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Abstract—The spectrum of a finite group is the set of its element orders. A group is said to be
recognizable (by spectrum) if it is isomorphic to any finite group that has the same spectrum.
A nonabelian simple group is called quasi-recognizable if every finite group with the same
spectrum possesses a unique nonabelian composition factor and this factor is isomorphic to the
simple group in question. We consider the problem of recognizability and quasi-recognizability
for finite simple groups of types Bn, Cn, and 2Dn with n = 2k.
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orthogonal group, symplectic group.

DOI: 10.1134/S0081543809070207

INTRODUCTION

Let G be a finite group, let π(G) be the set of prime divisors of the order of G, and let ω(G)
be the spectrum of G, i.e., the set of orders of its elements. The prime graph (the Gruenberg–Kegel
graph) GK(G) of the group G is defined as follows: its vertices are the elements of the set π(G),
and any two distinct vertices r and s are connected by an edge if and only if the number rs is
in ω(G). Evidently, the graph GK(G) is uniquely determined by the spectrum ω(G), and this
spectrum can be reconstructed by the set μ(G) of the elements from ω(G) that are maximal with
respect to divisibility.

For a finite group G, we denote by h(G) the number of finite groups H that are pairwise
nonisomorphic and satisfy the condition ω(H) = ω(G). The group G is called recognizable (by
spectrum) if h(G) = 1, almost recognizable if h(G) < ∞, and unrecognizable if h(G) = ∞. Since
every finite group containing a nontrivial normal solvable subgroup is unrecognizable, the question
of the recognizability of nonabelian simple groups is of the greatest interest here. It turns out that
many of such groups are recognizable or almost recognizable by spectrum. A survey of the latest
results in this research area can be found in [1,2]. The study of the question of the so-called quasi-
recognizability of finite simple groups has become an independent research area. A nonabelian
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finite simple group L is called quasi-recognizable (by spectrum) if any finite group G with the same
spectrum contains only one nonabelian composition factor and this factor is isomorphic to L (see
the survey of results on the quasi-recognizability of finite simple groups in [3]). Note that the
greatest progress here was made in the case when the prime graph of the group L is disconnected.
In particular, it was proved [4] that all nonabelian simple groups for which the number of connected
components of the prime graph is greater than 2 are quasi-recognizable except for the alternating
group Alt6. In the present paper, we consider the question of the quasi-recognizability of three
classes of finite simple groups such that their prime graphs have exactly two connected components.
Note that, in some special cases, we are able to prove the stronger property of recognizability.

Theorem 1. Let L = 2Dn(q), where n = 2k � 4 and q is odd. Then, the group L is quasi-
recognizable.

Theorem 2. Let L ∈ {Bn(q), Cn(q)}, where n = 2k � 8, q = pα, p is an odd prime, and
α ∈ N. Then, the group L is quasi-recognizable. Moreover, if α is odd, then the group L is
recognizable.

Theorem 3. Let L ∈ {B4(q), C4(q)}, where q is odd and G is a finite group satisfying the
condition ω(G) = ω(L). Then, the group G contains only one nonabelian composition factor, and
this factor is isomorphic to either L or 2D4(q).

Note that the question of the recognizability of the groups B2(q) (� C2(q)) was solved in [5].
For the case of even q, the quasi-recognizability of the groups Bn(q) (� Cn(q)) for n = 2k � 8 and
the groups 2Dn(q) for n = 2k � 4 was proved in [6]. The question of the quasi-recognizability of
the groups B4(q) and C4(q) remains open in both cases of even and odd q.

Our notation and terminology are mostly standard. Let n be a natural number, and let p be
a prime. We denote by np and π(n) the p-part and the set of all prime divisors of the number n,
respectively. If m is a natural number, we set nm =

∏
r∈π(m) nr and nm′ = n/nm. The largest

power of p contained in the spectrum of G is called the p-period of G. If L is a group of Lie type,
then we denote by Inndiag(L) the group generated by inner and diagonal automorphisms of the
group L. We denote by ε a variable with values + or −.

1. PRELIMINARY RESULTS

Let G be a finite group. Denote by s(G) the number of connected components of the graph
GK(G). For every i ∈ {1, . . . , s(G)}, denote by πi(G) the ith component of the graph GK(G), and
denote by ωi(G) the subset of ω(G) consisting of all the numbers such that their prime divisors are
in πi(G). If the order of the group G is even, then we assume that 2 ∈ π1(G).

Lemma 1 (Gruenberg, Kegel [7, Theorem A]). If G is a finite group such that s(G) > 1,
then one of the following statements is true:

(1) s(G) = 2 and G is a Frobenius group;

(2) s(G) = 2 and G = ABC, where A and AB are normal subgroups in G, B is a normal
subgroup in BC, and AB and BC are Frobenius groups;

(3) there exists a nonabelian simple group S such that S ≤ G = G/K ≤ Aut(S) for some
nilpotent normal subgroup K from G; moreover, K and G/S are π1(G)-groups, s(S) � s(G), and,
for any i ∈ {1, . . . , s(G)}, there exists j ∈ {1, . . . , s(S)} such that ωi(G) = ωj(S).

Finite simple groups with disconnected prime graphs were described by Williams [7] and
Kondrat’ev [8]. The complete list of these groups with corrected inaccuracies can be found in [5,
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Tables 1a–1c]. In the present paper, we use the shortened version of this list (see table). The
groups given in [5, Tables 1a–1c] separately, outside the infinite series, are absent in our version.
As follows from [9, Lemma 4], if S is a simple group and s(S) > 1, then, for any i ∈ {2, . . . , s(G)},
the set ωi(S) has a unique element that is maximal with respect to divisibility. In the table, this
maximal element is denoted by ni = ni(S) and p is an odd prime.

Infinite series of finite simple groups with disconnected prime graphs

S Conditions on S n2(S)
Altm 6 < m = p, p + 1, p + 2 and one of the numbers m, m − 2 p

is not prime
Ap−1(q) (p, q) �= (3, 2), (3, 4) (qp − 1)/(q − 1)(p, q − 1)
2Ap−1(q) (qp + 1)/(q + 1)(p, q + 1)
Ap(q) (q − 1) | (p + 1) (qp − 1)/(q − 1)
2Ap(q) (q + 1) | (p + 1) and (p, q) �= (3, 3), (5, 2) (qp + 1)/(q + 1)
Bm(q) m = 2k � 4 and q is odd (qm + 1)/2
Cm(q) m = 2k � 2 (qm + 1)/(2, q − 1)
2Dm(q) m = 2k � 4 (qm + 1)/(2, q + 1)
2Dm(2) m = 2k + 1 � 5 2m−1 + 1
2Dm(3) 9 � m = 2k + 1 �= p (3m−1 + 1)/2
2Dp(3) 5 � p �= 2k + 1 (3p + 1)/4
Bp(3) (3p − 1)/2
Cp(q) q = 2, 3 (qp − 1)/(2, q − 1)
Dp(q) p � 5 and q = 2, 3, 5 (qp − 1)/(q − 1)
Dp+1(q) q = 2, 3 (qp − 1)/(2, q − 1)
3D4(q) q4 − q2 + 1
F4(q) q is odd q4 − q2 + 1
G2(q) 2 < q ≡ ε1 (mod3), ε = ± q2 − εq + 1
E6(q) (q6 + q3 + 1)/(3, q − 1)
2E6(q) q > 2 (q6 − q3 + 1)/(3, q + 1)
S Conditions on S n2(S) n3(S)
Altm m > 6, m = p, p p − 2

and p − 2 is prime
A1(q) 3 < q ≡ ε1 (mod4), ε = ± π(q) (q + ε1)/2
A1(q) q > 2 and q is even q − 1 q + 1
2Dp(3) p = 2k + 1 (3p−1 + 1)/2 (3p + 1)/4
G2(q) q ≡ 0 (mod 3) q2 − q + 1 q2 + q + 1
F4(q) q is even q4 + 1 q4 − q2 + 1
2G2(q) q = 32k+1 > 3 q −

