
1 23

Journal of Algebraic Combinatorics
An International Journal
 
ISSN 0925-9899
 
J Algebr Comb
DOI 10.1007/s10801-016-0715-5

Cartan coherent configurations

Ilia Ponomarenko & Andrey Vasil’ev



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Algebr Comb
DOI 10.1007/s10801-016-0715-5

Cartan coherent configurations

Ilia Ponomarenko1 · Andrey Vasil’ev2,3

Received: 23 February 2016 / Accepted: 21 September 2016
© Springer Science+Business Media New York 2016

Abstract The Cartan scheme X of a finite group G with a (B, N )-pair is defined to
be the coherent configuration associated with the action of G on the right cosets of the
Cartan subgroup B ∩ N by right multiplication. It is proved that if G is a simple group
of Lie type, then asymptotically the coherent configuration X is 2-separable, i.e.,
the array of 2-dimensional intersection numbers determines X up to isomorphism.
It is also proved that in this case, the base number of X equals 2. This enables us
to construct a polynomial-time algorithm for recognizing Cartan schemes when the
rank of G and the order of the underlying field are sufficiently large. One of the key
points in the proof is a new sufficient condition for an arbitrary homogeneous coherent
configuration to be 2-separable.

1 Introduction

A well-known general problem in algebraic combinatorics is to characterize an asso-
ciation scheme X up to isomorphism by a certain set of parameters [3]. A lot of
such characterizations are known when X is the association scheme of a classical

The work of the first and the second authors was partially supported, respectively, by the Grant RFBR
No. 14-01-00156 and RFFI Grant No. 13-01-00505.

B Ilia Ponomarenko
inp@pdmi.ras.ru

Andrey Vasil’ev
vasand@math.nsc.ru

1 St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia

2 Sobolev Institute of Mathematics, Novosibirsk, Russia

3 Novosibirsk State University, Novosibirsk, Russia

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10801-016-0715-5&domain=pdf
http://orcid.org/0000-0001-9291-3007


J Algebr Comb

distance regular graph [4]. In most cases, the parameters can be chosen as a part
of the intersection array of X . However, in general, even the whole array does not
determine the scheme X up to isomorphism. Therefore, it makes sense to consider
the m-dimensional intersection numbers, m ≥ 1, introduced in [12] for an arbitrary
coherent configuration (for m = 1, these numbers are ordinary intersection numbers;
the exact definitions can be found in Sect. 2). It was proved in [12] that every Johnson,
Hamming or Grassmann scheme is 2-separable, i.e., is determined up to isomorphism
by the array of 2-dimensional intersection numbers.

In a recent paper [1], a generalized notion of distance regularity in buildings was
introduced. According to [24], there is a natural 1-1 correspondence between the class
of all buildings and the class of special homogeneous coherent configurations called
the Coxeter schemes (see also [23, Chapter 12]). In this language, the Tits theorem
on spherical buildings says that if X is a finite Coxeter scheme of rank at least 3 and
trivial thin radical, then there exists a group G acting on a set � such that

X = Inv(G,�) (1)

where Inv(G,�) is the coherent configuration of G, i.e., the pair (�, S) with S =
Orb(G,� × �). Moreover, in this case, G is a group with a (B, N )-pair. Thus, a
characterization of the coherent configuration (1) with such G by the m-dimensional
intersectionnumberswith smallm couldbe considered as a generalizationof the above-
mentioned results on the association schemes of classical distance regular graphs to
the non-commutative case.

In the present paper, we are interested in coherent configurations (1) in the case
where G is a finite group with a (B, N )-pair and X is a Cartan scheme of G in the
following sense.

Definition 1.1 The Cartan scheme of G with respect to (B, N ) is defined to be the
coherent configuration (1), where � = G/H consists of the right cosets of the Cartan
subgroup H = B ∩ N and G acts on � by right multiplication.

Note that the permutation group induced by the action of G is transitive and the
stabilizer of the point {H} coincides with H . In a Coxeter scheme of rank at least 3, the
point stabilizer equals B. Therefore, such a scheme is a quotient of a suitable Cartan
scheme.

The separability problem [13] consists of finding the smallestm forwhich a coherent
configuration is m-separable. The separability problem (in particular, for a Cartan
scheme) is easy to solve if the group H is trivial. Indeed, in this case, the permutation
group induced by G is regular and the corresponding coherent configuration is 1-
separable. The following theorem gives a partial solution to the separability problem
for Cartan schemes when G is a finite simple group of Lie type and hence with a
(B, N )-pair. In what follows, we denote byL the class of all simple groups of Lie type
including all exceptional groups and all classical groups �(l, q), for which l ≥ l0 and
q ≥ al, where the values of l0 and a are given in the last two columns of Table 2.

Theorem 1.2 TheCartan schemeX of every finite simple groupG ∈ L is2-separable.
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As a byproduct of the proof of Theorem 1.2, we are able to estimate the base
number of a Cartan scheme satisfying the hypothesis of this theorem (as to the exact
definition, we refer to Sect. 2.2; see also [13] and [2, Sec. 5], where the base number
was called the EP-dimension). The base number b(X ) of a coherent configuration X
can be thought as a combinatorial analog of the base number of permutation group,
which is the minimal number of points such that only identity of the group leaves each
of them fixed. In fact, for the coherent configuration (1), we have

b(G) ≤ b(X ), (2)

where b(G) is the base number of the permutation group induced by G. Moreover,
in this case, obviously, b(G) = 1 if and only if b(X ) = 1. In general, b(G) can be
much smaller than b(X ). The following theorem shows that this does not happen for
the Cartan schemes in question.

Theorem 1.3 Let X be the Cartan scheme of a group G ∈ L. Then, b(X ) ≤ 2 and
b(X ) = 1 if and only if the group H is trivial.

Let us deduce Theorems 1.2 and 1.3 from the results whose proofs occupy most
of the paper. Let X be the Cartan scheme of a group G ∈ L. Denote by c and k the
indistinguishing number and the maximum valency of X , respectively.1 Translating
these invariants into group-theoretic language, we prove in Theorem 4.1 that in our
case

2c(k − 1) < n (3)

where n = |�|. The proof of this inequality forms the group-theoretic part of the
whole proof. The combinatorial part of the proof is to analyze the one-point extension
of a homogeneous coherent configuration, for which inequality (3) holds; here, the
point extension can be thought as a combinatorial analog of the point stabilizer of
permutation group. In this way, we prove Theorem 3.1, which implies that the one-
point extension of X is 1-regular (see Sect. 2.2). Now Theorems 1.2 and 1.3 are
immediate consequences of Corollary 2.6 obtained by a combination of two results
in [13].

When the rank of a simple group G of Lie type is small, inequality (3) does not
generally hold, but the statements of Theorems 1.2 and 1.3 may still be true. For
example, if G = PSL(2, q) with even q, then inequality (3) is not true; however, the
following assertion holds.

Theorem 1.4 Let X be the Cartan scheme of the group PSL(2, q), where q > 3.
Then, X is 2-separable and b(X ) = 2.

We believe that the Cartan scheme of every simple group of Lie type is 2-separable.
Moreover, as in the case of classical distance regular graphs, it might be that in most
cases such a scheme is 1-separable, i.e., is determined up to isomorphism by the

1 In the complete colored graph representingX , k is themaximumnumber of themonochrome arcs incident
to a vertex, and c is the maximum number of triangles with fixed base; the other two sides of which are
monochrome arcs.
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intersection numbers. In this way, one could probably use more subtle results on the
structure of finite simple groups and a combinatorial technique in the spirit of [16].

From the computational point of view, Theorems 1.2 and 1.3 can be used for testing
isomorphism and recognizing the Cartan schemes satisfying the hypothesis of The-
orem 1.2. To this end, it is convenient to represent a coherent configuration (�, S)

as a complete colored graph with vertex set � such that the color classes of the arcs
coincide with the relations of S (the vertex colors match the colors of the loops). It is
assumed that the isomorphisms of such colored graphs preserve the colors.

Theorem 1.5 Let Gn (resp. Kn) be the class of all colored graphs (resp. the colored
graphs of Cartan schemes of the groups in L) with n vertices. Then, the following
problems can be solved in polynomial time in n:

(1) given D ∈ Gn, test whether D ∈ Kn, and (if so) find the corresponding groups G,
B, and N;

(2) given D ∈ Kn and D′ ∈ Gn, find the set Iso(D, D′).

