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Abstract: Let L be a simple linear or unitary group of dimension larger than 3 over a finite field of
characteristic p. We deal with the class of finite groups isospectral to L. It is known that a group of this
class has a unique nonabelian composition factor. We prove that if L �= U4(2), U5(2) then this factor is
isomorphic either to L or a group of Lie type over a field of characteristic different from p.

Keywords: finite group, spectrum of a group, simple group, linear group, unitary group, composition
factor

The spectrum ω(G) of a finite group G is the set of its element orders. Two groups are said to be
isospectral if they have the same spectra. A finite group L is recognizable by spectrum if every finite
group G with ω(G) = ω(L) is isomorphic to L. We say that the problem of recognition by spectrum is
solved for L if the number h(L) of pairwise nonisomorphic finite groups isospectral to L is known. Thus
the recognizability of L is equivalent to the equality h(L) = 1. The recent results concerning the problem
of recognition by spectrum can be found in the surveys [1, 2].

When solving the problem of recognition by spectrum for a finite group L, one naturally faces the
question of what composition structure finite groups isospectral to L have. The present paper investigates
this aspect of the recognition problem for finite simple linear and unitary groups. To denote these groups
we use the matrix notation from [3] and the abbreviation Lε

n(q), where ε ∈ {+,−}, L+
n (q) = Ln(q), and

L−
n (q) = Un(q). Since the recognition problem is completely solved for L2(q) [4, 5], L3(q) [6–8], and U3(q)

[6, 9], these groups are excluded from the article.

Theorem 1. Let L = Lε
n(q), where n ≥ 4, ε ∈ {+,−}, and (n, q) �= (4, 2). Then there are no

alternating groups among nonabelian composition factors of finite groups isospectral to L.

Theorem 2. Let L = Lε
n(q), where n ≥ 4, ε ∈ {+,−}, and (ε, n, q) �= (−, 5, 2). Then there are

no sporadic groups nor the Tits group 2F4(2)
′ among nonabelian composition factors of finite groups

isospectral to L.

Theorem 3. Let L = Lε
n(q), where n ≥ 4, ε ∈ {+,−}, (ε, n, q) �= (−, 4, 2), and q is a power of

a prime p. Then among nonabelian composition factors of finite groups isospectral to L, there are no
groups of Lie type over a field of characteristic p other than L.

Note that some similar results for symplectic and orthogonal groups were established in [10].

§ 1. Preliminaries

Our notation of sporadic groups, simple classical groups and simple exceptional groups of Lie type
follows [3]. The alternating group of degree n is denoted by Altn.
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Given a nonzero integer n, let π(n) denote the set of prime divisors of n, and nr, with r prime,
denote the r-part of n, i.e., the largest power of r that divides n, while nr′ denotes the r′-part of n, i.e.,
the absolute value of n/nr. If n is a nonzero integer, m is an odd prime, and (n,m) = 1 then we write
e(m,n) to denote the multiplicative order of n modulo m. Given an odd n, we put e(2, n) = 1 if n ≡ 1
(mod 4) and put e(2, n) = 2 if n ≡ 3 (mod 4).

Let n be an integer and |n| > 1. A prime r is said to be a primitive prime divisor of the difference
ni − 1 if e(r, n) = i. The existence of primitive divisors for almost all pairs of n and i was established by
Zsigmondy.

Lemma 1.1 (Zsigmondy [11]). Let n be an integer and |n| > 1. Then for every natural number i
there is a prime r with e(r, n) = i, except when (n, i) ∈ {(2, 1), (2, 6), (−2, 2), (−2, 3), (3, 1), (−3, 2)}.

In what follows the notation ri(n) means a primitive prime divisor of ni−1 if such exist. The product
of all primitive divisors of ni − 1 taken with multiplicities is said to be the greatest primitive divisor and
denoted by ki(n). Note that for a divisor, the property of being primitive depends on the pair (n, i) and
is not determined by the number ni − 1. For example, k6(2) = 1 while k3(4) = 7 and k6(−2) = 7, and
k2(2) = 3 while k2(−2) = 1.

It is easy to check that k1(n) = |n − 1|/2 if n ≡ 3 (mod 4) and k1(n) = |n − 1| otherwise, and also
that k2(n) = |n+1|/2 if n ≡ 1 (mod 4) and k2(n) = |n+1| otherwise. It follows from [12] that for i > 2

ki(n) =
|Φi(n)|

(r,Φir′ (n))
, (1)

where Φi(x) is the ith cyclotomic polynomial and r is the largest prime number dividing i, and if ir′ does
not divide r − 1, then (r,Φir′ (n)) = 1.

Lemma 1.2. Let i be an odd prime, let q be a power of a prime p, and ε ∈ {+,−}. If (i, εq) �= (3,−2)
then ki(εq) > qi−2/p. If, in addition, (i, ε) �= (q + 1,−) then ki(εq) > qi−2.

The proof follows from [10, Lemma 3.1].

The Gruenberg–Kegel graph GK(G), or the prime graph, of G is the graph with vertex set π(G) in
which two distinct vertices p and q are adjacent if and only if pq ∈ ω(G). The number of connected
components of GK(G) is denoted by s(G), and the connected components are denoted by πi(G) with
1 ≤ i ≤ s(G). If G has even order then by default 2 ∈ π1(G). According to this partition, ωi(G) is the
subset of πi(G)-numbers in ω(G) for every 1 ≤ i ≤ s(G). The structure of finite groups with disconnected
prime graph is described by Gruenberg and Kegel.

Lemma 1.3 [13]. If G is a finite group with s(G) > 1 then one of the following holds:
(1) s(G) = 2, G is a Frobenius group;
(2) s(G) = 2, G = ABC, where A and AB are normal subgroups of G, B is a normal subgroup of

BC, and AB and BC are Frobenius groups;
(3) there is a nonabelian simple group S such that S ≤ G = G/K ≤ AutS for some nilpotent normal

subgroup K of G; moreover, K and G/S are π1(G)-groups, s(S) ≥ s(G), and for every 1 < i ≤ s(G)
there is 1 < j ≤ s(S) such that ωi(G) = ωj(S).