√
3q + 1 q +

√
3q + 1

2F4(q) q = 22k+1 > 2 q2 −
√

2q3 + q −
√

2q + 1 q2 +
√

2q3 + q +
√

2q + 1
S Conditions on S n2(S) n3(S) n4(S) n5(S)

2B2(q) q = 22k+1 > 2 q − 1 q −
√

2q + 1 q +
√

2q + 1

E8(q) q ≡ 2, 3 (mod5)
q10 − q5 + 1
q2 − q + 1

q10 + q5 + 1
q2 + q + 1

q8 − q4 + 1

E8(q) q �≡ 2, 3 (mod5)
q10 − q5 + 1
q2 − q + 1

q10 + q5 + 1
q2 + q + 1

q8 − q4 + 1
q10 + 1
q2 + 1

Recall that a subset of vertices of a graph is called a coclique if any two vertices of this subset
are not adjacent. Denote by t(G) the maximal cardinality of cocliques in GK(G) and, if 2 ∈ π(G),
then denote by t(2, G) the maximal cardinality of cocliques in GK(G) that contain 2.
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Lemma 2 [10,11]. Let L be a finite nonabelian simple group satisfying the conditions t(L) � 3
and t(2, L) � 2, and let G be a finite group satisfying the condition ω(G) = ω(L). Then, the
following statements are valid:

(1) There exists a nonabelian simple group S such that S ≤ G = G/K ≤ Aut(S), where K is
the maximal normal solvable subgroup of G.

(2) If a coclique ρ of vertices of the graph GK(G) has order greater than 2, then at most one
prime from ρ is in π(K) ∪ π(G/S). In particular, t(S) � t(G) − 1.

(3) Every prime r ∈ π(G) that is not adjacent in GK(G) with the number 2 does not divide the
product |K| × |G/S|. In particular, t(2, S) � t(2, G).

Lemma 3 [12, Lemma 1]. Suppose that G is a finite group, K is a normal subgroup in G,
and G/K is a Frobenius group with kernel F and cyclic complement C. If (|F |, |K|) = 1 and F is
not contained in KCG(K)/K, then r|C| ∈ ω(G) for some prime divisor r of the number |K|.

Lemma 4 [13]. In the group GLn(q), there is a Frobenius subgroup with kernel of order qn−1

and cyclic complement of order qn−1−1. In the group PSLn(q), there is a Frobenius subgroup with
kernel of order qn−1 and cyclic complement of order (qn−1 − 1)/(n, q − 1).

If q is a natural number, r is an odd prime, and (q, r) = 1, then we denote by e(r, q) the
multiplicative order of q modulo r, i.e., the smallest natural number m satisfying the condition
qm ≡ 1 (mod r). For odd q, we set e(2, q) = 1 if q ≡ 1 (mod 4) and e(2, q) = 2 otherwise.

Lemma 5 (Zsigmondy [14]). Let q > 1 be a natural number. Then, for every natural
number m, there exists a prime r for which e(r, q) = m except for the cases q = 2 and m = 1, q = 3
and m = 1, and q = 2 and m = 6.

A prime r satisfying the condition e(r, q) = m is called a primitive prime divisor of the number
qm − 1. In accordance with [11], the largest divisor of qm − 1 such that the set of its prime divisors
consists of primitive prime divisors only is called the largest primitive divisor. In [15, Lemma 6],
the formula is given for calculating largest primitive divisors.

Lemma 6 [16]. If q is an odd prime, n � 2, and qn = 2m + ε1, then q = 3, n = 2, m = 3,
and ε = +.

Lemma 7. Suppose that q is an odd natural number, n is an even natural number, and u is
a power of a prime. If u2 + εu + 1 = (qn + 1)/2, then either u = 3, q = 5, n = 2, and ε = + or
u = 4, q = 5, n = 2, and ε = −.

Proof. Substituting the values u � 4 into the equation, we obtain the specified solutions. Let
u > 4. It follows from the equation that u(2u + ε2) = qn − 1. Let n = 2l. Then, 2u(u + ε2) =
(ql − 1)(ql + 1). Since (ql − 1, ql + 1) = 2, then either ql − 1 or ql + 1 is a multiple of u. If the
quotient of this number over u is greater than 1, then 2u � ql + 1; hence, u + ε2 < 2u− 2 � ql − 1,
a contradiction. Consequently, ql − 1 = u, and we have ql + 1 = 2u + ε2. Hence, u = 2 − ε2 � 4.
The lemma is proved.

2. PROPERTIES OF THE GROUPS BN (Q), CN (Q), AND
2DN (Q)

In this section, the necessary information on the spectra of the groups in question, their covers,
and automorphic extensions is presented.

Lemma 8 [17]. Let G ∈ {Bn(q), Cn(q)}, where n � 3 and q is a power of an odd prime p.
Set d = 2 for G = Bn(q) and d = 1 for G = Cn(q). Then, ω(G) consists of all the divisors of the
following numbers:
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(1) (qn ± 1)/2;

(2) [qn1 ± 1, . . . , qns ± 1], where s � 2, n1, . . . , ns ∈ N, and n1 + . . . + ns = n;

(3) pl(qn1 ± 1)/d, where l, n1 ∈ N and (pl−1 + 1)/2 + n1 = n;

(4) pl[qn1 ± 1, . . . , qns ± 1], where s � 2, l, n1, . . . , ns ∈ N, and (pl−1 + 1)/2 + n1 + . . . + ns = n;

(5) pl, where l ∈ N and (pl−1 + 1)/2 = n.

As Lemma 8 shows, if Bn(q) �� Cn(q), then ω(Bn(q)) is a proper subset in ω(Cn(q)). The
spectra of the groups 2Dn(q) have not been described completely, but the orders of their semisimple
elements (see [18]) and the structure of their prime graphs (see [19]) are known. In addition, the
group Bn(q) (� Ω2n+1(q)) has a section isomorphic to 2Dn(q) (� PΩ−

2n(q)); hence, ω(2Dn(q)) is
contained in ω(Bn(q)). Thus, for any q, the group Cn(q) has the biggest spectrum among the
groups under consideration.