To make the paper possibly self-contained, we cite the basics of coherent configu-
rations in Sect. 2. Theorems 3.1 and 4.1, from which we have deduced Theorems 1.2
and 1.3, are proved in Sects. 3, 4, 5, respectively. Finally, Theorems 1.4 and 1.5 are
proved in Sects. 6 and 7, respectively.

Notation. Throughout the paper, � denotes a finite set.
The diagonal of the Cartesian product � × � is denoted by 1�; for any α ∈ �, we

set 1α = 1{α}.
For a relation r ⊂ � × �, we set r∗ = {(β, α) : (α, β) ∈ r} and αr = {β ∈ � :

(α, β) ∈ r} for all α ∈ �.
For S ∈ 2�2

, we denote by S∪ the set of all unions of the elements of S and put
S∗ = {s∗ : s ∈ S} and αS = ∪s∈Sαs, where α ∈ �.

For g ∈ Sym(�), we set Fix(g) = {α ∈ � : αg = α}; in particular, if χ is the
permutation character of a group G ≤ Sym(�), then χ(g) = |Fix(g)| for all g ∈ G.

The identity of a group G is denoted by e; the set of non-identity elements in G is
denoted by G#.

2 Coherent configurations

2.1 Main definitions

Let � be a finite set, and let S be a partition of � × �. The pair X = (�, S) is called
a coherent configuration on � if 1� ∈ S∪, S∗ = S, and given r, s, t ∈ S, the number

ctrs = |αr ∩ βs∗|

does not depend on the choice of (α, β) ∈ t . The elements of �, S, and S∪ are called
the points, basis relations, and relations of X , respectively. The numbers |�|, |S|,
and ctrs are called the degree, rank, and intersection numbers of X . The basis relation
containing the pair (α, β) ∈ � × � is denoted by r(α, β).

123

Author's personal copy



J Algebr Comb

The point set � is a disjoint union of fibers, i.e., the sets � ⊆ �, for which 1� ∈ S
For any basis relation r ∈ S, there exist uniquely determined fibers � and � such
that r ⊆ � × �. Moreover, the number |γ r | = ctrr∗ with t = 1�, does not depend on
the choice of γ ∈ �. This number is called the valency of r and denoted by nr . The
maximum of all valencies is denoted by k = k(X ).

A point α ∈ � of the coherent configuration X is called regular if

|αr | ≤ 1 for all r ∈ S.

One can see that the set of all regular points is the union of fibers. If this set is not
empty, then the coherent configuration X is said to be 1-regular.

The coherent configuration X is said to be homogeneous if 1� ∈ S. In this case,
nr = nr∗ = |αr | for all r ∈ S and α ∈ �. Moreover, the relations

ct
∗
r∗s∗ = ctsr and ntc

t∗
rs = nr c

r∗
st = nsc

s∗
tr (4)

hold for all r, s, t ∈ S. We observe that in the homogeneous case, a coherent configu-
ration is 1-regular if and only if it is a thin scheme in the sense of [23].

2.2 Point extensions and the base number

There is a natural partial order ≤ on the set of all coherent configurations on the same
set. Namely, given two coherent configurations X = (�, S) and X ′ = (�, S′), we
set

X ≤ X ′ ⇔ S∪ ⊆ (S′)∪.

The minimal and maximal elements with respect to this ordering are the trivial and
complete coherent configurations: The basis relations of the former are the reflexive
relation 1� and (if n > 1) its complement in � × �, whereas the basis relations of
the latter are singletons.

Given two coherent configurations X1 and X2 on �, there is a uniquely determined
coherent configuration X1 ∩X2 also on �, the relation set of which is (S1)∪ ∩ (S2)∪,
where Si is the set of basis relations ofXi , i = 1, 2. This enables us to define the point
extension Xα,β,... of a coherent configuration X = (�, S) with respect to the points
α, β, . . . ∈ � as follows:

Xα,β,... =
⋂

Y : S⊆T∪,1α,1β ,...∈T∪
Y,

where Y is the coherent configuration (�, T ). In other words, Xα,β,... can be defined
as the smallest coherent configuration on � that is larger than or equal to X and
has singletons {α}, {β}, . . . as fibers. This configuration can also be considered as
the refinement of the color graph associated with X , in which the points of α, β, . . .
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are colored in distinguished new colors. In particular, the extension can be efficiently
constructed by the Weisfeiler-Leman algorithm (see Sect. 7).

Definition 2.1 A set {α, β, . . .} ⊆ � is a base of the coherent configuration X if
the extension Xα,β,... with respect to the points α, β, . . . is complete; the smallest
cardinality of a base is called the base number of X and denoted by b(X ).

It is easily seen that 0 ≤ b(X ) ≤ n − 1, where n = |�|, and the equalities are
attained for the complete and trivial coherent configurations on �, respectively. It is
also obvious that b(X ) ≤ 1, whenever the coherent configuration X is 1-regular.

2.3 Coherent configurations and permutation groups

Two coherent configurations X = (�, S) and X ′ = (�′, S′) are called isomorphic if
there exists a bijection f : � → �′ such that the relation s f = {(α f , β f ) : (α, β) ∈
s} belongs to S′ for all s ∈ S. The bijection f is called an isomorphism from X onto
X ′; the set of all of them is denoted by Iso(X ,X ′). The group Iso(X ,X ) contains a
normal subgroup

Aut(X ) = { f ∈ Sym(�) : s f = s, s ∈ S}

called the automorphism group of X .
Let G ≤ Sym(�) be a permutation group, and let S be the set of orbits of the

coordinatewise action of G on � × �. Then,

Inv(G) = Inv(G,�) = (�, S)

is a coherent configuration called the coherent configuration of G. It is homogeneous if
and only if the groupG is transitive. From [13, Corollary 3.4], it follows that a coherent
configuration X is 1-regular if and only if X = Inv(G), where G is a permutation
group having a faithful regular orbit.

Let G ≤ Sym(�) be a transitive group, H = Gα the stabilizer of a point α in G,
and X = Inv(G) the coherent configuration of G. Then, given a basis relation s ∈ S,
one can form the set

Ds = {g ∈ G : (α, αg) ∈ s}, (5)

which is, in fact, a double H -coset. It is well known that the mapping s 
→ Ds is a
bijection from the set S of basis relations of X onto the set of double H -cosets in G.
Furthermore, the intersection number ctrs is equal to the multiplicity, with which an
element of Dt enters the product Dr Ds , divided by |H |. It follows that

ns = |Ds |
|H | = |H |

|H ∩ Hg| (6)

for all s ∈ S and g ∈ Ds (the second equality follows from the first one, because
|Ds | = |HgH | = |g−1HgH | = |HgH |). In particular, k = k(X ) is the ratio between
the order of H and the minimal size of the intersection of H with its conjugate.
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Lemma 2.2 Let G be a transitive permutation group and X = Inv(G). If b(X ) ≤ 2,
then G = Aut(X ).

Proof Inequality (2) yields b(G) ≤ b(X ) ≤ 2. It follows that H ∩ Hg = 1 for some
g ∈ G, where H = Gα . If s is the basis relation of X with Ds = HgH , then (6)
implies that αs is a faithful regular orbit of H . Hence

|G| = nk,

where n is the cardinality of the underlying set of G. Since X = Inv(G) =
Inv(Aut(X )), inequality (2) also yields b(Aut(X )) ≤ b(X ) ≤ 2. So the above equality
holds for G replaced by Aut(X ). Thus,

|Aut(X )| = nk = |G|,
and we are done, because G ≤ Aut(X ). ��

2.4 Indistinguishing number

Following [16], the sum of all intersection numbers crss∗ with fixed r is called the
indistinguishing number of r ∈ S and denoted by c(r). It is easily seen that for all
pairs (α, β) ∈ r , we have

c(r) = |�α,β |, where �α,β = {γ ∈ � : r(γ, α) = r(γ, β)}. (7)

The maximum of the numbers c(r), r �= 1�, is called the indistinguishing number of
the coherent configuration X and denoted by c(X ).

The following lemma gives a formula for the indistinguishing number of the coher-
ent configuration of a transitive permutation group. Recall that the fixity fix(G) of
a permutation group G is the maximum number of elements fixed by non-identity
permutations [18].

