a set I(G) = {i | π(G) ∩ Ri(q) 6= ∅}. Notice that if π(G) ∩ Ri(q) 6= ∅, then Ri(q) ⊆ π(G). Thus, the
following partition of π(G) arises:

π(G) = {p} ∪
⋃

i∈I(G)

Ri(q).

As followed from an adjacency criterion, two distinct primes from the same class of the partition are always
adjacent. Moreover, in most cases an answer to the question: whether two primes from distinct classes Ri(q) and
Rj(q) of the partition are adjacent, depends only on the choice of the indices i and j.

Example. G = E8(q)
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5 is adjacent to any prime from R20 iff 5 ∈ R4 that is q ≡ 2 or q ≡ 3 modulo 5.

4.6 Linear Groups

Adjacency Criterion for Linear groups
Let G = PSLn(q) be a simple group over a field of characteristic p.
|L| = qn(n−1)/2(q2 − 1)(q3 − 1) · · · (qn − 1)/(n, q − 1).

Proposition (1). Let r, s be odd primes and r, s ∈ π(G) \ {p}. Denote k = e(r, q), l = e(s, q) and suppose that
2 ≤ k ≤ l. Then r and s are non-adjacent if and only if k + l > n and k does not divide l.

Proposition (2). Let r ∈ π(G) and r 6= p. Then r and p are non-adjacent if and only if one of the following holds:

1. r is odd, and e(r, q) > n− 2.

6. n = 2, r = 2.

7. n = 3, r = 3 and (q − 1)3 = 3.

Proof. See the previous lecture.

Proposition (3). Let r be a prime divisor of q − 1 and s be an odd prime distinct from the characteristic. Denote
k = e(s, q). Then s and r are non-adjacent if and only if one of the following holds:

1. k = n, nr ≤ (q − 1)r, and if nr = (q − 1)r, then 2 < (q − 1)r.

2. k = n− 1 and (q − 1)r ≤ nr.

Proof. See the previous lecture and the lemma on |qn − 1|r.
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5 Detective Story

5.1 Adjacency in Linear Groups

Recall that we discuss the criterion of adjacency in the prime graph of a finite group.

If q is a natural number greater than 1, r is an odd prime and (q, r) = 1, then e(r, q) denotes the least natural
number m with qm ≡ 1 (mod r). A prime r with e(r, q) = m is called a primitive prime divisor of qm− 1. Given q we
denote by Rm(q) the set of all primitive prime divisors of qm − 1 and by rm(q) any element of Rm(q).

Given a finite simple group G of Lie type with the base field of order q and characteristic p, we have the following
partition:

π(G) = {p} ∪
⋃

i∈I(G)

Ri(q).

As follows from an adjacency criterion, two distinct primes from the same class of the partition are always adjacent.
Moreover, in most cases an answer to the question: whether two primes from distinct classes Ri(q) and Rj(q) of the
partition are adjacent, depends only on the choice of the indices i and j.

Adjacency Criterion for Linear groups
Let L = PSLn(q) be a simple group over a field of characteristic p.
|L| = qn(n−1)/2(q2 − 1)(q3 − 1) · · · (qn − 1)/(n, q − 1).

Proposition (1). Let r, s be odd primes and r, s ∈ π(L) \ {p}. Denote k = e(r, q), l = e(s, q) and suppose that
2 ≤ k ≤ l. Then r and s are non-adjacent if and only if k + l > n and k does not divide l.

Proposition (2). Let r ∈ π(L) and r 6= p. Then r and p are non-adjacent if and only if one of the following holds:

1. r is odd, and e(r, q) > n− 2.

2. n = 2, r = 2.

3. n = 3, r = 3 and (q − 1)3 = 3.

Proof. See the following theorem from Lecture 3.

Theorem. Let L = PSLn(q), where n > 2 and q is a power of a prime p. Put d = (n, q − 1). Then ω(L) consists of
all divisors of the following numbers:

1) qn−1
d(q−1) ;

2) [qn1−1,qn2−1]
(n/(n1,n2),q−1) for n1, n2 > 0 such that n1 + n2 = n;

3) [qn1 − 1, qn2 − 1, . . . , qns − 1] for s > 3 and n1, n2, . . . , ns > 0 such that n1 + n2 + . . . + ns = n;

4) pk qn1−1
d for k, n1 > 0 such that pk−1 + 1 + n1 = n;

5) pk[qn1 − 1, qn2 − 1, . . . , qns − 1] for s > 2 and k, n1, n2 . . . , ns > 0 such that pk−1 + 1 + n1 + n2 + . . . + ns = n;

6) pk, if pk−1 + 1 = n for k > 0.

Proposition (3). Let r be a prime divisor of q − 1 and s be an odd prime distinct from the characteristic. Denote
k = e(s, q). Then s and r are non-adjacent if and only if one of the following holds:

1. k = n, nr ≤ (q − 1)r, and if nr = (q − 1)r, then 2 < (q − 1)r.

2. k = n− 1 and (q − 1)r ≤ nr.

Proof. See the theorem and the lemma on |qn − 1|r.

Recall that for an odd q, we put e(2, q) = 1 if q ≡ 1 (mod 4), and e(2, q) = 2 otherwise; and mr is the highest
r-power dividing m.

Lemma. Let q be an integer, |q| > 1, m be a natural number.
(1) If odd r divides q − 1 then |qm − 1|r = mr|q − 1|r.
(2) If q − 1 is divisible by 4 or m is odd then |qm − 1|2 = m2|q − 1|2. If q + 1 is divisible by 4 and m is even then

|qm − 1|2 = m2|q + 1|2.
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5.2 Cliques and Cocliques

Let us describe cocliques of maximal size in GK(L). We start with an example: L = PSL8(q), q odd

R7

R8

2

R1 R3

R5

R6

p

R4

R2

(q − 1)2 > 8

(q − 1)2 < 8

ρ(L) = {r5, r6, r7, r8} ⇒ t(L) = 4, and ρ(p, L) = {p, r7, r8} ⇒ t(p, L) = 3.