Lemma 9. Suppose that n � 4, q is a power of an odd prime p, and a ∈ ω(Cn(q)).

(1) If (a, p) = 1 and a > qn/3, then (qn−1 + 1)(q − 1)/2 � a � (qn−1 − (−1)n)(q + 1)/2.

(2) If q > p and a > qn/3 + 3, then (a, p) = 1.

(3) If q > p, then a � (qn−1 − (−1)n)(q + 1)/2; if q = p > 3, then a � qn + q; if q = p = 3, then
a � qn + q2.

Proof. (1) Note that, for q = 3, the lower bound (qn−1 + 1)(q − 1)/2 is greater than qn/3 by
exactly 1; hence, for the proof, it is sufficient to establish that a � (qn−1 − 1)(q + 1)/2.

The number a divides one of the numbers specified in the first two items of Lemma 8. If a is a
proper divisor of (qn ± 1)/2, then a � (qn + 1)/4 < qn/3. If a = (qn ± 1)/2, then the inequalities
required in statement (1) are satisfied.

If a divides [qn1 − 1, qn2 − 1], where n1 + n2 = n and q > 3, then

a � (qn1 − 1)(qn2 − 1)
q − 1

� qn − qn1 − qn2 + 1
3

� qn

3
,

a contradiction with the conditions of the lemma.
Let a divide [qn1 − 1, qn2 + 1], where n1 + n2 = n and q > 3. If a is a proper divisor of this

number or (qn1 − 1, qn2 + 1) > 2, then

a � (qn1 − 1)(qn2 + 1)
4

=
qn + qn1 − qn2 − 1

4
� qn + qn−1

4
� qn + qn/3

4
=

qn

3
,

which contradicts the conditions of the lemma. Consequently, a = [qn1−1, qn2 +1] = (qn1−1)(qn2 +
1)/2 and the required inequalities are satisfied.

Let a divide [qn1 + 1, qn2 + 1], where n1 + n2 = n and q > 3. If a is a proper divisor of this
number or (qn1 + 1, qn2 + 1) > 2, then

a � (qn1 + 1)(qn2 + 1)
4

=
qn + qn1 + qn2 + 1

4
� qn + qn−2 + qn−3 + 1

4
� qn + qn−1

4
� qn

3
,

a contradiction with the conditions. If a = [qn1 + 1, qn2 + 1], (qn1 + 1, qn2 + 1) = 2, and n1 > 1,
then

qn + 1
2

� a =
qn + qn1 + qn2 + 1

2
� qn + qn−2 + q2 + 1

2
� qn + qn−1 − q − 1

2
;
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hence, the required inequalities are satisfied. Finally, let a = [qn−1 + 1, q + 1]. If n is odd, then
a = (qn−1 +1)(q+1)/2 and the inequalities are satisfied. If n is even, then a = qn−1 +1 and, hence,
a � qn/3 for q > 3 and a = (qn−1 + 1)(q − 1)/2 for q = 3; i.e., the inequalities are satisfied again.

Let a divide [qn1 ±1, qn2 ±1, . . . , qns ±1], where s � 3 and n1 +n2 + . . .+ns = n. Let us find an
upper estimate for a. Since the number [qb ± 1, qb ± 1], where the signs are chosen independently,
divides q2b − 1, one can assume that n1 < n2 < . . . < ns. Since the 2-part of the least common
multiple of several numbers coincides with the 2-part of one of these numbers, we have

a � (qn1 + 1) . . . (qns + 1)
2s−1

=
qn + qn−n1 + qn−n2 + . . . + 1

2s−1
� qn + qn−1 + qn−2

4
+ 2qn−3.

If q > 3, then (qn + qn−1 + qn−2 + 8qn−3)/4 � qn(1 + 1/5 + 1/25 + 8/125)/4 = 163qn/500 < qn/3.
If q = 3, then a � (qn−1 − 1)(q + 1)/2.

(2) Assume that (a, p) �= 1. Then, a divides one of the numbers specified in the last three items
of Lemma 8.

Let a divide pl[qn1±1, qn2±1, . . . , qns±1], where s � 1 and (pl−1+1)/2 + n1 + n2 + . . . + ns = n.
Denote (pl−1 +1)/2 by n0. It follows from (1) that a � pk(qn−n0 +1). Since k � n0 and p2 � q, we
have pk � qn0/2. Thus, a � qn−n0/2+qn0/2 � qn−1/2+q1/2. If q1/2 � 5, then a � qn/5+q1/2 < qn/3.
If q1/2 < 5, then q = 9 and a � qn/3 + 3, which contradicts the assumption.

Let a = pl, where pl−1 + 1 = 2n. Then, l � n; hence, a � qn/2 < qn/3, a contradiction.

(3) For q > p and (a, p) = 1, the required inequality follows from (1) and (2). Let a =
pl+1[qn1 ± 1, . . . , qns ± 1], where (pl + 1)/2 + n1 + . . . + ns = n.

If l � 2, then l + 1 � (pl − 1)/2 and, consequently,

a � q(pl−1)/2(qn1+...+ns + 1) = qn−1 + q(pl−1)/2 < qn.

If l = 1 and q > 3, then a � p2(qn−(p+1)/2 + 1) � qn−1 + p2 � qn + q.
If l = 1 and q = 3, then a � q2(qn−2 + 1) = qn + q2.
If l = 0, then a � p(qn−1 + 1) � qn + q. The lemma is proved.

Lemma 10. Let S ∈ {Bn(q), Cn(q)}, where n = 2m � 4 and q is a power of an odd prime p.
Assume that G is a finite group, K is a nontrivial normal nilpotent subgroup of G, and G/K � S.
Then, either ω(G) �⊆ ω(Cn(q)) or K is a p-group.

Proof. Assume that ω(G) ⊆ ω(Cn(q)) and r ∈ π(K), where r �= p. Without loss of generality,
one can assume that K is an r-group. If r divides (qn + 1)/2, then pr ∈ ω(G) \ ω(Cn(q)); hence,
(r, (qn + 1)/2) = 1. Since the group S is simple, the centralizer CG(K) either lies in K or contains
the preimage in G of the group S. In the latter case, r(qn +1)/2 ∈ ω(G), which is impossible, since
(qn + 1)/2 ∈ μ(Cn(q)). Thus, CG(K) ⊆ K.

The group S contains a subgroup isomorphic to SLn(q). By Lemma 4, the group PSLn(q)
contains a Frobenius subgroup with kernel of order qn−1 and cyclic complement of order (qn−1−1)/d,
where d = (n − 1, q − 1). If we take a Hall π(d)′-subgroup in its preimage in the group SLn(q),
it will be a Frobenius group with kernel of order qn−1 and complement of order t = (qn−1 − 1)d′ .
Hence, by Lemma 3, the group G contains an element of order rt. The group Cn(q) contains an
element of order rt only if r divides q ± 1.