Lemma 2.3 Let G ≤ Sym(�) be a transitive group, H a point stabilizer of G, and
X = Inv(G). Then,

c(X ) = max
x∈G\H |

⋃

h∈H
Fix(hx)|. (8)

In particular,
c(X ) ≤ max

x∈G\H
∑

h∈H
χ(hx) ≤ fix(G) · |H |. (9)

Proof Let r ∈ S and (α, β) ∈ r . Then, a point γ belongs to the set �α,β defined in (7)
if and only if the pairs (γ, α) and (γ, β) belong to the same orbit of the group G acting
on � × �, and the latter happens if and only if γ is a fixed point of a permutation
x ∈ G moving α to β. Assuming without loss of generality that H = Gα , we conclude
that the set of all such x forms an H -coset C . Therefore,

c(r) = |�α,β | = |
⋃

h∈H
Fix(hx)| (10)

123

Author's personal copy



J Algebr Comb

for any x ∈ C . Moreover, if r �= 1�, then C �= H . This proves equality (8). Further-
more, |Fix(x)| = χ(x) ≤ fix(G) for any non-identity element x ∈ G. This implies
that

|
⋃

h∈H
Fix(hx)| ≤

∑

h∈H
χ(hx) ≤ fix(G) · |H |.

Thus, the second statement of the lemma follows from the first one. ��
We complete this subsection by a statement that helps to compute the values of the

permutation character of a transitive group.

Lemma 2.4 Let G ≤ Sym(�) be a transitive group, α ∈ �, and H = Gα the point
stabilizer of α in G. Then, for every x ∈ G,

Fix(x) �= ∅ ⇐⇒ xG ∩ H �= ∅. (11)

Suppose, additionally, that there is a subgroup N with H ≤ N ≤ NG(H) such that
every two H-conjugates in G are also conjugate in N. If x = hg00 , where h0 ∈ H and
g0 ∈ G, then

Fix(x) = {αg | g ∈ NCg0}, (12)

where C = CG(h0). Furthermore,

χ(x) = |N : (C ∩ N )| |C |
|H | = |N : (C ∩ N )| |�|

|xG | . (13)

Proof Clearly, αg ∈ Fix(x) if and only if Hgx = Hg, which holds if and only if there
is h ∈ H satisfying x = hg . In particular, this yields (11).

To prove that the left-hand side of (12) is contained in the right-hand side, let
x = hg00 , that is the set Fix(x) is non-empty. Suppose that g is an arbitrary element of
G with αg ∈ Fix(x). Then, there is h ∈ H such that hg = x = hg00 . Put y = gg−1

0 .

Since the elements h0 and h = hy−1

0 are conjugate in G, they are also conjugate in N ,

so there is n ∈ N with hy−1

0 = hn
−1

0 . It follows that y = nc, where c ∈ C . Therefore,
g = ncg0, so αg ∈ Fix(x) implies that g ∈ NCg0. To establish the reverse inclusion,
for every n ∈ N , set h = hn

−1

0 . Then, hncg0 = hcg00 = x for every c ∈ C . By the
argument of the first paragraph, this proves αNCg0 ⊆ Fix(x).

Obviously, |NCg0| = |N : (C ∩ N )||C |. Now, the first equality in (13) is the
direct consequence of (12), because αg = αg′

if and only if g′g−1 ∈ H . Since
|C | = |G|/|xG | and |G|/|H | = |�|, the second equality follows. ��

2.5 Algebraic isomorphisms and m-dimensional intersection numbers

Let X = (�, S) and X ′ = (�′, S′) be coherent configurations. A bijection ϕ : S →
S′, r 
→ r ′ is called an algebraic isomorphism from X to X ′ if

ctr s = ct
′
r ′s′ , r, s, t ∈ S. (14)
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In this case, we say thatX andX ′ are algebraically isomorphic. Each isomorphism f
from X to X ′ naturally induces an algebraic isomorphism between these coherent
configurations. The set of all isomorphisms inducing the algebraic isomorphism ϕ is
denoted by Iso(X ,X ′, ϕ). In particular,

Iso(X ,X , idS) = Aut(X )

where idS is the identity permutation of S. A coherent configuration X is called
separable if for any algebraic isomorphism ϕ : X → X ′, the set Iso(X ,X ′, ϕ) is
non-empty.

Saying that coherent configurations X and X ′ have the same intersection numbers,
we mean that formula (14) holds for a certain algebraic isomorphism. Thus, the exact
meaning of the phrase “the coherent configurationX is determined up to isomorphism
by the intersection numbers” is that X is separable.

Let m ≥ 1 be an integer. According to [13], the m-extension of a coherent con-
figuration X with point set � is defined to be the smallest coherent configuration on
�m , which contains the Cartesian m-power of X and for which the set Diag(�m) is
the union of fibers. The intersection numbers of the m-extension are called the m-
dimensional intersection numbers of the configurationX . Now,m-separable coherent
configurations for m > 1 are defined essentially in the same way as for m = 1. The
exact definition can be found in the survey [13], whereas in the present paper, we
need only the following result, which immediately follows from [13, Theorems 3.3
and 5.10].

Theorem 2.5 LetX be a coherent configuration admitting a 1-regular extension with
respect to m − 1 points, m ≥ 1. Then,X is m-separable. ��
Corollary 2.6 Let X be a coherent configuration admitting a 1-regular one-point
extension. Then, X is 2-separable and b(X ) ≤ 2. ��

3 A sufficient condition for 1-regularity of a point extension

3.1 Main theorem

The aimof this section is to prove the following statement underlying the combinatorial
part in the proof of the main results of this paper.

Theorem 3.1 LetX be a homogeneous coherent configuration on n points with indis-
tinguishing number c and maximum valency k. Suppose that 2c(k − 1) < n, i.e.,
inequality (3) holds. Then, every one-point extension of X is 1-regular.

The proof of Theorem 3.1 will be given in the end of this section. The idea is
to deduce the 1-regularity of the point extension Xα from Lemma 3.6 stating that
inequality (3) implies the connectedness of the binary relations smax and sα defined in
Sect. 3.2. Note that this condition itself implies that any pair from smax forms a base
of X (Lemma 3.3).
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· · · •
s

αr
α•
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r

• · · · • αt
γ

Fig. 1 A part of the relation sα

3.2 Relations smax and sα

Let X = (�, S). Recall that k = k(X ) is the maximal valency of X . Denote by smax
the union of all relations in the set

Smax = {s ∈ S : ns = k}.

Then, obviously, smax ∈ S∪. Moreover, since X is homogeneous, we have ns∗ = ns
for all s ∈ S, and hence, the relation smax is symmetric. We are interested in its
connectedness, i.e., the connectedness of the graph with vertex set � and edge set
smax. Note that, in general, this graph is not connected: takeX to be the homogeneous
coherent configuration of rank 4 that is associated with a finite projective plane.

With any point α ∈ �, we associate a binary relation sα ⊆ αsmax ×αsmax that con-
sists of all pairs (β, γ ) such that the colored triangle {α, β, γ } is uniquely determined
by the side colors r = r(α, β), s = r(β, γ ) and t = r(α, γ ), and one of the sides
{α, β} or {α, γ }, see Fig. 1. More precisely,

sα = {(β, γ ) ∈ αsmax × αsmax : ctrs = 1},

This relation is symmetric. Indeed, we have nt = nr = k. Since also nr∗ = nr , it
follows from (4) that nt ctr s = nr∗cr

∗
s t∗ = nr crt s∗ . This implies that crt s∗ = ctr s = 1 and

hence (γ, β) ∈ sα .

Lemma 3.2 Suppose that the graph sα is connected. Denote by Tα the set of all basis
relations of the coherent configuration Xα that are contained in αsmax ×αsmax. Then,

|βt | = 1 for all t ∈ Tα, β ∈ αsmax. (15)

Proof One can see that the set αsmax is the union of fibers ofXα (see [17, Lemma 2.2]).
Therefore,

αsmax × αsmax =
⋃

t∈Tα

t. (16)

Let t ∈ Tα and β ∈ αsmax. Then, β ∈ αr for some r ∈ Smax. In view of (16), there
exists a point β ′ ∈ αsmax contained in βt . By the connectedness of sα , there exists a
path P in sα connecting β and β ′. If this path has length l = 1, then by the definition
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of sα , we have csrt ′ = 1, where t ′ ∈ S and s ∈ Smax are unique relations such that
t ⊂ t ′ and β ′ ∈ αs, respectively. Then, obviously, {β ′} = βt , as required.