ρ(2, L) = {2, r7, r8} and t(2, L) = 3 if (q − 1)2 = 8; and t(2, L) = 2 otherwise.
To describe the situation in general we assume that n > 7 (and n > 12 if q = 2) to avoid exceptions arising when

n or q is small enough. Put m = [n/2].
ρ(L) = {rm+1, rm+2, . . . , rn} is a coclique of maximal size in GK(L) ⇒ t(L) = [n+1

2 ].
Note also that the set {p} ∪R1 ∪ . . . ∪Rm is always a clique.
ρ(p, L) = {p, rn−1(q), rn(q)} ⇒ t(p, L) = 3.
If p is odd, then ρ(2, L) ⊆ {2, rn−1(q), rn(q)} and 2 6 t(2, L) 6 3.

5.3 Quasirecognition of Linear Groups

Now we try to quasirecognize L = PSLn(q).
Recall that L is quasirecognizable if every G with ω(G) = ω(L) has exactly one nonabelian composition factor S,

and S ' L.
How can we do that? In fact, there exists one very old approach...

Approach (Sherlock Holmes, 1890)
“...when you have eliminated the impossible, whatever remains, however improbable, must be the truth...”

If L = PSLn(q) is simple, then

• t(2, L) > 2 (= there is an odd prime r non-adjacent to 2)

• t(L) = [n+1
2 ] and so it is an increasing function.

If G is a finite group with ω(G) = ω(L), then

• S 6 G = G/K 6 Aut(S), where S is nonabelian simple and K is the soluble radical of G

• if ρ is a coclique of GK(L) of size at least 3, then primes from ρ (excepting at most one) do not divide |K| · |G/S|
and forms a coclique in GK(S), in particular, t(S) > t(L)− 1 = [n−1

2 ], so t(S) increases together with t(L).

• if a prime r is non-adjacent to 2, then r does not divide |K| · |G/S| and so r ∈ π(S).

In fact, the most of the above statements are wrong. However, all of them become true if n is sufficiently large
(not as much as in Professor Olshanskiy’s lectures though). Since we try to explain a general idea why S must be
isomorphic to L, further we exploit the principle of taking n as large as we need (but we don’t overreach 40).

5.4 Neither Sporadic, no Exceptional

An example of this principle:
Assume that S is a sporadic simple group. Then t(S) 6 t(M) = 11. For n > 25 we have t(L)− 1 > [ 25+1

2 ]− 1 =
12 > t(S); a contradiction. In fact an elimination of sporadic group is easy anyway.

Since the Lie rank of exceptional groups is bounded (by 8), the size of maximal coclique is bounded as well (by
12 = t(E8(q))). Therefore, if n > 27, then S cannot be an exceptional group. To tell the truth, it’s not so easy to
prove that S is not an exceptional for n < 27.
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Two possibilities remain: S is an alternating group or a classical group, and we need some additional information
to move forward.

A divisor ki(q) of qi − 1 is said to be the greatest primitive divisor if π(ki(q)) = Ri(q) and ki(q) is the greatest
divisor with this property.

If i > 3, then ki(q) = Φi(q)/(r, Φir′ (q)), where Φi(x) is the ith cyclotomic polynomial and r is the largest prime
dividing i, and if ir′ does not divide r − 1, then (r, Φir′ (q)) = 1.

In particularly, if i is prime, ki(q) = qi−1
(q−1)(i,q−1) > qi−2.

5.5 Alternative of Alternating

L = PSLn(q) and S ' Altm.
Suppose that for L there exists a set M of 3 positive integers with

(∗) for every i ∈ M the number ki(q) is not equal to 1;

(∗∗) primitive prime divisors ri(q), rj(q), where i, j ∈ M , are non-adjacent in GK(L) if i 6= j.

Consider the numbers ki(q) where i runs over M . We know that at least two of these primes are coprime to
|K| · |G/S| and lie in ω(S). Denote them by a and b. Assume that there exists a prime divisor r of a such that
r 6 m/2. Since all the prime divisors of b are nonadjacent to r in GK(G), all of them exceed m/2. It follows that
either all primes from π(a) or all primes from π(b) are greater than m/2. Denote by k that of the numbers a and b
which has this property.

Let r′, r′′ ∈ π(k), r′ 6= r′′. Then r′ + r′′ > m ⇒ r′r′′ 6∈ ω(S) ⇒ r′r′′ ∈ ω(L) \ ω(G), a contradiction. Let k be an
r-power exceeding r. Then r2 > (m/2)2 > m ⇒ r2 ∈ ω(L) \ ω(G); a contradiction. Therefore, k is a prime, and the
condition k ∈ ω(S) implies m > k. Thus, m > ki(q) for some i ∈ M .

Denote by pl the p-period of L. As we know (Lecture 3)

pl−1 + 1 6 n 6 pl. (1)

Assume for simplicity that n > 17 (it is our old trick again). Then there are at least three primes in (n/2, n], and
each of them is not less than max{(n + 1)/2, 11}. By adjacency criterion the set M consisting of three such primes
satisfies the conditions (∗) and (∗∗). So for at least one prime i ∈ M the number ki(q) is a prime and does not exceed
m.

i > max{(n + 1)/2, 11} ⇒ m > ki(q) > max
{

q
n−3

2 , q9
}

.

m > q9 > p7 + 1 ⇒ p7 ∈ ω(S). It follows p7 ∈ ω(L) and l > 7. For l > 7 the inequality l + 2 < (2l−1 − 2)/2 holds,
so l + 2 < (pl−1 − 2)/2.

(1) ⇒ (pl−1− 2)/2 6 (n− 3)/2. Thus, l +2 < (n− 3)/2, so m > q(n−3)/2 > pl+1, hence, pl+1 ∈ ω(G) \ω(L); which
is impossible.