Let r divide q ± 1. The group S contains a subgroup isomorphic to GLn−1(q); hence, by
Lemma 4, for any i < n − 1, there is a Frobenius subgroup with kernel of order qi and cyclic
complement of order qi − 1.
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Let r = 2. Since n/2 < n − 1, the group S contains a Frobenius subgroup with kernel of
order qn/2 and cyclic complement of order qn/2 − 1. Then, by Lemma 3, the group G contains an
element of order 2(qn/2 − 1), which contradicts the fact that (qn/2 − 1)2 coincides with the 2-period
of the group Cn(q).

Let r be odd. The group S contains a Frobenius subgroup with kernel of order qn−2 and cyclic
complement of order qn−2 − 1. Then, by Lemma 3, the group G contains an element of order
r(qn−2 − 1). Assume that r(qn−2 − 1) ∈ ω(Cn(q)). Then, by Lemma 8, this number divides a
number of the form a = [qn1 ± 1, qn2 ± 1, . . . , qns ± 1], where n1 + n2 + . . . + ns = n. Among ni,
there must be either a number divisible by n − 2 or two different numbers divisible by n/2 − 1.
Consequently, a divides [qn−2−1, q2 +1]. However, [qn−2−1, q2 +1]r = (qn−2−1)r < r(qn−2−1)r,
a contradiction. The lemma is proved.

According to [20], a simple group L of Lie type over a field of characteristic p is called unisingular
if, under the action of the group L on any nontrivial finite abelian p-group K, any semisimple
element from L has a nontrivial fixed point in K.

Lemma 11 [20, Theorem 1.3]. The simple groups Bn(p) and Cn(p), where p is an odd prime,
are unisingular. The group E8(q) is unisingular for any q.

Lemma 12. Suppose that n = 2m � 4, p is an odd prime, α ∈ N, q = pα, and r2n−2 is a
primitive prime divisor of the number q2n−2 − 1.

(1) Assume that S is one of the groups Bn(q), Cn(q), and 2Dn(q); S ≤ G ≤ Aut(S); and
ω(G) ⊆ ω(Cn(q)). If α is odd, then G = S; if α is even, then π(G/S) ⊆ {2}.

(2) Assume that α is even, S = Bn(q), S ≤ G ≤ Aut(S), and ω(G) ⊆ ω(Cn(q)). Then, 2pr2n−2

lies in μ(Cn(q)) \ μ(G).

Proof. (1) First of all, qn + 1 ∈ ω(Inndiag(S)) \ ω(S); hence, G does not contain Inndiag(S).
Let r ∈ π(G/S) be an odd prime. Then, G contains a field automorphism ϕ of order r of S.

By [21, Proposition 4.9.1(a)], the centralizer CS(ϕ) is isomorphic to a group of the same Lie type
as S but over a field of order q1/r; hence, it contains elements of orders 2 and (qn/r +1)/2. Hence, G

contains elements of orders 2r and r(qn/r + 1)/2. However, for odd r, the number qn/r + 1 divides
qn + 1; hence, 2 and the prime divisors of (qn/r + 1)/2 are in different components of the graph
GK(Cn(q)), a contradiction. Hence, π(G/S) ⊆ {2}.

(2) If G = Bn(q), then the assertion follows from Lemma 8. Therefore, one can assume that
G > S. As proved above, π(G/S) = {2}. Assume that 2pr2n−2 ∈ ω(G). Then, in G\S, there is an
involution t such that its centralizer in S contains an element of order pr2n−2. The involution t is
not in Inndiag(S); hence, by [21, Proposition 4.9.1(d)], it is a field automorphism of the group S.
By [21, Proposition 4.9.1(a)], the centralizer CS(t) is isomorphic to a group of type Bn over a field
of order

√
q. However, there are no elements of order r2n−2 in such a group, a contradiction. The

lemma is proved.

3. PROOF OF THE THEOREMS

Let us fix the notation that will be used everywhere in this section.
Let L be one of the groups Bn(q), Cn(q), and 2Dn(q), where q = pα is a power of an odd prime p

and n = 2k � 4 (α, k ∈ N). Then, as shown in the table, s(L) = 2 and n2(L) = (qn + 1)/2. In
addition, by [19, Tables 6, 8] we have t(L) = (3n + 4)/4.

The set π(L) consists of the number p and of the divisors of the numbers qi−1, where 1 � i � 2n.
If not stated otherwise, ri denotes some primitive prime divisor of qi−1. By the Zsigmondy theorem
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(Lemma 5), such a divisor exists for any i > 2. Note that the 2-period of the group L coincides
with the 2-part of the number (qn − 1)/2.

Let G be a finite group with the property ω(G) = ω(L). By the Gruenberg–Kegel theorem
(Lemma 1), there exists a nonabelian simple group S such that S ≤ G = G/K ≤ Aut(S), where K

is a normal nilpotent subgroup of G; moreover, s(S) � 2 and n2(L) = ni(S) for some i > 1. In
addition, t(S) � t(L) − 1 = 3n/4 by item (2) of Lemma 2.

Let K �= 1. Then, S ∩ CG(K)K/K = 1. Indeed, the group CG(K)K/K would otherwise
contain the whole simple group S; hence, the group G would have an element of order rn2(S),
where r ∈ π1(G), which is impossible.

Proposition 1. The group S is isomorphic to one of the groups Bn(q), Cn(q), and 2Dn(q).

Proof. In the proof, we successively take for the group S the groups specified in the table.
The information on cyclic tori of groups of Lie type that is used in the proof can be found in [18]
for classical groups and in [22] for exceptional groups.

1. Assume that S � Altm. Then, (qn + 1)/2 = r, where r = m, m − 1, or m − 2. Consider a
coclique in GK(L) consisting of primitive divisors rn−1, r2n−2, and r2n−4. By Lemma 2, at least
two numbers from this coclique are in π(S). On the other hand,

rn−1 � qn−1 − 1
q − 1

� qn−1 − 1
2

<
qn + 1

4
=

r

2
� m

2
,

r2n−2 � qn−1 + 1
q + 1

� qn−1 + 1
4

<
qn + 1

4
=

r

2
� m

2
,

r2n−4 � qn−2 + 1
2

<
qn + 1

4
=

r

2
� m

2
;

consequently, the product of any two of these numbers lies in ω(S) \ ω(L), a contradiction.
2. Assume that S � Aε

m(u), where u = vβ , v is a prime, β ∈ N, m is an odd prime, and u− ε1
divides m + 1. Then, (qn + 1)/2 = (um − ε1)/(u − ε1). This equality implies that

qn − 1
2

= u
um−1 − 1
u − ε1

. (1)

Assume that u = 2β . Then, u = (qn − 1)2/2 � 8 coincides with the 2-period of the group L.
On the other hand, u − ε1 � (m + 1)/2; hence, m � u + 1 = 2β + 1. Consequently, the group S

contains a unipotent element of order 2β+1 = 2u = (qn − 1)2, a contradiction.
Assume that u is odd. Then, it follows from (1) that (um−1 − 1)2 > (qn − 1)2/2. Since S

contains a cyclic torus of order um−1 − 1, the 2-period of the group S exceeds the 2-period of the
group L in this case as well, a contradiction.

