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Abstract: The spectrum of a finite group is the set of its element orders. Two groups are said to be
isospectral if their spectra coincide. We deal with the class of finite groups isospectral to simple and
orthogonal groups over a field of an arbitrary positive characteristic p. It is known that a group of this
class has a unique nonabelian composition factor. We prove that this factor cannot be isomorphic to
an alternating or sporadic group. We also consider the case where this factor is isomorphic to a group
of Lie type over a field of the same characteristic p.
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The spectrum ω(G) of a finite group G is the set of its element orders. Two groups are said to be
isospectral if their spectra coincide. A finite group L is recognizable by spectrum if every finite group G
with ω(G) = ω(L) is isomorphic to L. More generally, a group L is a group for which the problem of
recognition by spectrum is solved if the number (up to isomorphism) of finite groups isospectral to L is
known. The recent results on the problem of recognition by spectrum can be found in the survey by
V. D. Mazurov [1].
The present paper addresses the problem of recognition for finite simple symplectic and orthogonal

groups. Within this class, the problem is solved for the groups B2(q) [2, 3], B3(2) [4, 5], B3(3) [5], B2m(2)
[6, 7], C3(3) [2], D4(2) [4, 5], D4(3) [5], D5(2) [8],

2D4(2) [5],
2Dp(3) [9],

2D2m+1(2) [7],
2D2m+1(3) [10],

where m ≥ 2 and p is an odd prime. Also some series of symplectic and orthogonal groups are proved to
be quasirecognizable by spectrum (see [7, 11, 12]). A finite nonabelian simple group L is quasirecognizable
by spectrum if each finite group G with ω(G) = ω(L) has a unique nonabelian composition factor and
this factor is isomorphic to L.
The results of the paper provide restrictions on the composition structure of a finite group isospectral

to a simple symplectic or orthogonal group.

Theorem 1. Let L be one of the simple groups Bn(q) with n ≥ 2 and (n, q) �= (2, 3), Cn(q)
with n ≥ 3, and Dn(q), 2Dn(q) with n ≥ 4. Then there are no alternating groups among nonabelian
composition factors of finite groups isospectral to L.

Theorem 2. Let L be one of the simple groups Bn(q) with n ≥ 2 and (n, q) �= (2, 3), Cn(q) with
n ≥ 3, and Dn(q), 2Dn(q) with n ≥ 4. Then there are no sporadic groups nor the Tits group 2F4(2)′
among nonabelian composition factors of finite groups isospectral to L.

Theorem 3. Let q be a power of a prime p, let L be one of the simple groups Bn(q) with n ≥ 2
and (n, q) �= (2, 3), Cn(q) with n ≥ 3, and Dn(q), 2Dn(q) with n ≥ 4, and let G be the finite group with
ω(G) = ω(L). Suppose that there is a factor S among nonabelian composition factors of G which is
isomorphic to a group of Lie type over a field of characteristic p.
(1) If L = B2(q), where q > 3, then S ∈ {A1(q2), B2(q)}.
(2) If L ∈ {B3(q), C3(q), D4(q)} then S ∈ {A1(q3), B3(q), C3(q), D4(q), G2(q)}.
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(3) If n ≥ 4 and L ∈ {Bn(q), Cn(q), 2Dn(q)} then S ∈ {Bn(q), Cn(q), 2Dn(q)}.
(4) If n ≥ 6 is even and L = Dn(q) then S ∈ {Bn−1(q), Cn−1(q), Dn(q)}.
(5) If n ≥ 5 is odd and L = Dn(q) then S � L.
Note that our choice of symplectic and orthogonal groups as the topic of study is partially caused

by Question 12.39 of the Kourovka Notebook [13] which concerns the validity of Shi’s conjecture first
appeared in [14]. The conjecture says that every finite simple group is uniquely determined by its
spectrum and order in the class of finite groups. At present the conjecture is verified for all simple groups
except for symplectic and some orthogonal groups (see [15]).