Finite simple groups with disconnected prime graph were described by Williams [13] and Kondrat′ev
[24]. The complete list of these groups, with corrected inaccuracies, can be found in [15, Tables 1a–1c].
It follows from the results of Williams and Kondrat′ev that if S is a simple group and s(S) > 1, then for
every 1 < i ≤ s(S), the set ωi(S) has the unique element maximal under divisibility [16, Lemma 4]. In
the tables mentioned above and the present paper this maximal element is denoted by ni(S).

Recall that an independent set of vertices, or coclique, in a graph Γ is a set of vertices pairwise
nonadjacent to each other in Γ. We write t(Γ) to denote the independence number of Γ, i.e., the maximal
number of vertices in its cocliques. Given a group G, put t(G) = t(GK(G)). By analogy, for each prime r,
define the r-independence number t(r,G) to be the maximal number of vertices in cocliques of GK(G)
containing the vertex r.
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Lemma 1.4 [17, 18]. Let L be a finite nonabelian simple group such that t(L) ≥ 3 and t(2, L) ≥ 2,
and let G be a finite group with ω(G) = ω(L). Then the following hold:

(1) There exists a nonabelian simple group S such that S ≤ G = G/K ≤ AutS, where K is the
maximal normal soluble subgroup of G.

(2) For every coclique ρ of GK(G) of size at least 2, at most one prime of ρ divides the product
|K| · |G/S|. In particular, t(S) ≥ t(G)− 1.

(3) Any prime r ∈ π(G) not adjacent to 2 in GK(G) does not divide the product |K| · |G/S|. In
particular, t(2, S) ≥ t(2, G).

Lemma 1.5. Let G be a finite group, let K be a normal subgroup of G, and r ∈ π(K). Suppose
that the factor group G/K contains a section isomorphic to a noncyclic abelian p-group for some prime
p other than r. Then rp ∈ ω(G).

Proof. Let R be a Sylow r-subgroup of K and let N be its normalizer in G. By the Frattini
argument G/K � N/(K ∩N) and so N and its normal subgroup R satisfy the hypothesis of the lemma.
Therefore we can assume that G = N and K = R. Since p �= 2, the group G/K which contains a section
isomorphic to a noncyclic abelian p-group must also contain a noncyclic abelian p-subgroup. The rest of
the proof follows from [19, Chapter 5, Theorem 3.16].

§ 2. Properties of Simple Linear and Unitary Groups

The formulas of the orders of simple linear and unitary groups imply that the set of primes dividing
the order of Lε

n(q) looks as follows:

r ∈ π(Lε
n(q)) if and only if e(r, εq) ≤ n or r divides q. (2)

We will use the adjacency criterion for the prime graphs of linear and unitary groups from [20]. In that
paper, the criterion for unitary groups is formulated in terms of a function ν(x) acting from N to N by
the following rule:

ν(x) =

⎧
⎨

⎩

2x, if x is odd,

x/2, if x ≡ 2 (mod 4),

x, if x ≡ 0 (mod 4).

(3)

It is easy to check that
ν(ν(x)) = x, (4)

e(m,−x) = ν(e(m,x)) (5)

for every nonzero integer x and prime m. Using this observation we unite the criteria for linear and
unitary groups in the following three lemmas.

Lemma 2.1 [20, Propositions 2.1 and 2.2]. Let L = Lε
n(q) be a simple group over a field of char-

acteristic p. Let r and s be odd primes in π(L) other than p. Let k = e(r, εq), l = e(s, εq) and suppose
that 2 ≤ k ≤ l. Then r and s are not adjacent in GK(L) if and only if k+ l > n and k does not divide l.

Lemma 2.2 [20, Proposition 3.1]. Let L = Lε
n(q) be a simple group over a field of characteristic p.

Let r ∈ π(L) and r �= p. Then r and p are not adjacent in GK(L) if and only if one of the following holds:
1) r is odd and e(r, εq) > n− 2;
2) L = L2(q) and r = 2;
3) L = Lε

3(q), r = 3, and (εq − 1)3 = 3.

Lemma 2.3 [20, Propositions 4.1 and 4.2]. Let L = Lε
n(q) be a simple group over a field of charac-

teristic p. Let r be a prime divisor of εq − 1 and let s be an odd prime other than p. Let k = e(s, εq).
Then s and r are not adjacent in GK(L) if and only if one of the following holds:

1) k = n, nr ≤ (εq − 1)r, and if nr = (εq − 1)r then 2 < (εq − 1)r;
2) k = n− 1 and (εq − 1)r ≤ nr.

It was noted in the introduction that the recognition problem is already solved for linear and unitary
groups of dimension at most 3. There is also a number of results concerning groups of larger dimensions.
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Lemma 2.4. 1. If L is one of the simple groups Ln(2
m), with m ≥ 1 and n ≥ 4, or U4(2

m), with
m > 1, while G is a finite group with ω(G) = ω(L) then L ≤ G ≤ AutL.

2. If L is one of the groups L4(3), L5(3), L6(3), U6(2), U4(3), and U4(5), while G is a finite group
with ω(G) = ω(L) then L ≤ G ≤ AutL.

3. The group L = U4(2) is isospectral to a group that has a nonabelian composition factor isomorphic
to Alt5 � L2(4).

4. The group L = U5(2) is isospectral to a group that has a nonabelian composition factor isomorphic
to the sporadic group Mathieu M11.

Proof. The complete references to proofs of the assertions 1 and 2 can be found in [21, 22] and [1]
respectively. The assertions 3 and 4 were proved in [23].