3. Assume that S � Aε
m−1(u), where u = vβ, v is a prime, β ∈ N, and m is an odd prime not

dividing u − ε1. Then, as in the previous case, (qn + 1)/2 = (um − ε1)/(u − ε1); hence,

2u(um−1 − 1) = (qn − 1)(u − ε1). (2)

Note that u �= 2 because qn − 1 is a multiple of 16. In addition, t(S) = (m + 1)/2 � 3n/4, which
implies m � 3n/2 − 1 � 5.

It follows from (1) that the number e(v, q) is a power of 2. Assume that e(v, q) > 2. Then,
{v, r2n, r2n−2, rn−1} is an independent set of vertices of the graph GK(G); hence, by Lemma 2,
the set π(S) contains, in addition to v and r2n, at least one of the numbers r2n−2 and rn−1.
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Let us denote it by r. The vertices r and v are not adjacent in GK(S) and r does not divide
(um − ε1)/(u− ε1) = (qn +1)/2; consequently, by [19, Proposition 3.1], the number r is a primitive
divisor of um−1 − 1. Since m � 5, the number r does not divide u − ε1. Then, it follows from (1)
that r divides qn−1, a contradiction with the definition of a primitive divisor. Thus, v is a primitive
divisor of either q − 1 or q2 − 1.

There is an element of order um−1 − 1 in the group S and, hence, in the group L. As follows
from (2), this order is a multiple of the primitive divisors rn, rn/2, . . . , r4. Moreover, by the equality

um−1 − 1 =
u − ε1

u
× qn − 1

2
,

it does not divide (qn − 1)/2 and does not exceed (qn − 1)/3 because u � 3. Since um−1 − 1 does
not divide (qn ± 1)/2, it follows, by Lemma 8, that it divides a number a of one of the following
two forms:

[qn1 − ε1, . . . , q
ns − εs], where n1 + . . . + ns = n and εi = ±1;

pl[qn1 − ε1, . . . , q
ns − εs], where (pl−1 + 1)/2 + n1 + . . . + ns = n and εi = ±1.

We assume that n1 � . . . � ns. The number a is a multiple of rn; consequently, n1 = n/2 and
ε1 = −1. Further, a is a multiple of rn/2; hence, either n2 = n/2 and ε2 = 1 or n2 = n/4 and
ε2 = −1. In the former case, n1 + n2 = n; hence, a = [qn/2 + 1, qn/2 − 1] divides qn − 1, a
contradiction. Therefore, n2 = n/4. Proceeding with the argument in a similar way, we find that
s � k − 1 for some natural number k and

n1 + n2 + . . . + nk−1 = n/2 + n/4 + . . . + 2 = n − 2.

If p does not divide a, then a divides qn − 1, which is impossible. Consequently, p divides a; hence,
either

a = p[qn/2 + 1, . . . , q2 + 1, q ± 1] = p
qn − 1

2k−1(q ∓ 1)

or p = 3 and

a = p2[qn/2 + 1, . . . , q2 + 1] = p2 qn − 1
2k−2(q2 − 1)

.

Since a � (qn − 1)/3, we find in the former case that 3p � 2k−1(q ∓ 1), which implies either
k = 2 and q = p or k = 3 and q = p = 3. In the latter case, we have 3p2 � 2k−2(q2 − 1), which
implies that k ∈ {2, 3} and q = p = 3.

Let k ∈ {2, 3} and q = p = 3. The number v is a divisor of q − 1 = 2 or q2 − 1 = 8,
which implies v = 2. It follows from (2) that u = 2k+1. It can be verified directly that, for
(q, u, n) ∈ {(3, 8, 4), (3, 16, 8)}, equality (2) is impossible for all m.

Let k = 2 and p = q. Then, um−1 − 1 = (qn − 1)(u − ε1)/(2u) divides (qn − 1)p/(2(p ± 1)).
Consequently, (u− ε1)(p±1) divides pu, which implies p = u− ε1. Since u < p, we find that ε = −
and u = p − 1. Thus, 2(p − 1)m−1 = (p2 + 1)(p + 1)p + 2. The right-hand side is congruent to 6
modulo p − 1; hence, p ∈ {3, 7}, which implies u ∈ {2, 6}, a contradiction.

4. Assume that S � Aε
m−1(u), where u = vβ , v is a prime, β ∈ N, m is an odd prime, and

u − ε1 is a multiple of m. Then,
qn + 1

2
=

um − ε1
(u − ε1)m

. (3)
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In view of [19, Table 6] and the inequality t(S) � 3n/4, we have (m + 1)/2 � 3n/4, which implies
m � 3n/2− 1. Since n � 4, we find that m � 5 and u � m + ε1 � 4. For q � 3, n � 4, m � 5, and
u � 4, it follows from (3) that q > u + 1.

The group S contains an element of order t = (um−1 − ε1)/m. Consequently, t ∈ ω(L) and

t =
u − ε1

u

(
um − 1

(u − ε1)m
− 1

m

)

=
u − ε1

u

(
qn + 1

2
− 1

m

)

=
u − ε1

u
× mqn + m − 2

2m
. (4)

Assume that q = p. Then, p > u − ε1 � m − 2; hence, p divides neither u − ε1 nor m − 2.
Consequently, p does not divide the right-hand side of (4); hence, p does not divide t. Thus, either
q > p or (t, p) = 1.

Let ε = −. Then,

t =
u + 1

u

(
qn + 1

2
− 1

m

)

� q + 1
q

× qn − 1
2

=
qn + qn−1 − 1 − 1/q

2
.

On the other hand, by item (3) of Lemma 9, the number t does not exceed

(qn−1 − 1)(q + 1)
2

=
qn + qn−1 − q − 1

2
,

a contradiction.
Let ε = +. Then, u � m + 1 � 6. If u = 7, then m = 5, a contradiction with the fact that m

divides u − 1. Thus, u � 8; hence, t satisfies the estimate

t =
u − 1

u

(
qn + 1

2
− 1

m

)

� 7
8
× qn − 1

2
>

qn

3
+ 3.

By items (1) and (2) of Lemma 9, the inequality t � (qn−1 + 1)(q − 1)/2 is satisfied, which implies
the estimate

(
qn + 1

2
− t

)

:
qn + 1

2
�

(
qn + 1

2
− (qn−1 + 1)(q − 1)

2

)

:
qn + 1

2
=

qn−1 − q + 2
qn + 1

<
1
q
.

On the other hand,

(
um − 1

m(u − 1)
− um−1 − 1

m

)

:
um − 1

m(u − 1)
=

um−1 + u − 2
um − 1

>
1
u

.

Consequently, 1/u < 1/q; hence, u > q, a contradiction.
5. Assume that S � A1(u), where u = vβ for a prime v and a natural number β.
Let v = 2. Then, (qn + 1)/2 = u± 1. If (qn + 1)/2 = u− 1, then qn + 3 = 2β+1; however, qn + 3

is not a multiple of 8, a contradiction. Hence, qn − 1 = 2β+1 and, by Lemma 6, we find that n = 2,
a contradiction.