§ 1. Preliminaries
Our notation for sporadic and simple groups of Lie type follows [16]. In this connection if a group of

Lie type L is denoted by tXn(q) [16, pp. xiv–xv] then we say that L is a group of rank n over a field of
order q. In particular, the rank of a twisted group is supposed equal to that of the associated untwisted
group. The alternating group of degree n is denoted by Altn.
Given a natural number n, let π(n) denote the set of prime divisors of n, and nr, where r is a prime,

denotes the r-part of n; i.e., the largest power of r that divides n, while nr′ denotes the r
′-part of n,

i.e., the ratio n/nr. If n and m > 2 are coprime natural numbers, then we write e(m,n) to denote the
multiplicative order of n modulo m. Given an odd n, we put e(2, n) = 1 if n ≡ 1 (mod 4) and put
e(2, n) = 2 if n ≡ 3 (mod 4).
Let n > 1. A prime r is said to be a primitive prime divisor of the difference ni − 1 if e(r, n) = i.

The existence of primitive divisors for almost all pairs of n and i was established by Zsigmondy.

Lemma 1.1 [17]. Let n > 1 be a natural number. Then for every natural number i there is a prime r
with e(r, n) = i, except when n = 2 and i = 1, n = 3 and i = 1, n = 2 and i = 6.

In what follows the notation ri(n) means a primitive prime divisor of n
i−1 if such exist. The product

of all primitive divisors of ni − 1 taken with multiplicities is said to be the greatest primitive divisor and
denoted by ki(n). Note that for a divisor, the property of being primitive depends on the pair (n, i) and
is not determined by the number ni − 1. For example, k6(2) = 1, k3(4) = 7, k2(8) = 9, and k1(64) = 63.
It is not hard to check that k1(n) = n− 1 if n �≡ 3 (mod 4), and k1(n) = (n− 1)/2 if n ≡ 3 (mod 4),

and also that k2(n) = (n+1)/(2, n− 1) if n �≡ 3 (mod 4), and k2(n) = n+1 if n ≡ 3 (mod 4). It follows
from [18] that for i > 2

ki(n) = Φi(n)/(r,Φir′ (n)),

where Φi(x) is the ith cyclotomic polynomial and r is the largest prime dividing i, and if ir′ does not
divide r − 1 then (r,Φir′ (n)) = 1.
The Gruenberg–Kegel graph GK(G), or the prime graph, of G is the graph with vertex set π(G) in

which two distinct vertices p and q are adjacent if and only if pq ∈ ω(G). The number of connected
components of GK(G) is denoted by s(G), and the connected components are denoted by πi(G) with
1 ≤ i ≤ s(G). If G has even order then by default 2 ∈ π1(G). According to this partition, ωi(G) is the
subset of πi(G)-numbers of ω(G) for every 1 ≤ i ≤ s(G). The structure of finite groups with disconnected
prime graph is described by Gruenberg and Kegel.

Lemma 1.2 [19]. If G is a finite group with s(G) > 1 then one of the following holds:
(1) s(G) = 2, G is a Frobenius group;
(2) s(G) = 2, G = ABC, where A and AB are normal subgroups of G, B is a normal subgroup of

BC, and AB and BC are Frobenius groups;
(3) there is a nonabelian simple group S such that S ≤ G = G/K ≤ AutS for some nilpotent normal

subgroup K of G; moreover, K and G/S are π1(G)-groups, s(S) ≥ s(G), and for every 1 < i ≤ s(G)
there is 1 < j ≤ s(S) such that ωi(G) = ωj(S).
Finite simple groups with disconnected prime graph were described by Williams [19] and Kondrat′ev

[20]. The complete list of these groups, with corrected inaccuracies, can be found in [2, Tables 1a–1c].
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It follows from the results of Williams and Kondrat′ev that if S is a simple group and s(S) > 1, then
for every 1 < i ≤ s(S) the set ωi(S) has the unique element maximal under divisibility [21, Lemma 4].
In the tables mentioned above and in the present paper, this maximal element is denoted by ni(S).
Recall that an independent set of vertices, or coclique, in a graph Γ is a set of vertices that are

pairwise nonadjacent to each other in Γ. We write t(Γ) to denote the independence number of Γ, i.e., the
maximal number of vertices in its cocliques. Given a group G, put t(G) = t(GK(G)). By analogy, for
each prime r, define the r-independence number t(r,G) to be the maximal number of vertices in cocliques
of GK(G) containing the vertex r. In [22, 23], for every finite nonabelian simple group, an adjacency
criterion of its prime graph is developed and all cocliques of maximal size in this graph are found.