If L is one of the groups listed in (1) and (2) of Lemma 2.4 then the unique nonabelian composition
factor of a finite group isospectral to L is isomorphic to L. Among the listed groups, only L4(2) is
isomorphic to an alternating group, namely to Alt8, and there is no ones isomorphic to a sporadic group.
Hence if L �= L4(2) then the conclusions of Theorems 1–3 are true for L. On the other hand, (3) and (4)
of Lemma 2.4 show that U4(2) does not satisfy the conclusions of Theorems 1 and 3, while U5(2) does
not satisfy the conclusion of Theorem 2. Furthermore, π(U4(2)) = {2, 3, 5} and using [3] it is not hard
to check that the conclusion of Theorem 2 is true for L = U4(2). Thus proving Theorems 1–3 we may
assume that L is not contained in the set

L={Ln(2
m) | m ≥ 1} ∪ {U4(2

m) | m ≥ 1} ∪ {L4(3), L5(3), L6(3), U6(2), U4(3), U4(5)}.
Then [20, 24] guarantee that t(L) ≥ 3 and t(2, L) ≥ 2, and so the conclusion of Lemma 1.4 holds for
groups isospectral to L.

§ 3. Proof of Theorem 1

Let L = Lε
n(q), where n ≥ 4, ε ∈ {+,−}, and q is a power of a prime p. Let G be a finite group

isospectral to L and let K be the soluble radical of G. Assume that the conclusion of Theorem 1 does
not hold. Then L �∈ L and applying Lemma 1.4 we obtain S ≤ G = G/K ≤ Aut(S), where S � Altm
for some m ≥ 5.

Suppose that for L there is a set M of three natural numbers which satisfies the following:
(∗) for every i ∈ M , the number ki(q) is not equal to 1;
(∗∗) primitive prime divisors ri(εq) and rj(εq), where i, j ∈ M , are not adjacent in GK(L) if i �= j.
Consider the numbers ki(εq), where i runs over M . It follows from (2) of Lemma 1.4 that at least

two of these three numbers are coprime to |K| · |G/S| and lie in ω(S). Denote them by a and b. Suppose
that there is a prime devisor r of a such that r ≤ m/2. Since all prime divisors of b are not adjacent to r
in GK(G), they all are larger than m/2. Therefore, either all prime divisors of a or all prime divisors
of b are greater than m/2. Denote by k that number for which this is true.

Let r′ and r′′ be two different prime divisors of k. Then r′ + r′′ > m. Thus r′r′′ �∈ ω(S) and
so r′r′′ ∈ ω(L) \ ω(G), which is impossible. Let k be a power of a prime r larger than r. Then
r2 > (m/2)2 > m and hence r2 ∈ ω(L) \ω(G); a contradiction. Therefore, k is a prime and the fact that
k ∈ ω(S) yields m ≥ k. Thus m ≥ ki(εq) for some i ∈ M .

The idea of the further proof is as follows: Choosing M in a special way, we bound m from below in
terms of n and q. Then we arrive at a contradiction by showing that the maximal power of p in ω(S) is
strictly larger than the maximal power of p in ω(L) with a few exceptions which are analyzed separately.
We will refer to the maximal power of p in the spectrum of a finite group as the p-period of this group.

Denote the p-period of L by pl. It follows from [25, Proposition 0.5] that l satisfies the inequalities

pl−1 + 1 ≤ n ≤ pl. (6)

Suppose that n ≥ 17. Then there are at least three different primes in the interval (n/2, n] and
obviously all of them are at least max{(n + 1)/2, 11}. By Lemma 2.1 the set M constituted by these
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three numbers satisfies (∗) and (∗∗). Thus for at least one prime i ∈ M , the number ki(εq) is a prime
not exceeding m.

Since i ≥ max{(n+ 1)/2, 11}, Lemma 1.2 implies that

m ≥ ki(εq) > max{q n−3
2 /p, q9/p}.

Since m > q9/p > p7+1, there is an element of order p7 in S. Hence p7 ∈ ω(L) and l ≥ 7. For l ≥ 7,
we have l+2 < (2l−1−2)/2, and so l+2 < (pl−1−2)/2. It follows from (6) that (pl−1−2)/2 ≤ (n−3)/2.

Thus l + 2 < (n − 3)/2 and so m > q(n−3)/2/p > pl+2/p = pl+1, which results in pl+1 ∈ ω(G) \ ω(L);
a contradiction.

Suppose that n ∈ {13, 14, 15, 16}. The set M = {7, 11, 13} satisfies (∗) and (∗∗) and therefore
m ≥ min{k7(εq), k11(εq), k13(εq)}. Since q + 1 cannot be equal to 7, it follows from Lemma 1.2 that
m > q5. If q > 2 then S contains an element of order p5 and so l ≥ 5. But then n ≥ pl−1+1 ≥ 24+1 = 17;
a contradiction. If q = 2 then m ≥ min{k7(ε2), k11(ε2), k13(ε2)} = 43 and thus 37 ∈ ω(S). But
e(37, 2) = 36 and so 37 �∈ ω(L); a contradiction.

Let n = 11, 12. The set M = {7, 9, 11} satisfies (∗) and (∗∗). It is not hard to derive from the
equality k9(εq) = (q6 + εq3 + 1)/(3, εq − 1) and Lemma 1.2 that m > q4 + 2. Therefore S contains an
element of order q4 and so l ≥ 4. If p �= 2 then n ≥ pl−1 + 1 ≥ 33 + 1 = 28, which is impossible. If p = 2
and q > 2 then m > 44 + 2 and so 28 ∈ ω(G) \ ω(L). If q = 2 then m ≥ 19 and 2 · 13 ∈ ω(S). But
2 · 13 �∈ ω(L); a contradiction.

Suppose that n = 9, 10. The set M = {7, 8, 9} satisfies (∗) and (∗∗). Thus m ≥ k8(εq) = (q4 +
1)/(2, εq − 1). If q > 3 then we immediately get a contradiction since L has no elements of order p3 for
p > 3 and of order p6 for p ∈ {2, 3}. If q = 3 then m ≥ 42, and so 31 ∈ ω(S). Since e(31, 3) = 30, there
are no elements of order 31 in L. If q = 2 then m ≥ 17 and similarly to the previous paragraph we infer
that 2 · 13 ∈ ω(S) \ ω(L), which is impossible.