5.6 Classical Groups in the Same Characteristic

We obtained that S must be a classical group. Suppose n > 4, L = PSLn(pα) and S = PSLm(pβ), that is S is
a group over the field of the same characteristic p as L. We start with two auxiliary facts which are true under our
assumptions:

(1) Riγ(p) ⊆ Ri(pγ)

(2) r ∈ π(L) and r is non-adjacent to p in GK(L), then r is greater than 3 and does not divide |K| · |G/S|

Put rn−1 = r(n−1)α(p) and rn = rnα(p). (1) ⇒ rn−1 ∈ Rn−1(pα), rn ∈ Rn(pα). By adjacency criterion {p, rn−1, rn}
is a coclique in GK(L), so (2) ⇒ rn−1, rn ∈ π(S). Put en−1 = e(rn−1, p

β), en = e(rn, pβ). By definition of primitive
prime divisor, en−1β = a(n− 1)α for a positive integer a.

rn−1 ∈ π(S) ⇒ ken−1(p
β) divides |S|. A prime re(n−1)β

(p) divides ken−1(p
β), so it lies in π(S) ⊆ π(L). Hence

e(ren−1β(p), pα) 6 n. But e(ren−1β(p), pα) = e(ra(n−1)α(p), pα) = a(n − 1). It follows a(n − 1) 6 n, hence a = 1 and
en−1β = (n− 1)α.

By the same argument enβ = nα. In particular, en

en−1
= n

n−1 .

{p, rn−1, rn} is a coclique in GK(S) ⇒ {en−1, en} = {m− 1,m}. Now en/en−1 = n/(n− 1) ⇒ m = n. Moreover,
enβ = nα ⇒ β = α. Thus, L ' S.

The proof in case of other classical (or even exceptional) groups of the same characteristic is very similar but a
little bit troublesome. Furthermore, the result for symplectic and orthogonal groups contains some exceptional cases
which should be treated by a more subtle way (we’ll see this later).

But how one can prove that S must have the same characteristic as L?

We’ll discuss this problem tomorrow.
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6 From Gap till Map

6.1 Gap

During the last lecture we were proving that the nonabelian composition factor S of group G isospectral to simple
group L = PSLn(q) must be isomorphic L. We deduced that S must be a classical group, and if S has the same
characteristic as L, we proved that S ' L. So to complete the proof we have to answer the question:

Why S must have the same characteristic as L?

In fact, I don’t know the complete answer to this question. This is still an open problem, the most intriguing gap.
However, I strongly believe that the answer can be obtained and, moreover, there is a general way to prove S ' L for
all L of sufficiently large dimension (say, for n > 40).

At first we show that this trouble can be overreached under additional assumption that |L| = |G|.

6.2 Shi Conjecture

Question 12.39, Kourovka Notebook, 1992
Is it true that a finite group and a finite simple group are isomorphic if they have the same orders and sets of element
orders?

This question is inspired by

Conjecture (Shi Wujie, 1987)
Every finite simple group is uniquely determined by its order and spectrum in the class of all finite groups.

W. Shi, J. Bi, H.Cao, M.Xu, 1987,...,2003
Shi’s conjecture is valid for all simple groups except symplectic and orthogonal groups (more precisely, except

simple groups of Lie type Dn with n even, Bn and Cn).

Grechkoseeva, Mazurov and Vasil′ev, 2009
Shi’s conjecture is true for remaining groups. It follows

Theorem
If L is a finite simple group, and G is a finite group with |G| = |L| and ω(G) = ω(L), then G ' L.

First of all, let us realize that if a simple group L is quasirecognizable, then it is recognizable by spectrum and
order. In the previous lecture we deduced the problem of quasirecognizability of L = PSLn(q) to the case, when S is a
classical group over a field of characteristic distinct from characteristic of L (for brevity we call it a cross-characteristic
case). To prove the Shi Conjecture for L = PSLn(q) we consider this case under additional condition |L| = |G|.

It may seem strange that we handle the case of linear group established by Shi in 1990. But it is very logical from
my point of view. Arguing as in our paper, you don’t feel the difference treating any type of classical groups. On the
other hand, Shi’s arguments obviously fails for symplectic and orthogonal groups.

6.3 Proof

Proof. L = PSLn(q), q = pα, n is sufficiently large, G satisfies ω(G) = ω(L), and |G| = |L|.
Since n is large, G has the unique nonabelian factor S, and by arguments from the previous lecture, we can suppose

that S is a classical group over the field of characteristic v 6= p and order u = vβ .
|S| divides |G| = |L| ⇒ |S|v 6 |L|v.

|S|v =


um(m−1)/2, if S = PSLm(u) or PSUm(u);
um2/2, if S = PSp2m(u) or Ω2m+1(u);
um(m−1), if S = PΩε

2m(u), ε = ±

Thus, um(m−1)/2 6 |S|v. Now we find an upper bound for |L|v in a way to prove that

um(m−1)/2 6 q3n/2 (2)

Since v 6= p, put e(v, q) = i and (qi − 1)v = vk. Then for 1 6 j 6 n

(qj − 1)v =
{

1, if i - j;
(qi − 1)v(j/i)v, if i | j.
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In fact, when v = 2, (q − 1)2 = 2, j is even, the last equation ought to be replaced by (qj − 1)v = (qi + 1)v(j/i)v, but
we forget about the case v = 2 for brevity.

Among the natural numbers not exceeding n, there are exactly [n/i] numbers divisible by i; among them there
are exactly [n/ivl] numbers divisible by ivl. Therefore, |S|v is at most vk[n/i]+t, where t =

∑∞
l=1

[
n/ivl

]
. We have

t =
∑∞

l=1

[
n

ivl

]
6 1

i

∑∞
l=1

[
n
vl

]
6 1

i

[∑∞
l=1

n
vl

]
= 1

i

[
n

v−1

]
.

Since vk < qi, we have |S|v 6

6 vk[n/i]+[n/(v−1)]/i 6 vkn/i · v[n/(v−1)]/i 6 qin/i · q[n/(v−1)]/k 6 q3n/2

.
t(S) > t(L)− 1 = [(n− 1)/2]. However, t(S) is a linear function of type am + b, where 1 6 a 6 2 and −5 6 b 6 5

for every classical group S. Hence n/(m − 1) 6 const depends on type of S. On the other hand, the inequality (1)
implies um 6 q3n/(m−1). Using information on t(S) it easy to calculate that

um 6 q7/2 (3)

Let k be the greatest element of ω(S), then by results on spectra of classical groups (see Lecture 3), we have
k 6 2um.