Lemma 1.3 [24, 25]. Let L be a finite nonabelian simple group such that t(L) ≥ 3 and t(2, L) ≥ 2,
and let G be a finite group with ω(G) = ω(L). Then the following hold:
(1) There exists a nonabelian simple group S such that S ≤ G = G/K ≤ AutS, where K is the

maximal normal soluble subgroup of G.
(2) For every coclique ρ of GK(G) of size at least 2, at most one prime of ρ lies in π(K) ∪ π(G/S).

In particular, t(S) ≥ t(G)− 1.
(3) Every prime r ∈ π(G) not adjacent to 2 in GK(G) does not divide the product |K| · |G/S|. In

particular, t(2, S) ≥ t(2, G).
If Γ is a prime graph and π is a set of natural numbers, we write Γ\π to denote the maximal subgraph

of Γ all whose vertices do not lie in π. Observe that (2) of Lemma 1.3 yields, alongside the inequality
t(S) ≥ t(G)− 1, the inequality t(GK(S) \ π) ≥ t(GK(G) \ π)− 1 for every set of primes π.
Lemma 1.4. Let G be a finite group, letK be a normal r-subgroup of G, and let G/K be a noncyclic

abelian p-group, where r and p are different primes. Then rp ∈ ω(G).
Proof. This is a direct corollary of [26, Chapter 5, Theorem 3.16].

§ 2. Finite Groups Isospectral to Symplectic and Orthogonal Groups
Lemma 2.1. Let L be one of the simple groups Bn(q) with n ≥ 2 and (n, q) �= (2, 3), Cn(q) with

n ≥ 3, Dn(q), 2Dn(q) with n ≥ 4, and let G be a finite group with ω(G) = ω(L). Then there exists
a simple nonabelian group S such that

S ≤ G = G/K ≤ AutS,
where K is the soluble radical of G. Furthermore, G, K and S satisfy (2) and (3) of Lemma 1.3.

Proof. If n > 2 and L �= D4(2) then, as is shown in [22], L satisfies t(L) ≥ 3 and t(2, L) ≥ 2. So
the assertion follows from Lemma 1.3. Let n = 2 or L = D4(2). Then L has prime graph disconnected.
Therefore, the claim follows from the Gruenberg–Kegel theorem and the main result of [27] together with
the fact that in this case t(L) = 2. The lemma is proved.

Some adjacency criterion for prime graphs of symplectic and orthogonal groups is formulated in [22,
Propositions 3.1, 4.3, and 4.4] and [23, Propositions 2.4 and 2.5]. The formulation involves the function
η : N→ N defined as

η(n) =

{
n, if n is odd;

n/2, if n even.

Lemma 2.2. Let L, G, S, and K be as in Lemma 2.1.
(1) Suppose that L = Bn(q) or L = Cn(q), where n ≥ 3 and (n, q) �= (3, 2). If there exists i such that

n/2 < η(i) ≤ n and ki(q) �∈ ω(S), then for every j �= i with n/2 ≤ η(j) ≤ n the number kj(q) is coprime
to |K| · |G/S| and lies in ω(S).
(2) Suppose that L = Dn(q), where n ≥ 4 and (n, q) �= (4, 2). If there exists i �= 2n such that

n/2 < η(i) ≤ n and ki(q) �∈ ω(S), then for every j �∈ {i, 2n} with n/2 ≤ η(j) ≤ n the number kj(q) is
coprime to |K| · |G/S| and lies in ω(S).
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(3) Suppose that L = 2Dn(q), where n ≥ 4 and (n, q) �= (4, 2), (5, 2). If there exists i �= n such that
n/2 < η(i) ≤ n and ki(q) �∈ ω(S), then for every j �∈ {i, n} with n/2 ≤ η(j) ≤ n the number kj(q) is
coprime to |K| · |G/S| and lies in ω(S).
Proof. Since ki(q) �∈ ω(S), some ri = ri(q) divides |K| · |G/S|. Let rj = rj(q) be a primitive prime

divisor of the difference qj − 1.
(1) Put r = r2n(q) if 2n �∈ {i, j}. If 2n ∈ {i, j} and 2(n − 1) �∈ {i, j} then put r = r2(n−1)(q). If