Let n = 8. The set M = {5, 7, 8} satisfies (∗) and (∗∗). Let first p �= 2. Then m > q3 and hence
p3 ∈ ω(S) \ ω(L); a contradiction. If p = 2 then the 2-period of group L is equal to 8. To arrive at
a contradiction, it suffices to show that m > 17. For q > 2 we have m ≥ min{k5(εq), k7(εq), k8(εq) | q =
2m > 2} > 43/2 > 17 as required. It remains to consider the case q = 2. Observe that by Lemma 2.2 the
primitive divisors r7(ε2) and r8(ε2) are not adjacent to 2 in GK(L). Thus the numbers k7(ε2) and k8(ε2)
are in ω(S) and both of them are primes between m− 3 and m. In particular, m ≥ 43; a contradiction.

Let n = 5, 7. Then by [15, Table 1a] the prime graph of L has two connected components and
n2(L) = kn(εq). By Lemma 1.3 the graph GK(S) is also disconnected and n2(L) = nj(S) for some j > 1.
Thus n2(L) is a prime and m − 2 ≤ n2(L) ≤ m. Hence m ≥ k5(εq). Repeating the argument of the
preceding paragraph we arrive at a contradiction, provided that q > 2. The group L5(2) is eliminated as
in L . Let L = U5(2). Since k5(−2) = 11 lies in ω(S), it follows that m ≥ 11. Therefore 7 ∈ ω(S) \ω(L).

Let n = 6. Since Lε
6(2) ∈ L , we can assume that q > 2. If p = 2 or εq ≡ 1 (mod 4), it follows from

Lemmas 2.2 and 2.3 that every primitive divisor r5(εq) is not adjacent to 2 in GK(L). Then by (3) of the
Lemma 1.4 the number k5(εq) is coprime to the product |K| · |G/S|, and hence it is a prime satisfying
m− 3 ≤ k5(εq) ≤ m; a contradiction.

Thus εq ≡ 3 (mod 4). Moreover, Lε
6(3) ∈ L ; therefore, q ≥ 5. Hence r6(εq) is not adjacent to 2

and k6(εq) is a prime satisfying m − 3 ≤ k6(εq) ≤ m. Then m ≥ (q2 − q + 1)/2 ≥ 7 and thus a Sylow
3-subgroup of S is not cyclic. Applying Lemma 1.5 we infer that 3 is adjacent to each prime divisor r �= 3
of |K| in GK(G). If (εq−1)3 ≤ 3 then Lemmas 2.2 and 2.3 imply that the primitive prime divisor r5(εq)
is not adjacent to 3 in GK(L) and so k5(εq) must be a prime with m− 2 ≤ k5(εq) ≤ m; a contradiction.

Therefore (εq−1)3 ≥ 9. This, in particular, implies that k6(εq) = q2−εq+1. Hence m ≥ q2−εq+1.
If q > p then m > p3, contrary to the fact that p3 �∈ ω(L). Thus q = p and the conditions (εq − 1)3 ≥ 9
and εq ≡ 3 (mod 4) yield p ≥ 19. So the p-period of L is equal to p. If L = U6(p) then m ≥ p2 + p+ 1;
a contradiction. Let L = L6(p). Then m ≥ p2 − p + 1 > 2p and a Sylow p-subgroup of S is not cyclic.
Applying Lemma 1.5 we infer that p is adjacent to each prime divisor r �= p of |K| in GK(G). Thus none
of the primes dividing k5(p) can divide the order of K and so k5(p) ∈ ω(S). Since k5(p) > p3, the number
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k5(p) cannot be a prime. Let the product of primes r1 and r2, not necessarily different, divides k5(p).
Every prime divisor of k5(p) is not adjacent to p, therefore, r1 > m − p > m/2 and r2 > m − p > m/2.
Then r1r2 > m and r1 + r2 > m, and there is no element of order r1r2 in S; a contradiction.

Finally, let n = 4. Since L �∈ L , we have p > 2, q > 3 and (ε, p) �= (−, 5). By Lemmas 2.2 and 2.3 for
at least one i of the pair 3, 4, every primitive divisor ri(εq) is not adjacent to 2 in GK(L). But then ki(εq)
is a prime and m ≥ ki(εq) ≥ m− 3. If q > p then m ≥ min{k3(εq), k4(εq)} > p3, which is impossible for
the p-period of L is at most p2.

Thus q = p > 3 and the p-period of L is equal to p. Note that k4(εp) = (p2 + 1)/2 > 2p, and
since (ε, p) �= (−, 5), it follows that k3(εp) = (p2 + εp + 1)/(3, εp − 1) > 2p. Hence m > 2p and
a Sylow p-subgroup of S is not cyclic. Therefore both k3(εp) and k4(εp) are coprime to the order of
K and lie in the spectrum of S. Repeating the argument of the preceding paragraph we deduce that
both of these numbers must be primes greater than m − p and less than m. If ε = + and p ≡ −1
(mod 3) then m ≥ p2 + p + 1 and p2 ∈ ω(S); a contradiction. If ε = − and p ≡ 1 (mod 3) then
m ≥ p2 − p + 1 > p + (p2 + 1)/2, contrary to the inequality k4(εp) > m − p. In the remaining cases,
unless L = L4(7), we have k3(εp) = (p2 + εp + 1)/3 < (p2 + 1)/2 − p ≤ m − p, which is impossible. It
remains to observe, for the case L = L4(7), that k4(εp) = 25 is not a prime.

Theorem 1 is proved.

§ 4. Proof of Theorem 2

Lemma 4.1. If 3 ≤ i ≤ 20, q is a power of a prime, and ki(q) lies in the spectrum of a sporadic
group or the Tits group 2F4(2)

′ then the triple (i, q, ki(q)) is in Table 1.

Table 1

q�i 3 4 5 6 8 10 12 14 18 20

2 7 5 31 1 17 11 13 43 19 41

3 13 5 7 41

4 7 17 13 41

5 31 13 7

7 19 25 43

8 19

9 41

11 37

Proof. Using (1) it is easy to show that ki(q) ≥ (q2 − q + 1)/3 for i ≥ 3. According to [3], the
orders of elements in the sporadic groups do not exceed 119. Thus (q2 − q + 1)/3 ≤ 119 and so q ≤ 19.
Now direct calculations show that the lemma holds.