Thus, v is odd. Then, either (qn + 1)/2 = v or (qn + 1)/2 = (u ± 1)/2. Since t(S) = 3 and
t(S) � 3n/4, we have n = 4. The numbers r3, r4, r6, and r8 form a coclique in the graph GK(G).
It follows from item (2) of Lemma 2 and from the equality t(S) = 3 that one of them is not in
π(S) and the remaining three are in π(S). Since these three numbers are not adjacent in GK(S),
one of them coincides with v, the second divides (u − 1)/2, and the third divides (u + 1)/2. In
particular, v �= p.

If (q4 + 1)/2 = (u + 1)/2, then u = q4, a contradiction.
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Assume that (q4 + 1)/2 = (u − 1)/2. Then, u = q4 + 2 and u + 1 = q4 + 3. Hence, r4 is not in
π(S). If one of the numbers r3 or r6 divides u, then, by the equality (q4 + 2, q3 − ε1) = (q − ε2, 9),
it is equal to 3, a contradiction.

Thus, (q4+1)/2 = v. Then, u = v, otherwise (u+1)/2 would be greater than v2/2 = (q4+1)2/8
and, hence, greater than all the elements from ω(L). Consequently, u − 1 = (q4 − 1)/2 and
u + 1 = (q4 + 3)/2. Thus, r4 divides u− 1. Hence, one of the numbers r3 and r6 divides q4 + 3 and
the other number does not divide the order of the group S. Assume that ri ∈ π(S) and rj does not
divide |S|, where i, j ∈ {3, 6}. Then, any primitive divisor of qi − 1 lies in π(S) and divides q4 + 3;
hence, the largest primitive divisor of qi−1, which is equal to (q2+εq+1)/(q−ε1, 3), divides q4+3.
By the equality (q4 + 3, q3 − ε1) = (q + ε3, 28), we find that (q2 + εq + 1)/(q − ε1, 3) = (q + ε3, 7).
The only odd solution of this equation is the number q = 3.

Let q = 3. Then, u = 41 and r3 = 13 ∈ π(K). By Lemma 4, the group S has a Frobenius
subgroup with kernel of order u and cyclic complement of order (u − 1)/2 = 20. It follows from
Lemma 3 that 260 ∈ ω(G) \ ω(L), a contradiction.

6. Assume that S is isomorphic to one of the groups Bm(u), Cm(u), and 2Dm(u), where m is
a power of 2. If u is even, then (qn + 1)/2 = um + 1; consequently, qn − 1 = 2um, which implies
n = 2 by Lemma 6, a contradiction. Thus, u = vβ , where v is an odd prime and β ∈ N. Then,
(qn + 1)/2 = (um + 1)/2, which implies p = v and αn = βm. In addition, t(S) = 3m/4 + 1 � 3n/4;
hence, m � n−4/3. Since m and n are powers of 2 greater than 1, the stronger inequality m � n is
true. If m > n, then β < α; consequently, 2α(n− 1) < 2β(m− 1) < 2αn. Then, the number r with
the property e(r, p) = 2β(m − 1) lies in ω(S) \ ω(L), which is impossible. Thus, m = n and u = q.

7. Assume that S is isomorphic to one of the groups Dm(u), Bm(u), Cm(u), and Dm+1(u),
where m is a prime; moreover, m � 5 and u ∈ {2, 3, 5} in the first case and u ∈ {2, 3} in the
remaining cases. Then, (qn + 1)/2 = (um − 1)/(2, u − 1) and (3m + 3)/4 � t(S) � 3n/4. Thus,
m � n − 1.

Let u = 2. Then, qn − 1 = 2m − 4, which is impossible, since qn − 1 is a multiple of 8.
Let u ∈ {3, 5}. The group S contains a parabolic subgroup P such that its Levy factor is of

type Am−1 and, consequently, contains an element of order t = (um − 1)/(q − 1). This element
and the unipotent radical of the group P generate a Frobenius group with cyclic complement of
order t. Hence, if r ∈ π(K) and r �= u, then, by Lemma 3, the group G has an element of order rt,
a contradiction, since t ∈ μ(L). Thus, π(G/S) ∪ π(K) ⊆ {2, u}.

Let m > 3. Then, t(S) > 3; hence, the cocliques of the graph GK(S) of maximal cardinality
contain neither 2 nor u. Consequently, t(S) = t(L); i.e., [(3m + 5)/4] = (3n + 4)/4 for S �� Dm(u)
and [(3m + 1)/4] = (3n + 4)/4 for S � Dm(u). In the former case, we have 3m + 3 = 3n + 4
or 3m + 5 = 3n + 4, a contradiction. The latter case is possible only for m = n + 1; hence,
qn + 1 = un+1 − 1. If q4 � u5 or q � u, then this equality is impossible. Hence, u = 5, q = 7, and
7n + 2 = 5n+1; however, 7n has remainder 1 or 4 when divided by 5, a contradiction.

8. Assume that S � 2Dm(2), where m = 2l + 1 � 5. Then, (qn + 1)/2 = 2m−1 + 1; hence,
2m = qn − 1. By Lemma 6, we find that n = 2, a contradiction.

9. Assume that S � 2Dm(3), where m = 2l + 1 or m is a prime. Then, either (qn + 1)/2 =
(3m−1 + 1)/2 or (qn + 1)/2 = (3m + 1)/4. In the former case, m = n + 1 and q = 3. Then,
(3m +1)/4 ∈ ω(S)\ω(L), a contradiction. In the latter case, 2(qn −1) = 3(3m−1 −1). The group S

has a cyclic torus of order (3m−1 − 1)/2; hence, the 2-period of the group S is greater than the
2-period of the group L, a contradiction.

10. Assume that S is isomorphic to one of the groups 3D4(u), G2(u), and F4(u). In this case,
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(qn + 1)/2 is equal to one of the numbers u4 − u2 + 1, u2 ± u + 1, and u4 + 1. Then, n = 2 by
Lemmas 7 and 6, a contradiction.

11. Assume that S � 2B2(u), where u = 22β+1 > 2 (β ∈ N). Then, either (qn + 1)/2 = u − 1
or (qn + 1)/2 = u±

√
2u + 1. In the former case, qn + 3 = 22β+2; however, qn + 3 is not a multiple

of 8, a contradiction.
In the latter case, qn = 2u±2

√
2u+1 = 22β+2±2β+2 +1 = (2β+1±1)2. Then, qn/2 = 2β+1 ±1;

hence, q = 3, n = 4, and β = 2 by Lemma 6. In this case, 31 ∈ ω(S) \ ω(L), a contradiction.
12. Assume that S � 2G2(u), where u = 32β+1 > 3 (β ∈ N). Then, (qn + 1)/2 = u ±

√
3u + 1;

hence, qn − 1 = 2 × 3β+1(3β ± 1). Consequently, qn − 1 is a multiple of 3β+1. Taking into account
that q2i + 1 is not a multiple of 3, we find that q + 1 � 3β+1. Thus,

qn − 1 > 6(q + 1)(q − 1) � 6 × 3β+1(3β+1 − 2) > 2 × 3β+1(3β + 1),

a contradiction.
13. Assume that S � 2F4(u), where u = 22β+1 � 8 (β ∈ N). Then,

qn + 1
2

= u2 + ε
√

2u3 + u + ε
√

2u + 1. (5)

Since t(S) = 5 and t(S) � 3n/4, we have n = 4. It is verified directly that the case β ≤ 3 is
impossible; hence, β � 4. Then, the number q4 − 1, which is equal to

2
√

2u(u + 1)
(√

u

2
+ 1

)
,

must be a multiple of 2
√

2u � 64; consequently, q ≡ ±1 (mod 16). In particular, q � 17.
The group S contains an element of order t = u2 − ε

√
2u3 + u − ε

√
2u + 1. Assume that q = p

and p divides t. Then, p divides the number q4 − t, which is equal to

u2 + ε3
√

u3 + u + ε3
√

2u =
√

2u(u + 1)
(√

u

2
+ 3ε

)
.