{i, j} = {2n, 2(n − 1)} then put r = rn(q) for odd n and r = rn−1(q) for even n. If (n, q) �= (4, 2), the
required divisors exist. By [23, Proposition 2.4], the numbers ri, rj , and r are pairwise nonadjacent in

GK(G). So, it follows from (2) of Lemma 1.3 that rj does not divide |K| · |G/S|. Thus, kj(q) ∈ ω(S).
Put (n, q) = (4, 2). By the Gruenberg–Kegel theorem, n2(L) = k8(q) lies in ω(K). Since k6(q) = 1,

we may assume that i = 3 and j = 2. The numbers r3(q), r2(q), and r8(q) compose a coclique in GK(G),
and hence r2(q) does not divide |K| · |G/S|. Thus, k2(q) ∈ ω(S).
(2) Let n be even. Put r = r2(n−1)(q) if 2(n − 1) �∈ {i, j}, and r = rn−1(q) if 2(n − 1) ∈ {i, j} and

n− 1 �∈ {i, j}. If {i, j} = {2(n− 1), n− 1} then put r = rn(q). Since (n, q) �= (4, 2), the required divisors
exist.
Let n be odd. Put r = r2(n−1)(q) if 2(n− 1) �∈ {i, j}, and r = rn(q) if 2(n− 1) ∈ {i, j} and n �∈ {i, j}.

If {i, j} = {2(n − 1), n} then put r = r2(n−2)(q) for n > 5 and r = rn−2(q) for n = 5. Since n ≥ 5, the
required divisors exist.
By [23, Proposition 2.5], the specified number r and ri, rj are pairwise nonadjacent in GK(G).

Hence, rj does not divide |K| · |G/S|. Thus, kj(q) ∈ ω(S).
(3) Put r = r2n(q) if 2n �∈ {i, j}, and r = r2(n−1)(q) if 2n ∈ {i, j} and 2(n − 1) �∈ {i, j}. If

{i, j} = {2n, 2(n− 1)} then put r = r2(n−2)(q). Since (n, q) �∈ {(4, 2), (5, 2)}, the required divisors exist.
By [23, Proposition 2.5], the numbers ri, rj , and r are pairwise nonadjacent in GK(G). So, rj does not

divide |K| · |G/S|. Therefore, kj(q) ∈ ω(S). The lemma is proved.
As we mentioned in the Introduction, for a number of symplectic and orthogonal groups, the recog-

nition problem was already solved or quasirecognizability was proved. The only previous results that we
use are those on a few groups of small order. These groups are listed in the following lemma. Observe
that the assertions of Theorems 1–3 are true for all these groups, and so they may be omitted from
a proof.

Lemma 2.3. Let L be one of the simple groups Bn(q), Cn(q), Dn(q),
2Dn(q) and let G be a finite

group with ω(G) = ω(L).
(1) If L = B3(2) then G � B3(2) or G � D4(2) [2, 5].
(2) If L = B3(3) then G � B3(3) or G � D4(3) [5].
(3) If L = B4(2) then G has a unique nonabelian composition factor S and S ∈ {B4(2), 2D4(2)} [6].
(4) If L = B4(3) then G has a unique nonabelian composition factor S and S ∈ {B4(3), 2D4(3)} [11].
(5) If L = C3(3) then G � C3(3) [4].
(6) If L = C4(3) then G has a unique nonabelian composition factor S and S ∈ {C4(3), 2D4(3)} [11].
(7) If L = D4(2) then G � B3(2) or G � D4(2) [2, 5].
(8) If L = D4(3) then G � B3(3) or G � D4(3) [5].
(9) If L = D5(2) then G � D5(2) [8].
(10) If L = 2D4(2) then G � 2D4(2) [5].
(11) If L = 2D4(3) then G has a unique nonabelian composition factor S and S � 2D4(3) [11].
(12) If L = 2D4(4) then G has a unique nonabelian composition factor S and S � 2D4(4) [7].
(13) If L = 2D5(2) then G � 2D5(2) [4].
Lemma 2.4. If L ∈ {B3(4), D4(4)} then the assertion of Theorem 3 holds for L.
Proof. Let G be a finite group with ω(G) = ω(L). By Lemma 2.1, we have S ≤ G = G/K ≤ AutS,