Let L = Lε
n(q), where n ≥ 4, ε ∈ {+,−}, q is a power of a prime p, and L �∈ L . Let G be a finite group

isospectral to L and let K be the soluble radical of G. By Lemma 1.4 we have S ≤ G = G/K ≤ Aut(S),
where S is a nonabelian simple group. Theorem 2 ensues from the following two propositions.

Proposition 4.1. Let L = Lε
4(q). Then S is neither a sporadic group nor the Tits group.

Proof. Assume the opposite. The groups Lε
4(2

m), L4(3), and U4(5) are in L , and so q is odd,
greater than 3, and also not equal to 5 in unitary case. By Lemma 2.3 all prime divisors of at least one of
the numbers k4(εq) and k3(εq) are not adjacent to 2 in GK(L), and by Lemma 1.4 at least one of these
numbers is in ω(S). Hence q ≤ 11 by Lemma 4.1.

Let q = 11. Then k3(ε11) ∈ ω(S). Lemma 4.1 implies that L = U4(11) and 37 ∈ ω(S). Therefore S
is isomorphic to one of the sporadic groups Ly and J4. In the former case 67 ∈ ω(S) \ ω(L) and in the
latter 43 ∈ ω(S) \ ω(L); a contradiction.
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Let q = 9. If L �= L4(9) then k3(ε9) ∈ ω(S), contrary to Lemma 4.1. And if L = L4(9) then
41 = r4(9) ∈ ω(S). Hence S = F1 and 47 ∈ ω(S) \ ω(L); a contradiction.

Let q = 7. If ε = + then π(S) ⊆ π(L4(7)) = {2, 3, 5, 7, 19} and 19 = r3(7) ∈ ω(S). Using [3] it is
easy to verify that this is impossible. For unitary groups, we have π(U4(7)) = {2, 3, 5, 7, 43} and therefore
S = J2. On the other hand, 5 = r4(7) is not adjacent to 2 in GK(L). But 10 ∈ ω(J2); a contradiction.

Let q = 5. Then π(S) ⊆ π(L4(5)) = {2, 3, 5, 13, 31} and hence S = 2F4(2)
′. On the other hand,

31 = r3(5) ∈ ω(S). But 31 �∈ ω(2F4(2)
′); a contradiction. The proposition is proved.

Proposition 4.2. Let L = Lε
n(q), with n ≥ 5, and S is a sporadic group or the Tits group. Then

L = U5(2) and S � M11.

Proof. Note that for n �= 6, 10, there are two different primes i and j in the interval (n/2, n].
According to the parity of n either {ri(εq), rj(εq), rn(εq)} or {ri(εq), rj(εq), rn−1(εq)} is a coclique of
size 3 in GK(L). By Lemma 1.4 at least one of the numbers ki(εq) and kj(εq) is in ω(S). Hence there is
a prime i such that i > n/2 and ki(εq) ∈ ω(S).

If n = 6 or n = 10 then by Lemma 2.1 there is a coclique of three numbers in GK(L) containing
r3(εq), r5(εq) for n = 6 and r5(εq), r7(εq) for n = 10. Therefore in these cases there is a prime i such
that i ≥ n/2 and ki(εq) ∈ ω(S).

Suppose that q �= 2.
Let i ≥ 7. Exploiting Lemma 1.2 we infer that ki(εq) > qi−2 ≥ q5 ≥ 35 = 243 > 119; a contradiction.
Let i = 5. Then ki(εq) > qi−2 ≥ q5 ≥ 53 = 125 > 119 for q ≥ 5, and so q = 3 or q = 4. Moreover,

n ≤ 2i = 10. By Lemma 4.1 we find that q = 4, ε = − and 41 = k5(−4) ∈ ω(S), and thus S � F1. If
n ≤ 10 then it is easily seen that 31 ∈ ω(S) \ ω(L). If n = 10 then 109 = r9(−4) is not adjacent to 2 in
GK(L) but it does not divide the order of S.

Let i = 3 and L = Un(q). Then q ≤ 11 and q �= 9 by Lemma 4.1. Moreover, n ≤ 2i = 6. If n = 5
then Lemmas 2.3 and 1.4 imply that k5(−q) ∈ ω(S). Then q = 4, k5(−4) = 41, and therefore S � F1

and 31 ∈ ω(S) \ω(L); a contradiction. Hence n = 6. For q = 11 it follows from Lemmas 2.3 and 1.4 that
k6(−11) ∈ ω(S), contrary to Lemma 4.1. Thus q ≤ 7.

If q = 7 then ki(q) = k3(−7) = 43 and so S � J4. In this case 37 ∈ ω(S) \ ω(L); a contradiction.
Let q = 5. Lemmas 2.3 and 1.4 imply that 521 = r5(−5) ∈ ω(S); a contradiction.
Suppose that q = 4. Lemmas 2.2 and 1.4 imply that 41 = r5(−4) ∈ ω(S) and therefore S � F1. But

then 47 ∈ ω(S) \ ω(L); a contradiction.
Thus q = 3. Observing that π(U6(3)) = {2, 3, 5, 7, 13, 61}, we deduce that S � 2F4(2)

′ or S � J2.
Let S � 2F4(2)

′. Since 61, 91 ∈ ω(G) \ ω(S), it follows that 61 and at least one of the numbers 7 and
13, denote it by r, must lie in ω(K). Let T be a preimage of a Sylow 5-subgroup of G/K in G. Then
T is soluble and by the Hall theorem it has a Hall {5, r, 61}-subgroup H. The numbers 5, r, and 61
form a coclique in GK(G) and so in GK(H) as well. This contradicts the solubility of H in view of [17,
Lemma 1.1]. The case S � J2 is handled in a similar manner with the only difference that r is exactly 13.