On the other hand, if n > 17, there are three primes in (n/2, n], and (see arguments from the previous lecture) for
at least two of them, say i and j, their greatest prime divisors ki(q) and kj(q) lie in ω(S). Thus,

qn/2 6 k 6 2um (4)

Combining (2) and (3) we obtain qn 6 4q7, which is obviously impossible for sufficiently large n. Theorem is
proved.

Remark. It’s worth saying that the treating of small n was most troublesome part of our proof of the Shi Conjecture.

We’ll devote the rest of the lecture to overview of modern results on recognition just by spectrum.
For brevity we take an agreement to denote simple classical groups by one letter which points to its type. For

example, Ln(q) = PSLn(q), O+
n (q) = PΩ+

n (q), and so on.

6.4 Just by Spectrum Again

• G is a finite group

• h(G) is the number of pairwise non-isomorphic finite groups H with ω(H) = ω(G)

• G is recognizable (by spectrum) if h(G) = 1

• G is almost recognizable if h(G) < ∞

• G is non-recognizable if h(G) = ∞

Recognition problem
Given a finite group G, find h(G). If h(G) is finite, describe finite groups H with ω(H) = ω(G).

There exist non-recognizable simple groups. For example, h(L2(9)) = ∞, since

ω(L2(9)) = ω(V h L2(4)),

where V is the elementary abelian group of order 24.

Brandl-Shi, 1994
If L = L2(q) is a simple linear group and q 6= 9, then h(L) = 1.

Thus, almost all groups L2(q) are recognizable.
Shi, 1987; Mazurov-Xu-Cao, 2000; Zavarnitsine-Mazurov, 2007; Mazurov-Chen, 2008; Grechkoseeva, Grechkoseeva-

Vasil′ev, 2008

Theorem. Let L = Ln(q), where n > 2, q = 2k, and let d = (n, q − 1).
(1) If n = 2m + 1 for some natural number m then h(L) = 1.
(2) If n 6= 2m + 1 for any natural number m then h(L) is equal the number of positive integers dividing the d-share

of ( q−1
d , k). Moreover, a finite group G satisfies the equality ω(G) = ω(L) if and only if G is isomorphic to a natural

extension of L by a field automorphism of order dividing the d-share of ( q−1
d , k).

In particular, L is recognizable if and only if n is of the form 2m + 1 or (d, q−1
d , k) = 1.
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Corollary
All simple linear groups over fields of characteristic 2 are almost recognizable.

Main Conjecture
“Almost all” nonabelian simple groups are almost recognizable.

For groups of Lie type “almost all” means “of almost all ranks”.
L is a nonabelian simple group, G is a group with ω(G) = ω(L)

S 6 G = G/K 6 Aut(S)

K

S

G/S

(C)
1

(A)
1

(Q)
L

L is a nonabelian simple group

(Q) L is quasirecognizable if every G with ω(G) = ω(L) has exactly one nonabelian composition factor S, and
S ' L.

(C) L is recognizable among its coverings if for every G such that L is an homomorphic image of G the equality
ω(G) = ω(L) implies G ' L.

Note. If for L we prove (Q) and (C) then L 6 G 6 Aut(L).
In particular, L is almost recognizable.

(A) Describe groups G with ω(G) = ω(L) and L 6 G 6 Aut(L)

Solution of Recognition Problem
Achieve (Q), (C), and (A) for all nonabelian simple groups L

6.5 Map

Sporadic Alternating Exceptional Classical

Q

C

A
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The problem is solved

completely mostly partially poorly

Simple Groups Isospectral to Soluble Groups
Lucido, Moghaddamfar, 2004
Let L be a nonabelian simple group and G be a soluble group.
ω(L) = ω(G) ⇒ L ∈ {L3(3), U3(3), S4(3),Alt10}.

Theorem
Let L be a nonabelian simple group. Then a soluble group G with ω(G) = ω(L) exists if and only if L ∈
{L3(3), U3(3), S4(3)}.

L3(3), Mazurov (2002);
U3(3), Zinov′eva (2003);
Alt10, Staroletov (2008);
S4(3), Zavarnitsine (2010).

Sporadic Groups
Let L be a sporadic simple group.

Shi, 1988, . . . , Shi-Mazurov, 1998

• If L 6= J2, then h(L) = 1.

• If L = J2, then ω(L) = ω(V h L4(2)), where V is the elementary abelian group of order 26, and h(L) = ∞.

Alternating Groups
Let L = Altn, n > 5, be a simple alternating group.

(C) Zavarnitsine, Mazurov, 1999
If G is a covering of L, then ω(G) 6= ω(L).

(A) If n 6= 6, then Aut(L) = Symn.
If L < G 6 Aut(L), then G = Symn, and ω(G) 6= ω(L).
(Q) Let L be a simple alternating group Altn, n > 5.

If n = 6, then L ' L2(9) and h(L) = ∞.
If n = 10, then there is a group G satisfying ω(G) = ω(L) with a non-trivial soluble radical and a composition

factor S ' Alt5.
If n 6= 6, 10 and either n < 26 or there is a prime in the set {n, n− 1, n− 2}, then h(L) = 1.

However, if there are no primes among the numbers n, n− 1, n− 2, n− 3, nobody can even prove that a group G
with ω(G) = ω(L) has the only nonabelian composition factor.

Several years ago I. A.Vakula announced the following statement that seems provable.

If ω(G) = ω(L) and p is the greatest prime 6 n, then among composition factors of G there is a factor S ' Altm,
where p 6 m 6 n.

Exceptional Groups of Lie Type
Let L be an exceptional group of Lie type over a field of characteristic p.

(Q) L is quasirecognizable
(unpublished for L = E7(q), q > 3, which is my fault).

(C) It is sufficient to prove the following assertion.
If L ∈ {Eε

6(q), E7(q), 3D4(q)} and G = V h L, where V is an elementary abelian p-group, then ω(L) 6= ω(G).

(A) It is apparently valid (and mostly proved) that ω(G) 6= ω(L) if L < G 6 Aut(L).
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Conjecture (Question 16.24 in Kourovka Notebook)
If L is exceptional then there are no exceptions, and h(L) = 1.