where K is the soluble radical of G. The numbers 7 and 13 are in π(L) and not adjacent to 2 in GK(L),
thus they lie in π(S), and also π(S) ⊆ π(L) = {2, 3, 5, 7, 13, 17}. According to [28, Table 1], the only
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groups of Lie type over fields of characteristic 2 satisfying these conditions are A1(64), A2(16), B2(8),
B3(4), D4(4), G2(4), F4(2),

3D4(2), and Sz(8). The group A2(16) has an element of order 91, and
the groups B2(8), F4(2), and

3D4(2) have elements of order 14. Therefore, to complete the proof, it is
sufficient to show that S �� Sz(8).
Suppose that S � Sz(8). Then 17 �∈ π(AutS), and thus 17 ∈ π(K). In S, there is a Frobenius

subgroup with kernel of order 26 and cyclic complement of order 7 (see [16]). Applying [29, Lemma 3],
we conclude that 17 · 7 ∈ ω(G). However, 17 · 7 �∈ ω(L); a contradiction.

§ 3. Proof of Theorem 1
Let L be one of the groups in the statement of Theorem 1, and let q be a power of a prime p. Let

G be a finite group isospectral to L. Assume to the contrary that there is an alternating group among
nonabelian composition factors of G. Then S ≤ G = G/K ≤ AutS by Lemma 2.1, where K is the
soluble radical of G and S � Altm with m ≥ 5.
Suppose that for L, there is a set M of three natural numbers satisfying the following conditions:

(1) for every i ∈M , we have n/2 < η(i) ≤ n, and i �= 2n if L = Dn(q), i �= n if L = 2Dn(q);
(2) for every i ∈M , the number ki(q) is not equal to one.
Consider the numbers ki(q), where i runs over M . It follows from Lemma 2.2 that at least two of

these three numbers are coprime to |K| · |G/S| and lie in ω(S). Denote them by a and b. Suppose that
there is a prime divisor r of a such that r ≤ m/2. Since all prime divisors of b are not adjacent to r in
GK(G), they all are larger than m/2. Therefore, either all prime divisors of a or all prime divisors of b
are larger than m/2. Denote by k that of the numbers a and b for which this is true.
Let r′ and r′′ be two different prime divisors of k. Then r′ + r′′ > m. Thus, r′r′′ �∈ ω(S) and

hence r′r′′ ∈ ω(L) \ ω(G), which is impossible. Let k be a power of a prime r larger than r. Then
r2 > (m/2)2 > m and hence r2 ∈ ω(L) \ ω(G); a contradiction. Therefore, k is a prime and from
k ∈ ω(S) it follows that m ≥ k. Thus, m ≥ ki(q) for some i ∈M .
The idea of the further proof is as follows: Choosing a set M in a special way, we bound m from

below in terms of n and q. Then we derive a contradiction by showing that the p-period of S is strictly
larger than the p-period of L with a few exceptions which are analyzed one by one.

Lemma 3.1. Let i be an odd prime and let q be a power of a prime p. Then ki(q) > q
i−2. If

(i, q) �= (3, 2) then k2i(q) > qi−2/p and if i �= q + 1 then k2i(q) > qi−2.
Proof. Since ki(q) = (q

i − 1)/(q − 1)(i, q − 1), it follows that

ki(q) ≥ qi − 1
(q − 1)2 =

qi−1 + · · ·+ 1
q − 1 >

qi−1

q
= qi−2.