Let now i = 3 and L = Ln(q). Then 5 ≤ n ≤ 6 and q ≤ 7 by Lemma 4.1.
If q = 7 then Lemmas 2.3 and 1.4 imply that k5(7) ∈ ω(S); a contradiction. If q = 5 and L = L5(5)

then k5(5) ∈ ω(S); a contradiction. If L = L6(5) then 31 = k3(5) ∈ ω(S). It is not hard to check by [3]
that whenever 31 divides the order of a sporadic group, so does at least one of the numbers 19 or 37.
But 19 and 37 are not in ω(L6(5)); a contradiction. Thus q = 3 and Lemmas 2.3 and 1.4 imply that
121 = k5(3) ∈ ω(S); a contradiction.

It remains to consider the case of q = 2. Since L �∈ L , we can assume that L = Un(2) and n �= 6.
If n ≥ 13 then i ≥ 11 and hence ki(−2) > 29/2 > 119; a contradiction. For n = 11, 12 it follows
from Lemmas 2.2 and 1.4 that 683 = r11(−2) ∈ ω(S); a contradiction. Similarly, for n = 7, 8 we infer
that 43 = r7(−2) ∈ ω(G). Then S � J4 and so 37 ∈ ω(G); a contradiction. Let n = 9, 10. The
previous argument implies that r7(−2) �∈ ω(S), and it follows from (2) of Lemma 1.4 that r5(−2) = 11,
r8(−2) = 17, and r9(−2) = 19 are in ω(S). Moreover, all prime divisors of the order of S are at
most 31. It is easily seen from [3] that there are no sporadic groups with such properties. Hence
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n = 5. Since π(U5(2)) = {2, 3, 5, 11}, the group S can be isomorphic only to M11 or M12. Note that
10 ∈ ω(M12) \ ω(U5(2)). Thus S � M11.

The proposition and Theorem 2 are proved.

§ 5. Proof of Theorem 3

Let L = Lε
n(q), where n ≥ 4, ε ∈ {+,−} and q = pα. Let G be a finite group isospectral to L,

and K be the soluble radical of G. Applying Lemma 1.4 under conditions of Theorem 3 we infer that
S ≤ G = G/K ≤ Aut(S), where S is a simple group of Lie type over a field of characteristic p.

Lemma 5.1. If L is one of the groups U6(4), U7(2), and U7(4), the conclusion of Theorem 3 holds
for L.

Proof. Let L = U6(4). By Lemma 2.2 the numbers r6(−4) = 7 and r5(−4) = 41 are not adjacent
to 2 in GK(L) and hence they are in π(S). Thus 7, 41 ∈ π(S) ⊆ π(L) = {2, 3, 5, 7, 13, 17, 41}. In [26,
Table 1] one can find the set of simple groups for which the largest divisor of the order is equal to 41.
This set contains five groups of Lie type over fields of characteristic 2 but of them only U6(4) fails to
have 7 in its spectrum.

If L = U7(2) then r7(−2) = 43 is not adjacent to 2 in GK(L). Examining the set of simple groups
satisfying the condition 43 ∈ π(S) ⊆ [2; 43] from [26, Table 1], we see that it contains only five groups of
Lie type over fields of characteristic 2 but of them only U7(2) fails to have 17 in its spectrum.

If L = U7(4) then r7(−4) = 113 is not adjacent to 2 in GK(L). It follows from [26, Table 1] that the
only simple group of Lie type over a field of characteristic 2 with 113 ∈ π(S) ⊆ [2; 113] is the group U7(4).

In all considered cases S � L. The lemma is proved.

Thus we may assume that L is different not only from groups of L but also from U6(4), U7(2),
and U7(4). In particular, p is odd if ε = + or n = 4. We choose two prime numbers in π(L) as
follows. If ε = + then put rn = rnα(p) and rn−1 = r(n−1)α(p). If ε = − then put rn = rν(n)α(p) and
rn−1 = rν(n−1)α(p), where the function ν(x) is defined in (3). Note that these primitive divisors exist
in view of conditions on L and they are greater than 3 since n ≥ 4. Using (4) and (5) we calculate
e(rn, εq) = n and e(rn−1, εq) = n− 1. Hence rn and rn−1 are not adjacent to p in GK(L) by Lemma 2.2.

Lemma 5.2. S is not isomorphic to L2(p).

Proof. Suppose that S � L2(p). By Lemma 2.3 one of rn and rn−1 is not adjacent to 2 in GK(L)
and hence lies in π(S) by Lemma 1.4. On the other hand, each of nα, (n− 1)α, ν(n)α, and ν(n− 1)α is
greater than 3 while π(S) consists of p and divisors of p2− 1. This contradicts the definition of primitive
divisor. The lemma is proved.

Lemma 5.3. If r ∈ π(L) is not adjacent to p in GK(L) then it does not divide |K| · |G/S|; in
particular, t(p, S) ≥ t(p, L).

Proof. Let r ∈ π(L), rp �∈ π(L), and r �∈ π(S). By Lemma 1.4 we can assume that p is odd.
Lemma 2.2 and the condition n ≥ 4 imply that r > 3.

Suppose that r ∈ π(G/S). Since r �∈ π(S) and r > 3, there is a field automorphism of S of order
r in G. In all groups of Lie type over a field of characteristic p the centralizer of a field automorphism
contains an element of order p, so we have rp ∈ ω(G); a contradiction.

Suppose that r ∈ π(K). Since S differs from L2(p) by Lemma 5.2, its Sylow p-subgroup includes
an elementary abelian subgroup of order p2. By Lemma 1.5 there is an element of order pr in G; a
contradiction. The lemma is proved.