Suppose that l ≥ 2. Note that if β1, β2, and β3 are successive vertices of P , then
they belong to αsmax and

{β2} = β1t1, {β3} = β2t2,

where t1 and t2 are the basis relations ofXα that contain (β1, β2) and (β2, β3), respec-
tively. In particular, t1, t2 ∈ Tα and

{β3} = β1t3,

where t3 is a unique relation of Tα containing the pair (β1, β3). This proves the required
statement for l = 2 and hence for all positive integers l by induction. ��
Lemma 3.3 If smax and all sα , α ∈ �, are connected relations, then {α, β} is a base
of the coherent configuration X for each β ∈ � such that (α, β) ∈ smax.

Proof Let α ∈ � and β ∈ αsmax. Denote by� the set of all points γ ∈ � for which the
singleton {γ } is a fiber of the coherent configuration Xα,β . Then, obviously α, β ∈ �.
We claim that

γ smax ⊆ � or γ smax ∩ � = ∅ (17)

for all γ ∈ �. Indeed, assume to the contrary that there exist points γ ∈ � and
γ1, γ2 ∈ γ smax such that γ1 ∈ � and γ2 /∈ �. Since sγ is a connected relation, there is
an sγ -path connecting γ1 and γ2. Moreover, the definition of sγ implies that if some
point in this path is inside �, then the next point in this path must also be inside �.
Therefore, γ2 ∈ �, a contradiction.

Denote by �0 the set of all points γ ∈ � with γ smax ⊆ �. Then, α ∈ �0, because
in view of (17), the set αsmax contains β ∈ �. Therefore, �0 contains the connected
component of smax that contains α. Since smax is connected, this implies that �0 = �

and hence � = �. By the definition of �, this means that the fibers of Xα,β are
singletons. Thus, {α, β} is a base of X . ��

3.3 Connected components of sα

One can treat sα also as a graph with vertex set αsmax and edge set sα . The set of all
connected components of this graph which contain a vertex in αu for a fixed u ∈ Smax
is denoted by Cα(u) = C(u).

Lemma 3.4 Let u, v ∈ Smax. Suppose that C(u) ∩ C(v) �= ∅. Then, C(u) = C(v)

and |αu ∩ C | = |αv ∩ C | for all C ∈ C(u).

Proof Let C0 ∈ C(u) ∩ C(v). Then, C0 contains vertices β ∈ αu and γ ∈ αv

connected by an sα-path, say

β = β0, β1, . . . , βm = γ,
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where (βi , βi+1) ∈ sα for i = 0, . . . ,m − 1. By the definition of sα , this implies that

cui+1
uivi = 1 (18)

for all i , where ui = r(α, βi ) and vi = r(βi , βi+1). Therefore, it is easily seen that
for every C ∈ C(u) given a vertex β ′ ∈ C , there is a unique sα-path

β ′ = β ′
0, β

′
1, . . . , β

′
m = γ ′

such that γ ′ ∈ αv and r(α, β ′
i ) = ui and r(β ′

i , β
′
i+1) = vi for all i . In view of (18),

no vertices βi and β ′
i coincide whenever β �= β ′. Thus, the mapping

αu → αv, β ′ 
→ γ ′

is a bijection. Obviously, the vertex γ ′ belongs to the componentC of the graph sα that
contains β ′. Since this is true for all β ′ ∈ C and all C ∈ C(u), the required statement
follows. ��

For a relation u ∈ Smax and a point δ ∈ �, denote by pu(δ) the number of pairs
(β, γ ) ∈ αu × αu such that β �= γ and r(β, δ) = r(γ, δ). Here, |αu| = nu = k.
Therefore, αu contains exactly k(k − 1) pairs of distinct elements. Now we are able
to estimate from above the sum of pu(δ) in terms of the indistinguishing numbers of
the corresponding basis relations c(r(β, γ )) as well as the indistinguishing number c
of X . Indeed,

k(k − 1)c ≥
∑

β,γ

c(r(β, γ )) ≥
∑

δ∈�

pu(δ) (19)

for any set � ⊆ �. On the other hand, the number pu(δ) can be computed by means
of the intersection numbers. Namely, if v = r(α, δ), then, obviously,

pu(δ) =
∑

w∈Tu,v

cv
uw(cv

uw − 1) (20)

where Tu,v = {w ∈ u∗v : cv
uw > 1} (see Fig. 2). In particular, the number pu(δ) does

not depend on δ ∈ αv.

Lemma 3.5 In the above notation, the following statements hold:

(1) if either nu > nv , or nu = nv and C(u) �= C(v), then pu(δ) ≥ k,
(2) if nu = nv , C(u) = C(v), and |C(u)| > 1, then pu(δ) ≥ k/2.

Proof To prove statement (1), suppose that either nu > nv , or nu = nv and C(u) �=
C(v). Then

Tu,v = u∗v. (21)

Indeed, obviously, Tu,v ⊆ u∗v. The reverse inclusion is true if nu > nv , because in
this case, cv

uw = nucw∗
v∗u/nv > 1 for all w ∈ u∗v. Let now C(u) �= C(v). Then, the

sets C(u) and C(v) are disjoint (Lemma 3.4). This implies that if β ∈ αu and γ ∈ αv,
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β

w
γ

w
δ

α

u

u

v

Fig. 2 Relation w ∈ Tu,v with cwuv > 1

then (β, γ ) /∈ sα . Therefore, cv
uw > 1 for all w ∈ u∗v, whence again u∗v ⊆ Tu,v .

Thus, relation (21) is completely proved. Together with (20), this shows that

pu(δ) =
∑

w∈Tu,v

cv
uw(cv

uw − 1) ≥
∑

w∈Tu,v

cv
uw =

∑

w∈u∗v
cv
uw = nu = k,

as required. Observe that the penultimate equality is the well-known identity for
homogenous coherent configurations.

To prove statement (2), suppose that nu = nv , C(u) = C(v), and |C(u)| > 1. Let
us choose C ∈ C(u) so that the number |αu ∩ C | is the minimum possible. Then,

|αu\C | ≥ k/2, (22)

because |C(u)| > 1 and |αu| = nu = k. Next, sinceC(u) = C(v), we haveC ∈ C(v).
Moreover, αv is not contained in C , because |C(v)| = |C(u)| > 1. Since pu(δ) does
not depend on the choice of δ ∈ αv, we may assume that δ ∈ αv ∩ C . Then, no point
β ∈ αu\C belongs to the component of sα that contains δ. In particular, (δ, β) is not
an edge of sα . Therefore,

cv
uw > 1 for all w ∈ T,

where T is the set of all w = r(β, δ) with β ∈ αu\C . By (20) and (22), we obtain

pu(δ) =
∑

w∈Tu,v

cv
uw(cv

uw − 1) ≥
∑

w∈T
cv
uw = |αu ∩ δT ∗| ≥ |αu\C | ≥ k/2,

as required. ��

3.4 The connectedness of smax and sα

Using Lemmas 3.4 and 3.5, we will prove that the hypothesis of Theorem 3.1 gives a
sufficient condition for the graphs sα and smax to be connected.
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Lemma 3.6 Suppose that 2c(k − 1) < n and k ≥ 2. Then, the graphs sα and smax
are connected. Moreover, |αsmax| > n/2.

Proof To prove the first statement, we claim that

|C(u)| = 1 for all u ∈ Smax. (23)

Indeed, if this is not true, then there exists u ∈ Smax such that |C(u)| ≥ 2. Lemma 3.5
yields that pu(δ) ≥ k/2 for all points δ ∈ �. By (19) with � = �, this implies that

c ≥ 1

k(k − 1)

∑

δ∈�

pu(δ) ≥ 1

k(k − 1)

|�|k
2

= n

2(k − 1)
,

which contradicts the hypothesis of the lemma . Thus, formula (23) is proved.
Assume to the contrary that the graph sα is not connected for some α ∈ �. Then,

it has a component C containing at most half of the vertices, that is,

2|C | ≤ |αsmax| < n. (24)

By (23), one can find a relation u ∈ Smax such that C(u) = C . Then, for any point
δ ∈ �\C ,we havenv < nu orC(v) �= C(u),wherev = r(α, δ) (ifC(v) = C(u) = C ,
then δ ∈ C). By statement (1) of Lemma 3.5, this implies that pu(δ) ≥ k. On the other
hand, 2|�\C | ≥ n by (24). From (19) with � = �\C , we obtain

c ≥ 1

k(k − 1)

∑

δ∈�\C
pu(δ) ≥ 1

k(k − 1)
|�\C |k ≥ n

2(k − 1)
, (25)

which contradicts the hypothesis of the lemma. Thus, the graph sα is connected.
To prove that the graph smax is also connected, assume to the contrary that one of its

components, say C , has at most n/2 points. Let α ∈ C and u ∈ Smax. Then, αu ⊆ C
and nu > nv for all v = r(α, δ) with δ ∈ �\C . By statement (1) of Lemma 3.5,
this implies that pu(δ) ≥ k for all such δ. Thus, inequality (25) holds again, which
contradicts the hypothesis of the lemma.