Suppose that q > 2. Then (q+1)2 < 2q2 ≤ pq2, and so the equality k2i(q) = (qi+1)/(q+1)(i, q+1)
yields

k2i(q) ≥ qi + 1

(q + 1)2
>
qi

pq2
=
qi−2

p
,

and

k2i(q) ≥ 2 q
i + 1

(q + 1)2
>
qi

q2
= qi−2

provided that i �= q + 1.
Let q = 2. Then i �= 3 and so (i, q + 1) = 1. Thus, k2i(q) = (2i + 1)/3 > 2i−2. The lemma is proved.
Case L = Bn(q) or L = Cn(q), where n ≥ 3.
Denote the p-period of L by pl. It follows from [30, Proposition 0.5] that l satisfies the inequalities

(pl−1 + 1)/2 ≤ n < (pl + 1)/2. (∗)
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Suppose that n ≥ 11. Denote by i the largest prime in the interval (n/2, n]. Since n ≥ 11, there are
at least two different primes in this interval. Thus, i ≥ (n+ 5)/2. Put

ki = ki(q) =
qi − 1

(q − 1)(i, q − 1) and k2i = k2i(q) =
qi + 1

(q + 1)(i, q + 1)
.

Denote by j the unique power of 2 lying in (n/2, n]. Put

k2j = k2j(q) =
qj + 1

(2, q − 1) .

Since M = {i, 2i, 2j} satisfies (1) and (2), at least one of the numbers ki, k2i, and k2j is a prime at
most m. Therefore, m ≥ min{ki, k2i, k2j}.
Since i ≥ max{(n + 5)/2, 11}, it follows from Lemma 3.1 that each of the numbers ki and k2i is at

least max{q(n+1)/2/p, q9/p}. Furthermore, j ≥ max{(n+1)/2, 8} and hence kj > max{q(n+1)/2/p, q8/p}.
Thus,

m ≥ min{ki, k2i, k2j} > max{q n+12 /p, q8/p}.
Sincem > q8/p ≥ p6+1, the group S has an element of order p6. Thus, p6 ∈ ω(L) and l ≥ 6. For l ≥ 6,

we have l+2 < (2l−1+3)/4, and so l+2 < (pl−1+3)/4. It follows from (∗) that (pl−1+3)/4 ≤ (n+1)/2.
Thus, l + 2 < (n+ 1)/2 and so m > q(n+1)/2/p > pl+2/p = pl+1, which implies that pl+1 ∈ ω(G) \ ω(L);
a contradiction.
Suppose that n = 9, 10. The set M = {9, 18, 16} satisfies (1) and (2). Hence, m ≥ min{k9, k18, k16}.

Therefore, m > q6/q for q �= 2, and m ≥ 19 for q = 2. If p �= 2 then m > p5, and so l ≥ 5. But then
n ≥ (pl−1 + 1)/2 ≥ (34 + 1)/2 = 41; a contradiction. If p = 2 and q > 2 then m > 46/4 = 1024 and so
29 ∈ ω(G) \ ω(L). Finally, let q = 2. If n = 9 then the equality e(73, 2) = 9 implies that 73 lies in π(L)
and is not adjacent to 2 in GK(L). This yields, by (3) of Lemma 1.3, that 73 ∈ ω(S), and so m ≥ 73.
Similarly, if n = 10 then 41 is not adjacent to 2 in the prime graph of L and so 41 lies in ω(S), and thus
m ≥ 41. In both cases 29 ∈ ω(G) \ ω(L); a contradiction.
Suppose that n = 8. Then GK(L) has two connected components, and n2(L) = (q

8 + 1)/(2, q − 1).
By the Gruenberg–Kegel theorem, GK(S) is disconnected either and n2(L) = n2(S). Hence, m ≥
(q8+1)/(2, q− 1). Then m > q7+1, and so l ≥ 7 and n ≥ (p6+1)/2 ≥ (26+1)/2 > 32; a contradiction.
Suppose that n = 5, 6, 7. The set M = {5, 10, 8} satisfies (1) and (2). Hence, m > q3 if q �= 4, and

m ≥ 41 if q = 4. For p > 3, we have n ≥ (p2 + 1)/2 ≥ (52 + 1)/2 = 13, which is impossible. If p ∈ {2, 3},
q > p, and q �= 4 then m > q3 ≥ p6, and so n ≥ (p5 + 1)/2 ≥ (25 + 1)/2 > 16. If q = 3 then m > 27, and
if q = 4 then m ≥ 41. In both cases 19 ∈ ω(S). Since e(19, 2) = e(19, 3) = 18, the number 19 can divide
the order of L only for n ≥ 9; a contradiction.
Let q = 2. If n = 5 then 31 is not adjacent to 2 inGK(L) and so 31 lies in ω(S). Similarly, if n = 7,