Coverings of Classical Groups
Let L be a classical group of Lie type over field of characteristic p, and G be a covering of L. Proving ω(G) 6= ω(L)

we can assume that G = V h L is a semidirect product of elementary abelian r-subgroup V and the group L.

Grechkoseeva, 2010
If r 6= p and the dimension of L as a matrix group is greater than 5, then ω(G) 6= ω(L).

Zavarnitsine, 2008
If r = p, L is a linear or unitary group of dimension other than 4, then ω(G) 6= ω(L).

Is it true that ω(G) 6= ω(L), if G = V h L is a semidirect product of elementary abelian p-subgroup V and simple
symplectic or orthogonal group L of dimension greater than 5?

Table
Zavarnitsine, 2006
Let H be a connected linear algebraic group over an algebraically closed field of characteristic p and ϕ be a

surjective endomorphism of H. Given natural number r, put Hr = CH(ϕr). If Hr is finite for some r then ϕ is an
automorphism of Hr of order r and

ω((Hr)〈ϕ〉) =
⋃
k|r

r

k
ω(Hk).

Example of Application:
Let L = L3(q), q = pn, p an odd prime. Let G satisfy L 6 G 6 Aut(L) and ω(G) = ω(L).
If q ≡ 1 (mod 3) then G = L〈ρ3i〉, where 0 6 i 6 f , 3f ||n, and ρ is a field automorphism of L of order 3f .
If q ≡ 5, 9 (mod 12) then G = L〈γi〉, where i = 0, 1 and γ is a graph automorphism of L.
If q ≡ 3, 11 (mod 12) then G = L.

Theorem
Let L be a simple classical group over a field of characteristic p, and L 6∈ {L2(9), L3(3), U3(3), U3(5), U5(2), S4(3)}.
Suppose G is a finite group with ω(G) = ω(L) and S is the unique nonabelian composition factor of G. Then one of
the following holds

• S ' L

• L = S4(q), where q > 3, and S ' L2(q2)

• L ∈ {S6(q), O7(q), O+
8 (q)} and S ∈ {L2(q3), G2(q), S6(q), O7(q)}

• n ≥ 4, L ∈ {S2n(q), O2n+1(q)} and S ∈ {O2n+1(q), O−
2n(q)}

• n ≥ 6 is even, L = O+
2n(q) and S ∈ {S2n−2(q), O2n−2(q)}

• S is a group of Lie type over a field of characteristic v 6= p.

Grechkoseeva, Vasil′ev, Mazurov, 2009 (symplectic and orthogonal)
G., V., and Staroletov, 2010 (linear and unitary groups)
Remark. The results concerning symplectic and orthogonal groups take a considerable part in proving Shi’s

conjecture.
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Quasirecognizability of Classical Groups
L�S Sporadic Alternating Same Char Other Char

L & U

S & O

The problem is solved

completely mostly partially poorly
Thus, the conjecture on quasirecognizability of “almost all” simple classical groups is “almost” equivalent to the

following

Conjecture
Let L be a simple classical group over field of characteristic p, and S be a nonabelian composition factor of a group
G with ω(G) = ω(L). Then for “almost all” groups L the factor S is not isomorphic to a group of Lie type over field
of characteristic v 6= p.

As I said in the beginning, I believe that the conjecture is true.

7 Last Labours

7.1 Two Problems

L is a nonabelian simple group, G is a group with ω(G) = ω(L)

S 6 G = G/K 6 Aut(S)

K

S

G/S

(C)
1

(A)
1

(Q)
L

7.2 Automorphic Extensions

Recognition among Automorphic Extensions

Question 17.36, Kourovka Notebook
Find all finite nonabelian simple groups L such that for every of them there exists a finite group G isospectral to L
and possessing a proper normal subgroup isomorphic to L. For every simple group L determine all groups G satisfying
this condition.

It is easy to show that a group G must satisfy the condition L < G 6 AutL.

As we have seen at the last lecture, there is no problem at all for sporadic and alternating groups. Although the
problem has not been completely solved for exceptional groups, it is very close to that. So one can assume that L is
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a classical simple group. Here I’ll show only one auxiliary result on linear algebraic groups, and one example of its
application.

Automorphic Extensions of Classical Groups
Zavarnitsine, 2006
Let H be a connected linear algebraic group over an algebraically closed field of characteristic p and ϕ be a

surjective endomorphism of H. Given natural number r, put Hr = CH(ϕr). If Hr is finite for some r then ϕ is an
automorphism of Hr of order r and

ω((Hr)〈ϕ〉) =
⋃
k|r

r

k
ω(Hk).

Example of Application:
Assume that L = L3(q), q = pn, p is an odd prime. Let G satisfy L 6 G 6 Aut(L) and ω(G) = ω(L).
If q ≡ 1 (mod 3) then G = L〈ρ3i〉, where 0 6 i 6 f , 3f ||n, and ρ is a field automorphism of L of order 3f .
If q ≡ 5, 9 (mod 12) then G = L〈γi〉, where i = 0, 1 and γ is a graph automorphism of L.
If q ≡ 3, 11 (mod 12) then G = L.

7.3 Coverings

A finite group G is called a covering (or a cover) of a group H if H is a homomorphic image of G.
A group L is recognizable by spectrum from its covers if ω(G) 6= ω(L) for every proper cover G of L.

First of all we prove the following

Proposition. Let L be a finite group. Then L is recognizable by spectrum from its covers if and only if ω(L) 6= ω(G)
for every semidirect product G = KhL, where K is an elementary abelian group and L acts on K absolutely irreducibly.
Furthermore, if L is a simple group of Lie type or sporadic group, then L acts on K faithfully.

Proof. ⇒) is obviously true.
⇐) We prove sufficiency in a contrapositive form.