To prove the second statement, denote by V the union of all v ∈ S with nv < k,
and fix u ∈ Smax. Then, by statement (1) of Lemma 3.5, we have pu(δ) ≥ k for all
δ ∈ � such that r(α, δ) ∈ V . This implies that

∑

δ∈αV

pu(δ) ≥ k|αV |.

Since there are k(k − 1) pairs of different points in αu, at least for one of such pairs,
say (α, β), we obtain

c ≥ c(u) = |�α,β | ≥ 1

k(k − 1)

∑

δ∈αV

pu(δ) ≥ k |αV |
k(k − 1)

= |αV |
k − 1

.
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By the hypothesis of the lemma, this implies that 2 |αV |
k−1 (k − 1) < n, whence |αV | <

n/2. Since |αV | + |αsmax| = n, we are done. ��

3.5 Proof of Theorem 3.1

Obviously, we may assume that k ≥ 2. Let α ∈ �. It suffices to prove that each
β ∈ αsmax is a regular point of the coherent configuration Xα . Assume to the contrary
that this is not true for some β. Then, Xα has a basis relation v such that |βv| ≥ 2.
Therefore, there exist distinct points γ1 and γ2 such that

r(β, γ1) = v = r(β, γ2). (26)

Let Tα be the set defined in Lemma 3.2. Then, in view of (15), v /∈ Tα . Therefore,
neither γ1 nor γ2 belongs to αsmax.

Let us verify that formula (26) holds with β replaced by an arbitrary β ′ ∈ αsmax
and suitable distinct points γ1 and γ2. By virtue of (15), the relation u ∈ Tα containing
the pair (β, β ′) is of the form

u = {(δ, δg) : δ ∈ �}

for some bijection g : � → �′, where � and �′ are the fibers of Xα containing β

and β ′, respectively. Define a permutation f ∈ Sym(�) by

ω f =

⎧
⎪⎨

⎪⎩

ωg if ω ∈ �,

ωg−1
if ω ∈ �′,

ω otherwise.

Then, the graph of f is the union of basis relations ofXα , each of which is of valency 1.
One can see that in this case, f takes any basis relation ofXα to another basis relation.
This implies that f is an isomorphism of the coherent configuration Xα to itself.
Therefore, by equality (26), we have

r(β ′, γ1) = r(β f , γ
f
1 ) = r(β f , γ

f
2 ) = r(β ′, γ2),

and the claim is proved. Thus, the set �γ1,γ2 contains αsmax. By the hypothesis of the
theorem and second statement of Lemma 3.6, this implies that

c ≥ |�γ1,γ2 | ≥ |αSmax| > n/2.

However, then, n > 2c(k − 1) > n(k − 1), which is impossible for k > 1. ��
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4 Inequality (3) in simple groups of Lie type

The main purpose of the following two sections is to prove Theorem 4.1 below, from
which Theorems 1.2 and 1.3 were deduced in Introduction. In this section, we reduce
the proof to Lemma 4.3, which will be proved in the next section.

Theorem 4.1 For the Cartan scheme X of every group G ∈ L, inequality (3) holds.
We generally follow the notation of well-knownCarter’s book [6] with some excep-

tions that we explain below inside parentheses. If �l is a simple Lie algebra of rank l,
then �l(q) is the simple Chevalley group of rank l over a field of order q. Let B, N ,
and H = B ∩ N be a Borel, monomial, and Cartan subgroups of a simple Chevalley
group �l(q) as in [6], while W = N/H be the corresponding Weyl group. Then, [6,
Proposition 8.2.1] implies that the subgroups B and N form a (B, N )-pair of �l(q).
If τ is a symmetry of the Dynkin diagram of �l of order t , then t�l(q) is the simple
twisted group of Lie type (in [6] such a group is denoted as t�l(qt )).2 Again B, N ,
and H = B ∩ N stand for Borel, monomial, and Cartan subgroups of a simple twisted
group of Lie type, and W = N/H is the Weyl group (in [6], they are denoted by B1,
N 1, and so on). It follows from [6, Theorem 13.5.4] that in this case, B and N form
a (B, N )-pair of t�l(q) again. For the sake of brevity, we will use notation t�l(q)

for all simple groups of Lie type, assuming that t is the empty symbol in the case of
untwisted groups. Recall also that the order w of the Weyl group W does not depend
on the order of the underlying field.

Let G be a finite simple group of Lie type, and let X = (�, S) be the Cartan
scheme of G, where the corresponding (B, N )-pair is as in the previous paragraph
(see Definition 1.1). In particular, � = G/H and S = Orb(G,�2). Put n = |�|,
k = k(X ), and c = c(X ).

Lemma 4.2 There exists an element g0 ∈ G such that H ∩ Hg0 = 1. In particular,

k = max
s∈S ns = |H |. (27)

Proof It is well known that B = U � H is the semidirect product of U and H ,
where U is the unipotent radical of B. By [7, Propositions 5.1.5 and 5.1.7], there
exists a unipotent element u ∈ U such that CG(u) ≤ U (in fact, u can be chosen as a
regular unipotent element fixed by an appropriate Frobenius map of the corresponding
algebraic group). It follows that [h, u] �= 1 for every h ∈ H#. On the other hand, if
h ∈ H ∩ Hu , then [h, u] ∈ H ∩ U = 1, so h = 1, and g0 = u is the desired element
of G.3 Now, in view of (6),

k = max
s∈S ns = max

g∈G
|H |

|H ∩ Hg| = |H |
|H ∩ Hg0 | = |H |.

��
2 In the case of Suzuki and Ree groups, q = 22α+1 for 2B2(q) and 2F4(q), and q = 32α+1 for 2G2(q),
where α > 1 is an integer.
3 The alternative way to establish the same is to apply Zenkov’s theorem [22]. It yields that since H is
abelian, there is an element g0 ∈ G such that H ∩ Hg0 lies in the Fitting subgroup of G, which is trivial if
the group G is simple.
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Observe that G satisfies the hypotheses of Lemmas 2.3 and 2.4. Indeed, the transi-
tivity of the action ofG on� is evident, while the monomial subgroup N ofG satisfies
the additional condition from Lemma 2.4 due to [6, Proposition 8.4.5]. This enables
us to estimate the indistinguishing number c and get the required inequality (3) with
the help of Lemma 4.3 below, which is proved in the next section.

In what follows, for a coset y = Hy, set My = {u ∈ y : uG ∩ H �= ∅}. Note that
all elements of My are semisimple. For an integer m, set

My,m = {u ∈ My : |uG | ≥ m}, and M ′
y,m = My\My,m .

Put

rm = max
y∈G\H |M ′

y,m | and m0 = min
∅�=yG∩H �=yG

|yG |.

Lemma 4.3 In the above notation, there exists a positive integer m such that

k

m
+ rm

m0
≤ 1

2wk
(28)

for all groups G ∈ L.

Proof of Theorem 4.1 Immediately follows from Lemma 4.3 and Lemma 4.4 below.
��

Lemma 4.4 Let G be a simple group of Lie type. Suppose that there exists an integerm
such that inequality (28) holds. Then, for the Cartan scheme X of G, inequality (3) is
satisfied.