On the other hand, t = u2 + (u + 1)(1 − ε
√

2u); hence, p does not divide u + 1. Consequently, p

divides
√

u/2 + 3ε = 2β + 3ε. Assume that p < 2β . Then, q4 = p4 < 24β . On the other hand,

q4 = 2u2 − 2ε
√

2u3 + 2u − 2ε
√

2u + 1 > u2 = 24β+4,

a contradiction. Hence, ε = + and p = 2β + 3, which is impossible, since q = p ≡ ±1 (mod 16).
Thus, (t, p) = 1 or q > p.

Let ε = −. Then, it follows from (5) that q4 > (q2 + 1)/2 > u2/4; hence, q >
√

u/2. In
addition, t > (q4 + 1)/2 and, by Lemma 9, we have t � (q4 + q3 − q − 1)/2. Consequently,

(

t − q4 + 1
2

)

:
q4 + 1

2
� q3 − q + 2

q4 + 1
� 1

q
.

On the other hand,

(

t − q4 + 1
2

)

:
q4 + 1

2
=

2
√

2u3 + 2
√

2u

u2 +
√

2u3 + u +
√

2u + 1
� 2

√
2u

2u2
=

√
2
u

,
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a contradiction.
Let ε = +. Then, it follows from (5) that q4 > 2u2. Hence, q2 >

√
2u and

t =
q4 + 1

2
− 2

√
2u3 − 2

√
2u � q4 + 1

2
− 23/4q3 − 25/4q � q4 − 4q3 − 5q + 1

2
>

qn

3
+ 3.

By Lemma 9, we have t � (q4 − q3 + q − 1)/2. Consequently,

(
q4 + 1

2
− t

)

:
q4 + 1

2
� q3 − q − 2

q4 + 1
� 1

q
.

On the other hand, as shown above, this ratio is greater than
√

2/u, a contradiction.
14. Let S � Eε

6(u). Then, (qn+1)/2 = (u6+εu3+1)/(u− ε1, 3). If 3 does not divide u−ε1, then
n = 2 by Lemma 7, which is not so. Therefore, 3 divides u − ε1. Then, (u6+εu3+1)/3 = (qn+1)/2,
which implies 2(u6 + εu3 − 2) = 3(qn − 1). If u is even, then the left-hand side is congruent to 4
modulo 8. On the other hand, the right-hand side is a multiple of 8. Thus, u is odd.

Let us compare the 2-periods of the groups S and L. Since S has a cyclic torus of order u4 − 1,
we have (u4 − 1)2 � (qn − 1)2/2. On the other hand, it follows from the relations

3(qn − 1)
2

= u6 + εu3 − 2 = (u3 − ε1)(u3 + ε2)

that (qn − 1)2/2 = (u3 − ε1)2. Thus, (u4 − 1)2 � (u3 − ε1)2 = (u − ε1)2, a contradiction.
15. Assume that S � E8(u). Then,

qn + 1
2

∈
{

u10 + u5 + 1
u2 + u + 1

,
u10 − u5 + 1
u2 − u + 1

, u8 − u4 + 1,
u10 + 1
u2 + 1

}

.

Note that (u10 + u5 + 1)/(u2 + u + 1) = k15, (u10 − u5 + 1)/(u2 − u + 1) = k30, u8 − u4 + 1 = k24,
and (u10 + 1)/(u2 + 1) = (5, u2 + 1)k20, where ki is the largest primitive divisor of ui − 1. The case
(qn + 1)/2 = u8 − u4 + 1 is impossible by Lemma 7. Let us fix a number l from the set {15, 30, 20}
such that (qn + 1)/2 = kl.

If (qn + 1)/2 = (u10 + 1)/(u2 + 1), then

qn − 1
2

= u2(u2 − 1)(u4 + 1). (6)

If (qn + 1)/2 = (u10 + εu5 + 1)/(u2 + εu + 1), then

qn − 1
2

= u(u4 − 1)(u3 − εu2 + ε1). (7)

Assume first that u is odd. Then, as seen from (6) and (7), (qn−1)2/2 = (u4−1)2. The group S

has a cyclic torus of order u8−1; hence, it has an element of order (u8−1)2 > (u4−1)2. Consequently,
the 2-period of the group S is greater than the 2-period of the group L, a contradiction.

Now, let u = 2β (β ∈ N). It is specified in [19, Tables 6, 5] that t(2, L) = 2 and t(2, S) = 5. Let
w20, w24, and w30 be prime divisors of the numbers k20, k24, and k30, respectively. Note that all
these divisors are greater than 5, pairwise nonadjacent, and not adjacent to 2 in GK(L). Assume
that one of them, say r, divides |G/S|. Then, the group G has a field automorphism of order r of S.
The centralizer of this automorphism in S is isomorphic to the group E8(u0), where u0 = u1/r.
Consequently, it contains an element of order wl, where wl is a primitive prime divisor of ul

0 − 1.
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Since (r, l) = 1, the number wl is a primitive prime divisor of ul−1. Then, r ∈ π(G/S) ⊆ π1(G), wl

divides (qn + 1)/2, and rwl ∈ ω(G), a contradiction. Let the group G have a field automorphism
of order 2 of S. Then, its centralizer in S is isomorphic to the group E8(u0), where u0 = u1/2.
It can easily be verified that the order |E8(u0)| is mutually prime with each of the numbers k20,
k24, and k30. Thus, w20, w24, w30, and 2 are pairwise nonadjacent in GK(G). Since t(2, L) = 2, it
follows that either 2 ∈ π(K) or wi, wj ∈ π(K), where i, j ∈ {20, 24, 30}, i �= j, and i �= l �= j.

Let 2 ∈ π(K). Without loss of generality, one can assume that K is an elementary abelian
2-group. By Lemma 11, the group S is unisingular; hence, its semisimple element of order kl =
(qn + 1)/2 has a nontrivial fixed point in K. Consequently, qn + 1 ∈ ω(G) \ ω(L), a contradiction.