Step 1. Let G be a nontrivial covering of L ' G/K of minimal order such that ω(G) = ω(L). Let r ∈ π(K), S
be a Sylow r-subgroup of K, and let N = NG(S) be its normalizer in G. Then by Frattini argument, G = KN and
thus N/(N ∩K) ' L. Since G is minimal, we have N = G. It follows that K is nilpotent. Put T = Or′(K)Φ(K),
where Or′(K) is the maximal normal r′-subgroup of K, and Φ(K) is the Frattini subgroup of K. Then K/T is an
elementary abelian r-group for a prime r. Since (G/T )/(K/T ) ' L, we have T = 1 by minimality of G. Thus, K is
an elementary abelian r-group.

Step 2. A group L = G/K acts by conjugation on K. Indeed, if y ∈ x = Kx ∈ L, then zy = zkx = zx

for every element z ∈ K, so the action of L on K by zx = zx is correctly defined. Denote by H = K h L a
natural semidirect product under this action. We prove that ω(H) ⊆ ω(G), and so G can be replaced by H. Let
h = (x, k) ∈ H, where x is a coset from G/K with representative x and k ∈ K. Put |x| = n. If |h| = n or |x| 6= n,
then there is nothing to prove. Thus |h| = rn, and so 1 6= hn = (x, k)n = (1, kxn−1

. . . kxk) ⇒ kxn−1
. . . kxk 6= 1. Then

(xk)n = xn · kxn−1
. . . kxk = kxn−1

. . . kxk ⇒ |(xk)| = rn = |h|. Thus, ω(H) ⊆ ω(G), and we may assume that G is a
semidirect product.

Step 3. Let M be a proper L-invariant subgroup of K. Since (G/M)/(K/M) ' L, we have M = 1. Thus, L
acts irreducibly on K. Assume that this action is not absolutely irreducible. Let F be an extension of Fr such that
FL-module K ⊗Fr

F is reducible. Denote by K0 the proper submodule of this module. As in the previous step, it is
sufficient to show that ω(K0 h L) = ω(L). Suppose to the contrary that (k0x) ∈ K0 h L is an element of order nr not
belonging to ω(L), (here we assume that |x| = n). Then again as in the previous step, the element xn−1 + . . . + x + 1
considered as a linear transformation of K0 is nonzero. This means that it is also nonzero as a linear transformation
of K and hence G contains an element (kh) of order nr, a contradiction.

If L is a simple group of Lie type or sporadic group, then the adjacency criterion implies that the prime graph
GK(L) has the following property: for every r ∈ π(L) there is s ∈ π(L) such that rs 6∈ ω(G). Thus, the kernel of
action of L on K cannot coincide with L. Therefore, it is trivial, and the action is faithful.

7.4 Frobenius Action

Definition. Let G be a semidirect product of a normal subgroup N by a subgroup H. If the centralizer CN (h) is trivial
for every nontrivial h ∈ H, then G is called a Frobenius group with kernel N and complement H.

The next lemma is one of the main tools for recognizing from the covers.

Lemma. Let G = NH be a Frobenius group with kernel N and complement H. If V is a G-module over the
algebraically closed field of characteristic r coprime to |N |, and N does not lie in the kernel of an action of G on V ,
then there exists a vector v ∈ V such that the collection of vectors {vh | h ∈ H} is linearly independent. If T = V h G
is a natural semidirect product, then for every element h ∈ H we can find an element v ∈ V such that |vh| = r|h|.
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Proof. G = NH acts on V over a.c.f. F of char r.

• For every h ∈ H the group N consists of [n, h], where n runs over N .

• If K is the kernel of an action, then K < N , and G/K is Frobenius with the kernel N/K. Taking G/K instead
of G, assume that G acts faithfully on V .

• N is nilpotent ⇒ H normalizes the center Z of every Sylow subgroup of N ⇒ ZH is Frobenius, so assume that
N = Z is abelian.

• (r, |N |) = 1 ⇒ V = [V,N ]⊕ CV (N).

• [V,N ] is a G-submodule ⇒ assume V = [V,N ] and CW (N) = 0 for every nontrivial submodule W of V ⇒ V is
an irreducible G-module.

• N is abelian ⇒ there is 1-dimensional N -submodule W such that N acts nontrivially on W . Put W = 〈v〉.

• Define scalar function λ : N → F by vn = λ(n)v and notice that λ(n1 · n2) = λ(n1) · λ(n2).

• For 1 6= h ∈ H, n ∈ N , we have (vh)n = v(hnh−1)h = v(nh−1
)h = λ(nh−1

)(vh) ⇒ Wh = 〈vh〉 is N -submodule.

• If λ(nh−1
) = λ(n) for every n ∈ N , then λ(hnh−1n−1) = 1 for every n ∈ N ⇒ λ(n) = 1 for every n ∈ N , which

is impossible.

• There is n ∈ N with λ(nh−1
) 6= λ(n) ⇒ {vh | h ∈ H} is linearly independent.

• Take an element v in V such that {vh | h ∈ H} is linearly independent, then (vh)|h| = v(h|h|−1 + . . .+h+1) 6= 0
⇒ the order of vh in T = V h G is equal to r|h|.

7.5 Applications

Applications L = Alt5 ' SL2(4) ' PSL2(5).
G = KL is a natural semidirect product, L acts on elementary abelian r-group K faithfully and absolutely

irreducibly. Assume that ω(G) = ω(L).
Suppose that r = 2. Consider a subgroup F of L isomorphic to Sym3. F is a Frobenius group with a kernel N

of order 3 and complement H generated by involution h. Applying the lemma, we obtain that K must contain an
element k such that the element kh of KL is of order 4, which is impossible.

If r ∈ {3, 5}, then consider a subgroup F ' Alt4, which is Frobenius with elementary abelian kernel of order 4 and
complement of order 3. Applying the lemma again, we derive that 3r ∈ ω(G) \ ω(L); a contradiction.

Let L = M be the Monster.

µ(M) = {32, 36, 38, 40, 41, 45, 48, 50, 51, 54, 56, 57, 59, 60, 62, 66, 68,

69, 70, 71, 78, 84, 87, 88, 92, 93, 94, 95, 104, 105, 110, 119}

The recognizability of L from its covers follows from existence of two Frobenius subgroups. Namely, L contains
subgroups A = 59 : 29 and B = 41 : 40. Using A we can eliminate all possibilities except for r = 3. At the same time
existence of B allows to construct an element of order 120 in any extension of elementary abelian 3-subgroup K by
L.