Proof It follows from Lemma 2.3 that

c ≤ max
y∈G\H

∑

h∈H
χ(hy) ≤ max

y∈G\H
∑

x∈My

χ(x), (29)

where χ is the permutation character of the group induced by the action of G on �.
Let x ∈ My . Then, by the definition of My , Fix(x) �= ∅, i.e., there are h0 ∈ H and
g0 ∈ G such that x = hg00 . In the notation of Lemma 2.3, we have χ(x) = |N :
(C ∩ N )| |�|/|xG |. Furthermore, |N : (C ∩ N )| ≤ |N/H | = |W | = w, because
H ≤ C ∩ N . We conclude that

χ(x) ≤ w n

|xG | . (30)

Let m be a positive integer from Lemma 4.3. Our definitions imply that |xG | ≥ m
for all x ∈ My,m and |xG | ≥ m0 for all x ∈ My . Taking into account |My | ≤ |H | = k
and formula (30), we obtain

123

Author's personal copy



J Algebr Comb

∑

x∈My

χ(x) ≤ w n
∑

x∈My

1

|xG | ≤ w n

⎛

⎜⎝
∑

x∈My,m

1

|xG | +
∑

x∈M ′
y,m

1

|xG |

⎞

⎟⎠

≤ w n

(
|My,m |

m
+ |M ′

y,m |
m0

)
≤ w n

(
k

m
+ rm

m0

)
.

By inequality (28), this implies

∑

x∈My

χ(x) ≤ wn · 1

2wk
= n

2k

for any y ∈ G\H . In view of (29), it immediately follows that 2ck ≤ n, and inequal-
ity (3) holds. ��

5 Proof of Lemma 4.3

First, suppose that G is a simple exceptional group. We prove that relation (28) holds
for m = m0. Note that the size of the conjugacy class of a non-identity semisimple
element of G can be estimated from below by means of results in [9,10] (for all
exceptional groups other than the Ree and Suzuki groups, this was done in [20]). The
corresponding lower bounds for m0 are listed in the second column of Table 1. The
values from the third and forth columns are well known. Using this table, one can
easily check that

m0 ≥ 2wk2, (31)

which is equivalent to inequality (28) for m = m0, because rm0 = 0 in this case.

Table 1 Exceptional groups

t�l m0 |H | |W |

E8 q112 (q − 1)8 214 · 35 · 52 · 7
E7 (1/2)q64 (q − 1)7/(2, q − 1) 210 · 34 · 5 · 7
E6 (1/3)q30 (q − 1)6/(3, q − 1) 27 · 34 · 5
2E6 (1/3)q30 (q − 1)4(q + 1)2/(3, q + 1) 27 · 32
F4 q16 (q − 1)4 27 · 32
G2 q3(q3 − 1) (q − 1)2 22 · 3
3D4 q16 (q − 1)(q3 − 1) 22 · 3
2F4 q6(q − 1)(q3 + 1) (q − 1)2 24

2G2 q2(q2 + q + 1) q − 1 2
2B2 q2(q − 1) q − 1 2
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Table 2 Classical groups I

t�l Conditions m0 |H | |W | l0 a

Al
q2l

2
(q−1)l

(l+1,q−1) (l + 1)! 7 4

2Al l odd q4l−3

2(q+1)
(q−1)

l+1
2 (q+1)

l−1
2

(l+1,q+1) 2
l+1
2 l+1

2 ! 6 4

2Al l even q2l+1

2(q+1)
(q−1)

l
2 (q+1)

l
2

(l+1,q+1) 2
l
2 l
2 ! 6 4

Bl
l(q−1)

2 odd q4l−1

4(q+1)
(q−1)l

2 2l l! 4 4

Bl
l(q−1)

2 even q2l+1

4(q+1)
(q−1)l

2 2l l! 4 4

Cl
q4l−4

2
(q−1)l

(2,q−1) 2l l! 3 4

Dl
q4l−3

4(q+1)
(q−1)l

(4,ql−1)
2l−1l! 4 2

2Dl
q4l−3

4(q+1)
(q−1)l−1(q+1)

(4,ql+1)
2l−1l! 4 2

Now G is a simple classical group. Our main source for estimating the size of a
conjugacy class of G is [5].4 Let V be a natural module over a field Fqv , where v = 2
in the case of unitary groups and v = 1, otherwise, such that G ≤ PSL(V ), and let G̃
be the preimage of G in SL(V ). If x ∈ G and X ≤ G, then x̃ and X̃ are preimages of
x and X in G̃. We also agree to fix a basis of the vector space V so that the preimage
H̃ of the Cartan subgroup H consists of diagonal matrices. Following [5, Definition
3.16], for any x ∈ G, we denote by ν(x) the codimension of largest eigenspace of x̃
on V = V ⊗ K , where K is the algebraic closure of Fq . For elements x conjugated
to elements of H , which are of prime interest for our purposes, ν(x) is equal to the
difference between the dimension of V and the maximum eigenvalue multiplicity of
the diagonal matrix h̃ with x = hg . We gather in Table 2 the lower bounds m0 on the
sizes of conjugacy classes from [5, Table 3.7–3.9]5 aswell as the numbers |H | and |W |.
This table also contains the numbers l0 and a defining the class L. We also suppose
that q is odd in the case of the groups Bl(q) due to the well-known isomorphism
Bl(q) ∼= Cl(q) for even q.

Now, we are ready to define the number m for simple classical groups. Denote by
m1 the lower bound for |xG | with ν(x) ≥ 2 that was found in [5, Tables 3.7–3.9]; the
relevant values of m1 are collected in the third column of Table 3. Set

m =
{
m0, if ν(h) ≥ 2 for all h ∈ H#,

m1, otherwise.
(32)

4 It is worth noting that in ‘an asymptotical sense’ the required lower bounds can be taken from [15,
Lemma 3.4]. We choose to use the results of the later paper [5] in order to obtain the numerical values of
l0 and a.
5 It is worth mentioning that despite [5, Tables 3.7–3.9] contain the bounds on the sizes of conjugacy
classes in the group Inndiag(G) rather than G itself, the bounds for m0 in Table 5 are correct, because
|G : CG (h)| = | Inndiag(G) : CInndiag(G)(h)| for every h ∈ H (see, e.g., the definition of the diagonal
automorphism in [6, Sec. 12.2]).
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Table 3 Classical groups II

t�l Conditions m1 rm

Al
q4(l−1)

2
l(l+1)(q−1)2

2 − 1

2Al l even q4l−3

2(q+1)
(l+1)(q+1)2

2 + q

Bl
l(q−1)

2 even q4l−1

4(q+1)
l(q−3)

2 + 1

Note that for any coset y = Hy distinct from H , My,m = {x ∈ My | ν(x) ≥ 2}
and M ′

y,m consist of all elements x ∈ My such that ν(x) = 1. Recall that rm =
maxy∈G\H |M ′

y,m |.
Lemma 5.1 In the above notation, the following statements hold.

(1) If G is one of the groups Al , 2Al with l even, and Bl with l(q −1)/2 even, then the
number rm does not exceed the number in the fourth column of the corresponding
row of Table 3.

(2) If G is one of the other simple classical groups, then ν(h) ≥ 2 for every h ∈ H#.

Proof It is well known and easily verified that the diagonal subgroup of a perfect
classical matrix group contains an element h with ν(h) = 1 only if G is one of the
groups in statement (1). Therefore, we need only to estimate rm in these cases.

We claim that in any case,

rm ≤ |{h ∈ H# : ν(h) ≤ 2}| =: u. (33)

Indeed, let y and z = hy be distinct elements of M ′
y,m . Then, ν(y) = ν(z) = 1.

Therefore, each of the matrices ỹ and z̃ has an eigenvalue of multiplicity dim(V ) − 1.
Since these matrices are conjugate to diagonal matrices, this implies that the matrix
h̃ = ỹ(̃z)−1 has an eigenvalue ofmultiplicity at least dim(V )−2. Therefore, ν(h) ≤ 2.
Since this is true for all z ∈ M ′

x,m , we are done.
Let G = Al . Then, the required statement immediately follows from (33) with

the help of direct estimation of the number u from above by the number of diagonal
matrices in SL(l + 1, q) with at least l − 1 equal diagonal entries.

Suppose that G = 2Al and l is even. To check the required upper bound on the
number u, we observe that the basis of V can be chosen so that any matrix h̃ ∈ H̃ is
of the form

h̃ = diag(λ1, . . . , λr , λ0, λ
−q
1 , . . . , λ

−q
r ),

where r = l/2, λi ∈ Fq2 for all i , (λ0)
q+1 = 1, and λ0(λ1)

1−q · · · (λr )1−q = 1. If, in
addition, ν(h) ≤ 2 and l ≥ 6, then either

h̃ = diag(λ, . . . , λ, λ0, λ, . . . , λ),
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where λq+1 = 1 and λ0λ
l = 1, or

h̃ = diag(λ, . . . , λ, μ, λ, . . . , λ, λ0, λ, . . . , λ, μ−q , λ, . . . , λ),

where λ = λ0, λl−1μ1−q = 1, and μ takes an arbitrary j th of the first r positions (so
μ−q takes the (r + 1 + j)th position). The rest is routine.