Let S be a group over a field of order pβ (in the notation of [3]). Denote by e(p, S) the set {e(r, pβ) |
r ∈ π(S), r �= p, r > 3, pr �∈ ω(S)}. By Lemma 5.3 the numbers rn and rn−1 lie in π(S) and are not
adjacent to p in GK(S). Therefore e(rn, p

β) and e(rn−1, p
β) are in e(p, S).
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Let en = e(rn, p
β) and en−1 = e(rn−1, p

β). Since rn ∈ π(S), the number ken(p
β) divides the order

of S. If a primitive divisor renβ(p) exists, then it divides ken(p
β) and hence lies in π(S) ⊆ π(L). By the

same argument if ren−1β(p) exists then it also lies in π(L).
Let ε = +. By the definition of primitive divisor, en−1β = a(n−1)α for some positive integer a. Since

en−1β ≥ 3 and p is odd, a primitive divisor ren−1β(p) exists and thus lies in π(L). Then e(ren−1β(p), q)
≤ n by (2). On the other hand, e(ren−1β(p), q) = e(ra(n−1)α(p), p

α) = a(n− 1). Thus a(n− 1) ≤ n and so
a = 1 and en−1β = (n− 1)α. By the same argument enβ = nα. In particular, en/en−1 = n/(n− 1).

Let now ε = −. Then enβ = aν(n)α and en−1β = bν(n− 1)α for some positive integers a and b. In
view of conditions on L primitive divisors renβ(p) and ren−1β(p) exist and lie in π(S) ⊆ π(L). By (2) this
implies that e(renβ(p),−q) and e(ren−1β(p),−q) do not exceed n. On the other hand, e(renβ(p),−q) =
ν(e(renβ(p), p

α)) = ν(aν(n)) and e(ren−1β(p),−q) = ν(e(ren−1β(p), p
α)) = ν(bν(n − 1)) by (5). Hence

ν(aν(n)) ≤ n and ν(bν(n − 1)) ≤ n. Examining these inequalities according to the remainder of n
modulo 4, we infer that a ≤ 2 for n ≡ 2 (mod 4) and a = 1 otherwise, and b ≤ 2 for n ≡ 3 (mod 4) and
b = 1 otherwise. Thus en/en−1 = aν(n)/bν(n−1), where a, b ∈ {1, 2}, n/4(n−1) ≤ en/en−1 ≤ 4n/(n−1)
and en/en−1 �= n/(n− 1).

Therefore for each value of ε there must be two numbers en and en−1 in e(p, S) such that the ratio
en/en−1 belongs to the set

Rn = {2γn/(n− 1) | γ = −2,−1, 0, 1, 2},
and γ = 0 if and only if ε = +.

Lemma 5.4. Let n ≥ 4 and m ≥ 2 be natural numbers and let δ be an integer. If 2δn/(n − 1) =
m/(m− 1) then m = n and δ = 0. If 2δn/(n− 1) = (m− 1)/m then n = 4, m = 3, and δ = −1.

Proof. If δ < 0 then 2δn/(n − 1) ≤ n/(2n − 2) < 1 < m/(m − 1). If δ > 0 then 2δn/(n − 1) ≥
2n/(n− 1) > 2 ≥ m/(m− 1). Thus 2δn/(n− 1) = m/(m− 1) yields δ = 0 and so n = m.

If δ < −1 then 2δn/(n − 1) ≤ n/(4n − 4) < 1/2 ≤ (m − 1)/m. If δ > −1 then 2δn/(n − 1) ≥
n/(n−1) > 1 > m−1/m. Hence 2δn/(n−1) = (m−1)/m yields δ = −1 and n/(2n−2) = (m−1)/m. If
n is odd then both sides of the last equality are irreducible fractions. Therefore 2n−2−n = 1 and n = 3,
which is not the case. If n is even then (n/2)/(n−1) is an irreducible fraction and hence n−1−n/2 = 1.
Then n = 4 and m = 3. The lemma is proved.

Deriving a corollary of Lemma 5.4 we show that Rn does not contain numbers of the form 2δ and
2δ(m− 1)/m, where δ is an integer and m ≥ 4.

Below we will consider all groups of Lie type one at a time. We use results of [20, § 3] to find the
set e(p, S).

Suppose that S � Lm(pβ), where m ≥ 3 or β > 1. Then e(p, S) = {m,m − 1}. Hence en/en−1 =
m/(m − 1) or en/en−1 = (m − 1)/m. Let 2γn/(n − 1) = m/(m − 1). It follows from Lemma 5.4 that
n = m and γ = 0. Thus ε = + and S � L. Let 2γn/(n − 1) = (m − 1)/m. Then n = 4, m = 3 and
γ = −1, thus ε = − and a = 1. Now we conclude from (m − 1)β = enβ = ν(n)α = 4α that β = 2α.
Hence L = U4(q), S � L3(q

2), and r3(q) ∈ π(S) \ π(L); a contradiction.
Suppose that S � Um(pβ), where m ≥ 3. Then e(p, S) = {ν(m), ν(m − 1)}. Let 2γn/(n − 1) =

ν(m)/ν(m− 1). By Lemma 5.4 we have n = m and γ �= 0. Thus ε = − and S � L. Let 2γn/(n− 1) =
ν(m − 1)/ν(m). Then m = 3 and ν(m − 1)/ν(m) = (m − 1)/4m and so γ + 2 = −1, contrary to the
inequality γ ≥ −2.

Suppose that S � O2m+1(p
β) or S � S2m(pβ). Then e(p, S) ⊆ {m, 2m}. Therefore a ratio of any

two elements of e(p, S) is a power of 2 and cannot be in Rn; a contradiction. By the same argument S
differs from the groups of types G2,

3D4,
2F4, and

2B2, for otherwise e(p, S) is one of the sets {3, 6},
{12}, {6, 12}, and {1, 4}.

Suppose that S � O+
2m(pβ), where m ≥ 4. Then e(p, S) = {2m − 2,m − 1} for even m and

e(p, S) = {2m − 2,m} for odd m. The ratio en/en−1 can be neither 2(m − 1)/m nor 2, therefore, m is
odd and 2γn/(n− 1) = m/(2m− 2). Then n = m and γ = −2, which implies that n is odd and ε = −.
Hence en/en−1 = ν(n)/bν(n− 1) = 2n/bν(n− 1) ≥ 2n/(n− 1) and γ must be positive; a contradiction.
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Suppose that S � O−
2m(pβ), where m ≥ 4. Then e(p, S) = {2m, 2m − 2,m − 1} for even m and

e(p, S) = {2m, 2m − 2} for odd m. The ratio en/en−1 cannot be a power of 2 and cannot be equal to
(m − 1)/2m or (m − 1)/m, and so en/en−1 is one of the numbers 2m/(m − 1) and m/(m − 1). Let m
be even and 2γn/(n − 1) = 2m/(m − 1). Then n = m and γ = 1, whence ε = −. Hence n is even and
en/en−1 = aν(n)/ν(n−1) = aν(n)/2(n−1) ≤ n/2(n−1); therefore, γ must be negative; a contradiction.