Let wi, wj ∈ π(K), where i, j ∈ {20, 24, 30}, i �= j. The numbers ki and kj are mutually prime;
hence, at least one of them is not a multiple of p. Let it be ki. Assume that 2ki �∈ ω(G). Then, ki

can divide only odd orders of maximal tori of the group L. By Lemma 8 and [18, Theorem 6], the
only torus of odd order in the group L is the torus of order (qn + 1)/2 = kl, which is not a multiple
of wi. Hence, 2ki ∈ ω(G). Since 2r �∈ π(G) for any prime divisor r of the number ki and 2 �∈ π(K),
the group K contains an element of order ki. Since the group K is nilpotent, we have kiwj ∈ ω(K).

As follows from item (3) of Lemma 9, any element from ω(G) does not exceed 10qn/9. The right-
hand sides of equalities (6) and (7) are less than 2u8; hence, qn � 4u8. Consequently, kiwj � 40u8/9.
On the other hand, ki � k20 � (u10 +1)/(5u2 +5) > u10/(5u2 +5) and wj � 40 because wj −1 must
be a multiple of j. Thus, 8u10/(u2 + 1) < 40u8/9, which implies 9u10 < 5u10 + 5u8 and 4u2 < 5, a
contradiction.

16. Let S be a simple group with a disconnected prime graph not specified in the table. Then,
(qn + 1)/2 = ni = ni(S) for some i > 1; consequently, 2ni − 1 is equal to the fourth power of a
natural number. It is verified directly that this is possible only in the case S � F1 and ni = 41.
Then, q = 3 and n = 4. Since 23 ∈ ω(F1) \ ω(L), this case is impossible.

The proposition is proved.
Since ω(2Dn(q)) ⊂ ω(Bn(q)) ⊂ ω(Cn(q)), it follows from Proposition 1 that, if L = 2Dn(q),

then the group S is isomorphic to L. Thus, Theorem 1 is proved.
It follows from Proposition 1 and the above strict inclusions that, if L = Bn(q), then S is

isomorphic to 2Dn(q) or L.

Proposition 2. Let the group L be equal to Bn(q) or Cn(q) with n � 8. Then, S �� 2Dn(q).

Proof. Assume the contrary. Then, rn−2rn+2 ∈ ω(L) \ω(S). By Lemma 12, the index |G : S|
is not a multiple of an odd prime. Hence, one of the numbers rn−2 and rn+2 divides |K|. Let
us denote it by r. Let kn−2 be the largest primitive prime divisor of the number qn−2 − 1. The
group S contains a subgroup of type An−2 over a field of order q. By Lemma 4, the group S has
Frobenius subgroups with kernels of order qn−2 and qn−3 and cyclic complements of order kn−2 and
qn−3 − 1, respectively. Consequently, rkn−2, r(qn−3 − 1) ∈ ω(G). On the other hand, if r = rn−2,
then rkn−2 �∈ ω(L) and, if r = rn+2, then r(qn−3 − 1) �∈ ω(L) by the inequality n− 3+n/2+1 > n,
a contradiction. The proposition is proved.

Proposition 3. Suppose that L, S ∈ {Bn(q), Cn(q)} and α is odd. Then, G = S � L.

Proof. Assume that K �= 1. Then, K is a p-group by item (1) of Lemma 10. Without loss of
generality, one can assume that K is an elementary abelian group. The group S has a subgroup
isomorphic to Bn(p) or Cn(p). Consequently, by Lemma 11, some element of order (pn + 1)/2 of
the group S has a nontrivial fixed point in K. Thus, the natural semidirect product KS contains
an element of order p(pn + 1)/2. By [23, Lemma 10], the group G also contains an element of this
order. On the other hand, α is odd; hence, pn + 1 divides qn + 1. Therefore, in view of the table,
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the prime divisors of the number (pn +1)/2 and p are in different components of the graph GK(L),
a contradiction.

Thus, K = 1. By item (1) of Lemma 12, the group G coincides with S. Since ω(Bn(q)) �=
ω(Cn(q)), we find that S � L. The proposition is proved.

The assertion of Theorem 2 follows from Propositions 1, 2, and 3 in the case when α is odd.

Proposition 4. Let α be even, and let L = Cn(q). Then, S �� Bn(q).

Proof. Assume the contrary. Then, pr2n−2(qn−1+1)2 ∈ ω(G)\ω(G) by item (2) of Lemma 12.
Hence, the subgroup K is not equal to 1 and, by Lemma 10, it is a p-group. Moreover, the group G

has an element x of order r = r2n−2 such that C =: CK(x) �= 1. Denote by x the image of x

in G. By item (1) of Lemma 12, we have π(G/S) ⊆ {2}; hence, x is an element of order r of
the group S. A Sylow r-subgroup of the group S is cyclic; hence, all such elements are conjugate
in S. As follows from the description of the centralizers of semisimple elements of groups of
type Bn [24, Proposition 11], CS(x) has a subgroup H = 〈x〉 × M , where M � B1(q).

Let 1 = Z0(K) ≤ Z1(K) ≤ . . . ≤ Zs(K) = K be the upper central series of the group K. There
exists i � 0 such that Zi(K)∩C = 1 and Zi+1(K) ∩ C �= 1. Taking the quotient group of G modulo
Zi(K), one can assume without loss of generality that V := C ∩ Z(K) �= 1. Note that V is an
elementary abelian group, otherwise G would contain an element of order p2r, which is impossible.
The preimage H of the group H in G normalizes V and K centralizes V ; hence, conjugation by
elements of H induces the action of the group H on V .

Let p > 3. The group M has a subgroup isomorphic to B1(p). For p > 3, the group B1(p)
is simple and, by Lemma 11, unisingular. Hence, the natural semidirect product V M contains an
element of order pr(p + 1)/2. By [23, Lemma 10], G also contains an element of this order. By
the hypothesis, α is even; hence, (qn−1 + 1, p + 1) = 2. Since (p + 1)/2 > 2, the group L has no
elements of order pr2n−2(p + 1)/2, a contradiction.

Thus, p = 3. Then, q � 9. If M does not centralize V , then CM (V ) = 1 because M is simple.
Consider a subgroup F of the group M isomorphic to B1(3) � Alt4. The group F is a Frobenius
group with kernel of order 4 and complement of order 3. Assume that y ∈ F and |y| = 3. By
Lemma 3, the natural semidirect product V H contains an element of order 9. This means that
there exists an element v in V such that w = vy2

vyv �= 1. Let y be some preimage of the element y

in H. The elements x and y commute modulo K; hence, xy and xyv are elements of order 3lr. In
this case,

(xyv)3r = (xy)3rv(xy)3r−1
v(xy)3r−2

. . . v = (xy)3rvy3r−1
vy3r−2

. . . v = (xy)3rwr;

therefore, xy and xyv cannot be of order 3r simultaneously. Consequently, there is an element of
order 9r = 32r2n−2 in G, which contradicts the fact that the number 32r2n−2 is absent in ω(L).
Thus, M centralizes V . Hence, G has an element of order pr2n−2(q−1)/2. Since (qn−1+1, q−1) = 2
and (q − 1)/2 > 2, there are no elements of this order in L. The proposition is proved.

The assertion of Theorem 2 in the case when α is even follows from Propositions 1, 2, and 4.
The assertion of Theorem 3 follows from Propositions 1, 3, and 4.
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