Let G = Bl and l(q − 1)/2 be even. Then G = G̃ = �2l+1(q). To estimate u from
above, choose the basis of V so that any matrix h ∈ H is of the form

h = diag(ξ k1 , . . . , ξ kl , ξ−k1 , . . . , ξ−kl , 1),

where ξ is a primitive element of the field Fq , and the number k1 + . . . + kl is even.
If, in addition, ν(h) ≤ 2 and l ≥ 3, then either

h = diag(−1, . . . ,−1, 1)

(recall that l(q − 1)/2 is even), or

h = diag(1, . . . , 1, μ, 1, . . . , 1, μ−1, 1, . . . , 1),

where μ is a nonzero square in Fq and takes an arbitrary j th of the first l positions (so
μ−1 takes the (l + j)th position). Thus, u ≤ l(q − 3)/2 + 1. ��

To complete the proof, we verify inequality (28) for the number m defined by (32).
Observe that, due to (32) and Lemma 5.1, the number rm equals 0 in all cases when
m = m0. In the latter case, it suffices to verify inequality (31). We proceed further
case by case.

Let G = Cl(q). Here, m = m0 and we need to prove that m0 ≥ 2wk2. According
to Table 2, this is true if

q4l−4

2
≥ 2l+1l!(q − 1)2l

for l ≥ 3 and q ≥ 4l. For l = 3, this inequality is straightforward. If l ≥ 4, then
q2l−4 ≥ 4(2l)l ≥ 2l+2l!, and we are done.

Let G = Dl(q) or G = 2Dl(q). Then, m = m0 and inequality (31) is true if

q4l−3

4(q + 1)
≥ 2l l!(q − 1)2l−2(q + 1)2

for l ≥ 4 and q ≥ 2l. However, since (q − 1)2l−2(q + 1)3 < q2l+1 for all these l and
q, it suffices to prove that q2l−4 ≥ 2l+2l!. For l = 4, this is verified directly, while for
l > 4, we have q2l−4 ≥ 4(2l)l ≥ 2l+2l!.

Let G = Al(q). We may assume l ≥ 7 and q ≥ 4l. By Lemma 5.1,

rm ≤ l(l + 1)(q − 1)2

2
− 1 ≤ q4

32
.
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Thus, the left-hand side of (28) can be estimated as follows:

k

m
+ rm

m0
≤ 2(q − 1)l

q4l−1 + 2q4

32q2l
≤ 2

q4l−3 + 1

16q2l−4 ≤ 1

8q2l−4 . (34)

On the other hand, (l+1)! ≤ 4l−3ll−4 for l ≥ 7: This is verified directly for 7 ≤ l ≤ 9,
and follows from the obvious inequalities (l + 1)! < ll < 4l−3ll−4 for l ≥ 10.
Therefore, in our case, we get the following lower bound for the right-hand side
of (28):

1

2wk
≥ 1

2(q − 1)l(l + 1)! ≥ 1

2ql4l−3ll−4 ≥ 1

2ql4ql−4 = 1

8q2l−4 . (35)

Thus, the required statement follows from (34) and (35).
For each of the remaining two series of classical groups, the expression on the

left-hand side of (28) for m = m0 ≤ m1 does not exceed the same expression for
m = m1 (see Tables 2 and 3). Since the expression on the right-hand side in both cases
does not depend on whether m = m0 or not, it suffices to verify (28) for G = 2Al(q)

(resp., G = Bl(q)) independently of the parity of l (resp., l(q − 1)/2), where m0 and
m are taken as in the case of even l (resp. even l(q − 1)/2).

Let G = 2Al(q). We may assume l ≥ 6 and q ≥ 4l. Lemma 5.1 yields that

rm ≤ (l + 1)(q + 1)2

2
+ q ≤ q3

6
.

Put b = �l+1/2�. Now, the left-hand side and right-hand side of (28) can be estimated
as follows:

k

m
+ rm
m0

≤ 2(q − 1)b(q + 1)� l
2 �+1

q4l−3 + 2q3(q + 1)

6q2l+1 ≤ 2ql(q + 1)

q4l−3 + q3(q + 1)

3q2l+1 (36)

and
1

2wk
≥ 1

2(q − 1)b(q + 1)
l
2 2bb!

≥ 1

2ql2bb! . (37)

By (36) and (37), it suffices to verify that

2bb! ≤ 3q2l−3

2(q + 1)(ql−1 + 6)
. (38)

However, one can easily check that 2(q + 1)(ql−1 + 6) ≤ 3ql and 2bb! ≤ ql−3 for all
q ≥ 4l ≥ 25. Therefore, (38) holds, and we are done.

Let G = Bl(q). We may assume l ≥ 4 and q ≥ 4l. By Lemma 5.1,

rm ≤ l(q − 3)

2
+ 1 ≤ q2

8
.
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Now, the left-hand side and right-hand side of (28) can be estimated as follows:

k

m
+ rm

m0
≤ 4ql(q + 1)

2q4l−1 + 4q2(q + 1)

8q2l+1 = (q + 1)(ql + 4)

2q3l−1

and

1

2wk
≥ 1

2l l!(q − 1)l
≥ 1

2l l!ql−1(q − 1)
.

Thus, it suffices to verify that

(ql + 4)2l l! ≤ 2q2l−2.

This is straightforward for l = 4. Since q ≥ 4l, the required inequality holds whenever
l! ≤ 2l−4ll−2, which can easily be checked for 5 ≤ l ≤ 10. Finally, if l ≥ 11, then
l! ≤ ll ≤ 2l−4ll−2. This completes the proof of the lemma.

6 Proof of Theorem 1.4

Let G = PSL(2, q) with q > 3, H the Cartan subgroup of G, and X = Inv(G,�),
where � = G/H . If q is odd, then the required statement follows from Theorem 3.1
and Corollary 2.6, because inequality (3) is satisfied. Indeed, in this case,

|G| = q(q2 − 1)

2
, |H | = q − 1

2
, |�| = |G : H | = q2 + q,

so it suffices to verify that c < (q2 + q)/(q − 3). However, if χ is the permutation
character of the action of G on � and χ(x) �= 0 for some x ∈ G\H , then χ(x) = 2
by Lemma 2.4, because |CG(x)| = |CG(h0)| and in our case CG(h0) = H . Thus,
fix(G) = 2. By Lemma 2.3, this implies that c ≤ 2k = q − 1 < (q2 + q)/(q − 3), as
required.

Let now q be even. Then, G = SL(2, q) and

|G| = q(q2 − 1), |H | = q − 1, |�| = |G : H | = q2 + q. (39)

First, we study the structure of X in terms of double H -cosets (see Sect. 2.3).
One can see that the group N = NG(H) is the disjoint union of two double H -

cosets, namely H and HiH = Hi , where

i =
(
0 1
1 0

)

Denote by s1 and si the basis relations of X , for which Ds1 = H and Dsi = HiH
(see (5)). Clearly, s1 = 1�.
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Lemma 6.1 Let S be the set of basis relations of the coherent configuration X . Then,
given s ∈ S, we have

ns =
{
1 if s ∈ {s1, si },
q − 1 otherwise.

In particular, |S| = q + 4 and |Smax| = q + 2.

Proof It is easy to verify that Hx ∩ H = 1 for all x ∈ G\N and N = H ∪ Hi . Thus,
the required statements follow from formula (6). ��

Denote byU and V the subgroups (inG) of unipotent upper triangular and lower tri-
angular matrices, respectively. Since, obviously, H ≤ NG(U )∩ NG(V ), we conclude
that

HuH = HU # = U #H and HvH = HV # = V #H (40)

for all u ∈ U # and v ∈ V #. Denote by su and sv the basis relations of X , for which
Dsu = HuH and Dsv = HvH , respectively. In view of (40), these relations do not
depend on the choice of the matrices

u =
(
1 x
0 1

)
and v =

(
1 0
y 1

)
,

where x and y are nonzero elements of the field Fq . Again by (40), we have (su)∗ = su
and (sv)∗ = sv .