7.6 Frobenius Subgroups in Linear Groups

Let G = GLn(q), q = pα, be a general linear group.
Consider the natural linear representation of G as a group of transformations of a space V over the field F of order

q.

Denote by W = 〈w〉 a 1-dimensional subspace of V , and by H the stabilizer of W in G. Then H consists of all
matrices of the shape (

λ 0
v A

)
,

where λ ∈ F ∗, v′ ∈ Fn−1, A ∈ GLn−1(q).
The subset Q of matrices of the shape (

1 0
v E

)
,
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where E is identity matrix of size (n− 1)× (n− 1), is an elementary abelian normal p-subgroup of H.
The subset M of matrices of the shape (

λ 0
0 A

)
,

where λ ∈ F ∗, A ∈ GLn−1(q), is a subgroup of H isomorphic to F ∗ ×GLn−1(q).
Moreover, Q ∩M = 1, so Q : M is a semidirect product of Q by M .
Since Q is a p-group, it lies in SLn(q) and intersects with its center trivially. So its image Q in L = PSLn(q) is

isomorphic to Q, and we identify Q with Q. On the other hand, M ′ = M ∩SLn(q) ' GLn−1(q) and Z(SLn(q)) ⊆ M ′.
In particular, M ′ contains a cyclic subgroup X generated by an element x of order qn−1 − 1. Denote by Y the image
of X in L, then |Y | = qn−1−1

(n,q−1) . Denote by F the subgroup Q : Y of L.

Lemma. The subgroup F of L is a Frobenius group with kernel Q, which is an elementary abelian p-group, and cyclic
complement Y of order qn−1−1

(n,q−1) .

Corollary. Let L = PSLn(q), q = pα be a simple linear group. Then L is recognizable by spectrum from its covers if
and only if ω(L) 6= ω(G) for every semidirect product G = K h L, where K is an elementary abelian p-group and L
acts on K faithfully and absolutely irreducibly.

Proof of the Corollary. If G = K : L, and K is an elementary abelian r-subgroup, where r 6= p, then we can
apply the lemma on Frobenius action to the Frobenius group F = Q : Y . We obtain that r qn−1−1

(n,q−1) ∈ ω(G). However,
qn−1−1
(n,q−1) ∈ µ(L), by the theorem on spectrum of L; a contradiction.

The proof of the lemma from the previous slide requires some additional information, so we prove a light version of
this lemma here. Namely, let r be a primitive prime divisor of qn−1 − 1, Z = 〈z〉 be a subgroup of cyclic complement
Y such that |z| = r. We prove that Q : Z is a Frobenius group. Indeed, by adjacency criterion, p is not adjacent to r
in GK(L). Therefore, CQ(z) = 1, and Q : Z is Frobenius.

The case when K is a p-group was handled by Mazurov and Zavarnitsine. The final result obtained by Zavarnitsine
in 2008 is the following

Theorem. Let L = PSLn(q) or PSUn(q), q = pm be a simple group. Suppose that either n > 5, or n = 4 and q is
prime, or n = 4 and q is even. If L acts on a vector space W of characteristic p, then ω(W h L) 6= ω(L).

Zavarnitsine has also constructed the example of G = W h L such that ω(G) = ω(L), where L = PSL4(1324) and
dim W = 96.

7.7 Coverings of Classical Groups

Coverings of Classical Groups
Let L be a classical group of Lie type over field of characteristic p, and G be a covering of L. Proving ω(G) 6= ω(L)

we can assume that G = V h L is a semidirect product of elementary abelian r-subgroup V and the group L.

Grechkoseeva, 2010
If r 6= p and the dimension of L as a matrix group is greater than 5, then ω(G) 6= ω(L).

Zavarnitsine, 2008
If r = p, L is a linear or unitary group of dimension other than 4, then ω(G) 6= ω(L).

Is it true that ω(G) 6= ω(L), if G = V h L is a semidirect product of elementary abelian p-subgroup V and simple
symplectic or orthogonal group L of dimension greater than 5?

8 Is the group PSL4(13) recognizable by spectrum?

8.1 Group PSL4(13) and its Order

L = PSL4(13) is the factor group of SL4(13) by center Z(SL4(13)) of order (4, 13− 1).

Order?

|PSLn(q)| = 1
(n, q − 1)

qn(n−1)/2
n∏

i=2

(qi − 1).

|L| = 134(4−1)/2(132 − 1)(133 − 1)(134 − 1)/(4, 13− 1) =
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= 136 · 27 · 34 · 5 · 72 · 17 · 61

.

8.2 Spectrum of Linear Group

Theorem.
Let G = PSLn(q), where n > 2 and q is a power of a prime p. Put d = (n, q − 1). Then ω(G) consists of all

divisors of the following numbers:

1) qn−1
d(q−1) ;

2) [qn1−1,qn2−1]
(n/(n1,n2),q−1) for n1, n2 > 0 such that n1 + n2 = n;

3) [qn1 − 1, qn2 − 1, . . . , qns − 1] for s > 3 and n1, n2, . . . , ns > 0 such that n1 + n2 + . . . + ns = n;

4) pk qn1−1
d for k, n1 > 0 such that pk−1 + 1 + n1 = n;

5) pk[qn1 − 1, qn2 − 1, . . . , qns − 1] for s > 2 and k, n1,
n2 . . . , ns > 0 such that pk−1 + 1 + n1 + n2 + . . . + ns = n;

6) pk, if pk−1 + 1 = n for k > 0.

8.3 Spectrum of L

The apex of spectrum of L:
µ(L) = {156, 168, 546, 549, 595} =

= {22 · 3 · 13, 23 · 3 · 7, 2 · 3 · 7 · 13, 32 · 61, 5 · 7 · 17}.