Let 2γn/(n− 1) = m/(m− 1). Then n = m and γ = 0, whence ε = +. Now from 2mβ = enβ = nα
we conclude that α = 2β. Hence L = Ln(q

2
0) and S � O−

2n(q0), where q20 = q. If n is odd then
e
(
rn(q0), q

2
0

)
= n and Lemma 2.2 implies that rn(q0) is not adjacent to p in GK(L) and so by Lemma 5.3

it must divide the order of S but this is not the case. If n is even then both r2(n−1)(q0) and rn−1(q0) are

not adjacent to p in GK(L), thus by Lemma 5.3 they are coprime to |K| · |G/S|. This contradicts the
fact that L contains an element of order r2(n−1)(q0)rn−1(q0) and S does not.

Suppose that S � E8(p
β). Then e(p, S) = {30, 24, 20, 15}. The ratio en/en−1 is neither a power of 2

nor a number of the form 2δ(m− 1)/m for m ≥ 4; therefore,

en/en−1 ∈ {2/3, 4/3, 5/4, 6/5, 5/8}.

If 2γn/(n− 1) = 5/8 then n = 5, γ = −1 and ε = −. Hence en/en−1 = ν(n)/ν(n− 1) = 2n/(n− 1) and
γ = 1; a contradiction.

Let 2γn/(n − 1) = 2/3 or 2γn/(n − 1) = 4/3 = 2 · 2/3. Then n = 4. If ε = + then en/en−1 = 4/3
and 20β = enβ = 4α yields α = 5β, thus L = L4

(
q50
)
and S � E8(q0), where q50 = q. If ε = − then

en/en−1 = ν(n)/ν(n − 1) = 2/3 and from 20β = enβ = 4α we calculate α = 5β. Therefore L = U4

(
q50
)

and S � E8(q0), where q50 = q. Similarly, if en/en−1 = 5/4 then L = L5

(
q60
)
and S � E8(q0), where

q60 = q, and if 2γn/(n − 1) = 6/5 then L = L6

(
q40
)
and S � E8(q0), where q40 = q. In any case

r14(q0) ∈ π(S) \ π(L).
Suppose that S � E7(p

β). Then e(p, S) = {18, 14, 9, 7}. The ratio en/en−1 is not a power of 2 and
therefore

en/en−1 ∈ {2δ · 9/7, 2δ · 7/9 | δ = −1, 0, 1}.
Let 2γn/(n− 1) = 2δ · 9/7. Then 2γ · 7n = 2δ · 9(n− 1). If γ ≥ δ then n = 9 and 2γ · 7 = 2δ · 8, which is
impossible. If γ ≤ δ then n − 1 = 7 and 2γ · 8 = 2δ · 9, which is impossible. Let 2γn/(n − 1) = 2δ · 7/9.
Then γ ≤ δ, whence n− 1 = 9 and 2γ · 10 = 2δ · 7, and we arrive at a contradiction again.

Suppose that S � E6(p
β) or S � F4(p

β). Then {12, 8} ⊆ e(p, S) ⊆ {12, 9, 8}. Hence en/en−1 ∈
{9/8, 2/3, 4/3}. Let 2γn/(n− 1) = 9/8. Then n = 9 and γ = 0, whence ε = +. From 9β = enβ = 9α we
calculate β = α, and so L = L9(q), S � E6(q), and r12(q) ∈ π(S) \ π(L); a contradiction.

Let 2γn/(n − 1) = 2/3 or 2γn/(n − 1) = 4/3. Then n = 4. If ε = + then en/en−1 = 4/3 and so
S is of type E6. It follows from 12β = enβ = 4α that α = 3β, therefore, L = L4

(
q30
)
and S � E6(q0),

where q30 = q. In this case r8(q0) ∈ π(S) \ π(L). If ε = − then en/en−1 = ν(n)/ν(n− 1) = 2/3 and from
8β = enβ = 4α we conclude that α = 2β. Hence L = U4

(
q20
)
and S is isomorphic to E6(q0) or F4(q0),

where q20 = q. But then r6(q0) ∈ π(S) \ π(L).
Suppose that S � 2E6(p

β). Then e(p, S) = {18, 12, 8} and en/en−1 ∈ {2/3, 9/4}. Let 2γn/(n− 1) =
2/3. Then n = 4 and ε = −. If en = 12 then α = 3β and L = U4

(
q30
)
, S � 2E6(q0), where q

3
0 = q. If en = 8

then α = 2β, therefore, L = U4

(
q20
)
and S � 2E6(q0), where q20 = q. In any case r10(q0) ∈ π(S) \ π(L).

Let 2γn/(n − 1) = 9/4. Then n = 9 and γ = −1, whence ε = −. From 18β = enβ = ν(n)α = 18α we
calculate that α = β. Thus L = U9(q) and S � 2E6(q), in which case r12(q) ∈ π(S) \ π(L).

Suppose that S � 2G2(3
β), where β ≥ 3 is odd. Then e(3, S) = {6, 2, 1}. Since 6 = 8 · 3/4 and

3 = 4 · 3/4, the ratio en/en−1 can be equal to 1/6 or 1/3. Thus 2γn/(n− 1) = 1/6 = 1/8 · 4/3 = 1/4 · 2/3
or 2γn/(n − 1) = 1/3 = 1/4 · 4/3 = 1/2 · 2/3, whence n = 4 and γ < 0. This implies that ε = −. Then
en/en−1 = ν(n)/ν(n− 1) = 2/3; a contradiction.

Theorem 3 is proved.
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