Lemma 6.2 In the above notation, let s ∈ S. Then,

(1) csvsus = 0 if s = s1 or si , and csvsus = 1 otherwise,
(2) if s /∈ {s1, si , su, sv}, then cssusv = 1 or cssvsu = 1.

Proof It is straightforward to check that csvsus1 = csvsusi = 0. By Lemma 6.1, we may
assume that s ∈ Smax, and hence, ns = q − 1 = nsv . Therefore, c

sv
sus = cssusv . The

number |H | cssusv is equal to the multiplicity, with which an element w ∈ Ds enters
the product

Dsu Dsv = HuH HvH = HU # HV # = HH(U #V #)

(see (40)). Thus, to prove statement (1), it suffices to verify that no two elements in
UV belong to the same H -coset. For this aim, suppose that u1v1h = u2v2 for some
u1, u2 ∈ U , h ∈ H , and v1, v2 ∈ V . Then, the group U of unipotent upper triangular
matrices contains the element

u−1
2 u1 = v2 h

−1v−1
1 ,

which is a lower triangular matrix. It follows that u1 = u2, v1 = v2, h = 1, and we
are done.
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To prove statement (2), it suffices to verify that the complement to the set Dsu Dsv ∪
Dsv Dsu in G is equal to Ds1 ∪ Dsi ∪ Dsu ∪ Dsv . In view of equalities (40), this is
equivalent to

G\(HU #V # ∪ HV #U #) = N ∪ HU # ∪ HV #. (41)

To prove this relation, we observe that general elements of the sets U #V # and V #U #

are, respectively,

(
1 + xy x

y 1

)
and

(
1 x
y 1 + xy

)
,

where x and y are nonzero elements inFq . Therefore, there are at least q−1 elements in
V #U #, which do not belong toU #V # (they correspond to nonzero elements xy). By the
statement proved in the previous paragraph, it follows that the set HU #V # ∪ HV #U #

is the disjoint union of (q − 1)2 distinct cosets of H contained in HU #V # and at least
q − 1 distinct cosets of H contained in HV #U #. Since none of all these cosets is
contained in N ∪ HU # ∪ HV #, we have

(q − 1)2q = q(q + 1)(q − 1) − 2(q − 1) − 2(q − 1)2

= |G\(N ∪ HU # ∪ HV #)| ≥ |HU #V # ∪ HV #U #|
≥ (q − 1)2(q − 1) + (q − 1)(q − 1) = (q − 1)2q,

which proves formula (41). ��

Let us verify that the coherent configuration Xα is 1-regular for α = H . Indeed, in
this case, Theorem 1.4 follows from Corollary 2.6.

To prove the 1-regularity of Xα , we check that every point β ∈ αsmax is regular.
However, if t is a basis relation of Xα , then t is contained in a basis relation s of X . If
s ∈ {s1, si }, then by Lemma 6.1, we have

|βt | ≤ |βs| = ns = 1.

Thus, by the same lemma, we may assume that s ∈ Smax, and hence, t belongs to the
set Tα defined in Lemma 3.2. The latter lemma proves that β is regular if the graph sα
is connected.

Let us prove the connectedness of sα . Suppose that the pair (γ, δ) ∈ αu × αv,
belongs to the basis relation s. Then, obviously, csvsus �= 0. Thus, by statement (1)
of Lemma 6.2 and the definition of sα , the points γ and δ are adjacent in sα . From
statement (2) of Lemma 6.2, it follows that any other vertex β ∈ αs with s ∈ Smax,
has at least one neighbor in the set αsu ∪ αsv , i.e.,

βsα ∩ (αsu ∪ αsv) �= ∅.

Thus, sα is connected, and we are done.

123

Author's personal copy



J Algebr Comb

7 Proof of Theorem 1.5

Wemake use of thewell-knownWeisfeiler-Leman algorithm described in detail in [21,
Section B]. The input of it is a set S of binary relations on a set �, and the output is
the smallest coherent configuration

WL(S) = (�, S)

such that S ⊂ S∪. The running time of the algorithm is polynomial in the cardinalities
of S and �. The proof of the following statement is based on the Weisfeiler-Leman
algorithm and can be found in [17, Theorem 3.5].

Theorem 7.1 Let X and X ′ be coherent configurations on n points. Then given an
algebraic isomorphism ϕ : X → X ′, all the elements of the set Iso(X ,X ′, ϕ) can be
listed in time (bn)O(b), where b = b(X ).

To solve the recognition problem, we recognize first the colored graphs D of Cartan
schemes of G with respect to (B, N )-pairs of rank at least 2. In this case, from the
corollary of the main theorem in [8], it follows that B is the normalizer NG(P) of a
group P ∈ Sylp(G) such that

H ∩ P = 1, H ≤ NG(P), |NG(P)| = |H | |P|, (42)

where p is the characteristic of the ground field. By [19], one can also see that apart
from finitely many exceptional groups, N = NG(H) for every group from L. Thus,
the correctness of the algorithm below is obtained as a consequence of Theorems 1.3
and 7.1.

In what follows, we denote by � the vertex set of the graph D ∈ Gn , by S the set of
its color classes, and by Sα,β the union of S and the set of two one-element relations
{(α, α)} and {(β, β)}.

Recognizing Cartan schemes (the rank of (B, N ) is at least 2)

Step 1. Find the coherent configuration X = WL(S).
Step 2. If there are no distinct points α, β such that the coherent configuration
Xα,β = WL(Sα,β) is complete, then b(X ) > 2 and D /∈ Kn .
Step 3. Find all the elements of the group G = Iso(X ,X , id) by the algorithm of
Theorem 7.1. If G is not simple, then D /∈ Kn .
Step 4. Analyzing the number |G|, check that G ∈ L. If not, then D /∈ Kn ;
otherwise, set p to be the characteristic of the ground field associated with G.
Step 5.Fix a point stabilizer H ofG and find P ∈ Sylp(G), for which relations (42)
hold. If there is no such P , then D /∈ Kn .
Step 6. Now, D ∈ Kn and X is the Cartan scheme of G with respect to (B, N ),
where B = NG(P) and N = NG(H). ��
Let us estimate the running time of the algorithm. At Steps 1 and 2, we apply

the Weisfeiler-Leman algorithm n(n − 1) + 1 times. Thus, the complexity of these
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steps is at most nO(1). At Step 3, the time is polynomially bounded by Theorem 7.1
and the fact that a group is simple if and only if no non-trivial conjugacy class of
it generates a proper subgroup (given the multiplication table of G, the conjugacy
classes of this group can be found efficiently). Step 4 requires polynomially many
arithmetic operations involving the number |G| written in the unary system. Here, we
use the fact based on CFSG that except for known cases, any finite simple group is
uniquely determined by its order (see Theorem 5.1 and Lemma 2.5 in [14]). Since
Steps 5 and 6 can obviously be implemented in polynomial time for the groupG given
by the multiplication table, we conclude that the running time of the algorithm is at
most nO(1).

The first four steps of the algorithm remain the same as before if we do not assume
that the rank of (B, N ) is at least 2. But in this case, one can find a 2-transitive
representation of the groupG; here, a complete classification of all 2-transitive groups
is useful (see, e.g., [11, Sec. 7.7]). This enables us to find the groups B and N .

To solve the isomorphism problem, let D ∈ Kn and D′ ∈ Gn . Denote by S and S ′
the sets of color classes of D and D′, respectively. Without loss of generality, we may
assume that there is a color preserving bijection ψ : S → S ′. Then, one can apply the
canonical version of the Weisfeiler-Leman algorithm presented in [21, Section M],
where, in fact, the following statement was proved.

Theorem 7.2 Let S and S ′ be m-sets of binary relations on an n-element set. Then,
given a bijectionψ : S → S ′ one can check in time mnO(1) whether or not there exists
an algebraic isomorphism ϕ : WL(S) → WL(S ′) such that ϕ|S = ψ . Moreover, if ϕ
does exist, then it can be found within the same time. ��

Clearly, the original graphs D and D′ are not isomorphic if there is no algebraic
isomorphism ϕ from Theorem 7.2. Assuming the existence of ϕ, we can find the set

Iso(D, D′) = Iso(X ,X ′, ϕ)

in time (bn)O(b) by Theorem 7.1, where X = WL(S), X ′ = WL(S ′), and b = b(X ).
Since b ≤ 2 (Theorem 1.3), we are done.
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