8.4 Prime Graph of L

PSL4(13)

61

3

2

13 7

17

5

ρ(L) = {{13 or 2}, 61, {5 or 17}} t(L) = 3
ρ(13, L) = {13, 61, {5 or 17}} t(13, L) = 3
ρ(2, L) = {2, 61, {5 or 17}} t(2, L) = 3

8.5 Structure Theorem

Theorem. Let G be a finite group with t(G) ≥ 3 and t(2, G) ≥ 2. Then
(1) There exists a finite simple nonabelian group S such that S ≤ G = G/K ≤ Aut(S) for maximal soluble normal

subgroup K of G.
(2) For every coclique ρ of π(G) with |ρ| ≥ 3 at most one prime in ρ divides the product |K| · |G/S|. In particular,

t(S) ≥ t(G)− 1.
(3) One of the following holds:

(a) every prime r ∈ π(G) non-adjacent in GK(G) to 2 does not divide the product |K| · |G/S|; in particular,
t(2, S) ≥ t(2, G);

(b) there exists a prime r ∈ π(K) non-adjacent in GK(G) to 2; in which case t(G) = 3, t(2, G) = 2, and
S ' Alt7 or PSL2(q) for some odd q.

I.B. Gorshkov, V, 2009: If G satisfies the hypothesis and there is a nonabelian simple group L with ω(G) = ω(L),
then Item (3.a) of the conclusion must hold.
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8.6 Scheme of Recognition

L = PSL4(13), G is a group with ω(G) = ω(L)

S 6 G = G/K 6 Aut(S)

K

S

G/S

(C)
1

(A)
1

(Q)
L

8.7 Is L Quasirecognizable?

What do we know about S?

1. π(S) ⊆ π(L) = {2, 3, 5, 7, 13, 17, 61}

2. {61, 5, 17} ⊆ π(S).

Let us check the list of simple groups satisfying these conditions.

There are no such groups except L itself. Thus, S ' L

Proposition. L = PSL4(13) is quasirecognizable by spectrum.

8.8 Is L Recognizable from Covers?

A finite group G is called a covering (or a cover) of a group H if H is a homomorphic image of G.
A group L is recognizable by spectrum from its covers if ω(G) 6= ω(L) for every proper cover G of L.

Proposition. Let L be a finite group. Then L is recognizable by spectrum from its covers if and only if ω(L) 6= ω(G)
for every semidirect product G = KhL, where K is an elementary abelian group and L acts on K absolutely irreducibly.
Furthermore, if L is a simple group of Lie type or sporadic group, then L acts on K faithfully.

Lemma. Let G = NH be a Frobenius group with kernel N and complement H. If V is a G-module over the
algebraically closed field of characteristic r coprime to |N |, and N does not lie in the kernel of an action of G on V ,
then there exists a vector v ∈ V such that the collection of vectors {vh | h ∈ H} is linearly independent. If T = V h G
is a natural semidirect product, then for every element h ∈ H we can find an element v ∈ V such that |vh| = r|h|.

Lemma. The subgroup F of L is a Frobenius group with kernel Q, which is an elementary abelian p-group, and cyclic
complement Y of order qn−1−1

(n,q−1) .

If L = PSL4(13), then Q : Y = 133 : 549. So for every r 6= 13 G contains element of order 549r, which is
impossible. Thus, r = 13.

Theorem (Zavarnitsine, 2008). Let L = PSLn(q) or PSUn(q), q = pm be a simple group. Suppose that either
n > 5, or n = 4 and q is prime, or n = 4 and q is even. If L acts on a vector space W of characteristic p, then
ω(W h L) 6= ω(L).

By the theorem, K = 1, so

Proposition. If L = PSL4(13) and G with ω(G) = ω(L), then L 6 G 6 Aut(L). In particular, L is almost
recognizable.
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8.9 Automorphisms of L

By the Steinberg Theorem, every automorphism ϕ of a classical group L can be represented as

ϕ = ιδφγ,

where

• ι is an inner automorphism

• δ is a diagonal automorphism

• φ is a field automorphism

• γ is a grpah automorphism

We are not interested in ι, and may assume that ϕ = δφγ.

Is there exists a field automorphism φ of L = PSL4(13)?

No, since there is no a nonidentity automorphism of the base field.

Thus, assume that G = L〈ϕ〉, where ϕ = δγ.

8.10 Is L Recognizable?

Suppose ϕ = γ is a nontrivial graph automorphism, that is an automorphism induced by a symmetry of the Dynkin
diagram of L.

In particular case of linear groups this automorphism can be represented as follows:
Consider the map γ : GLn(q) → GLn(q) defined by Aγ = (A>)−1.
Then (AB)γ = AγBγ, so γ is an automorphism (obviously of order 2).
Since det(Aγ) = det(A−1), γ is an automorphism of SLn(q), and thus it induces an automorphism of L = PSLn(q).
For n > 2 this automorphism is not inner. Furthermore, it can be proved that CL(ϕ) contains section H isomorphic

to PSpn(q)

If L = PSL4(13) and G = L〈γ〉, then 10 = 2 · 5 ∈ ω(G) \ ω(L); a contradiction. Thus, ϕ 6= γ.
Suppose ϕ = δ is a nontrivial diagonal automorphism, that is a conjugation of L by a scalar matrix of GLn(q) (more

precisely, by its image in PGLn(q)) with the determinant not equal to 1. So G = L〈δ〉 is a subgroup of PGLn(q).

Let L = PSL4(13), and G = L〈δ〉. We may assume |G : L| = 2. Hence G is the subgroup of index 2 in PGL4(13).
Therefore, 2 · 134−1

(13−1)·4 = 1190 = 2 · 5 · 7 · 17 ∈ ω(G) \ ω(L); a contradiction.

Finally, assume that ϕ = δγ, where δ, γ are both nontrivial, and G = L〈ϕ〉, where |G : L| = 2. Since γ normalizes
PGLn(q), δ can be chosen in PGLn(q) such that γ and δ commute. Then a Sylow 5-subgroup lies in the intersection
of the centralizers of δ and γ in L. Therefore, it lies in the centralizer of ϕ in L. Thus, 10 ∈ ω(G) \ ω(L).

We proved the following theorem.

8.11 Final

Theorem (Participants of Erlagol Summer School, 2010). The group L = PSL4(13) is recognizable by spectrum
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