then 127 is not adjacent to 2 in GK(L). In both cases m ≥ 31, and so 19 ∈ ω(S) \ω(L); a contradiction.
Let n = 6. In this case 13 is not adjacent to 2 in GK(L). Thus, 13 is coprime to |K| · |G/S| and lies in
ω(S). Therefore, 13 ≤ m ≤ 16. Since 65 and 31 lie in ω(L) but not in ω(AutS), the order of the soluble
radical K is divisible by 5 and 31. We write T to denote the preimage of a Sylow 11-subgroup of G in G.
The group T is soluble, and thus, by [24, Proposition 1], its prime graph cannot include cocliques of three
and more elements. Since σ = {5, 11, 31} ⊆ π(T ), at least two primes of σ are adjacent in GK(T ), and
so in GK(G) = GK(L) as well. This is a contradiction since L contains no elements of order 5 · 11, 5 · 31,
or 11 · 31.
Suppose that n = 4. By Lemma 2.3, we may assume that q > 3. The graph GK(L) has two connected

components and n2(L) = (q
4 + 1)/(2, q − 1). By the Gruenberg–Kegel theorem, GK(S) is disconnected

either and n2(L) = n2(S). Thus, m ≥ (q4+1)/(2, q−1). If q > p thenm ≥ (q4+1)/(2, q−1) > q4/p ≥ p7,
and so n ≥ (p6 + 1)/2 ≥ (26 + 1)/2 > 32; a contradiction. If q = p > 3 then m > p3 and hence
n ≥ (p2 + 1)/2 ≥ 5, which is impossible.
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Suppose that n = 3. By Lemma 2.3, we may assume that q > 3, and so M = {3, 6, 4} satisfies (1)
and (2).
Let q = 2α > 2. Since the 2-period of L is 8; therefore,m ≤ 17. If α is odd thenm ≥ min{k3, k4, k6} =

k6 = (q
2 − q + 1)/3 ≥ (82 − 8 + 1)/3 = 19; a contradiction. If α is even then m ≥ min{k3, k4, k6} = k3 =

(q2 + q + 1)/3. For q > 4, we have m ≥ 91. It remains to consider C3(4). Since k6 = 13 is not adjacent
to 2 in GK(L), it lies in ω(S). Thus, m ≥ 13. Then 11 ∈ ω(S) \ ω(L); a contradiction.
Let q = 3α > 3. Then the 3-period of L is 9, and so m ≤ 26. On the other hand, m ≥

min{k3, k4, k6} = k4 = (q2 + 1)/2 ≥ 41; a contradiction.
Let q = pα, where p �∈ {2, 3}. In this case min{k3, k4, k6} = (q2 + εq + 1)/3, where q ≡ ε1 (mod 3).

If p > 5 then the p-period of L is p, and if p = 5 then it is equal to 52. If q > p > 5 then m ≥
(p4 − p2 + 1)/3 > p2, which is impossible. If q = 5α > 5 then m ≥ (54 + 52 + 1)/3 > 53; a contradiction.
Thus we may assume that q = p. We now examine four possibilities that depend on the remainder of p
modulo 12.
If p ≡ 11 (mod 12) then every prime divisor r of k3 = p2+p+1 is not adjacent to 2 in GK(L). Thus,

r is coprime to |K| · |G/S| and r ∈ ω(S). This is impossible unless r = k3 is a prime and m−3 ≤ k3 ≤ m.
Thus, p2 ∈ ω(S) \ ω(L).
If p ≡ 1 (mod 12) then p ≥ 13 and every prime divisor r of k6 = p2 − p + 1 is not adjacent to 2 in

GK(L). Thus, r is coprime to |K| · |G/S| and r ∈ ω(S). This is impossible unless r = k6 is a prime and
m− 3 ≤ k6 ≤ m. Let s be a prime divisor of k3 = (p2 + p+ 1)/3. Then sp �∈ ω(L). However, for p ≥ 13
we have s+ p ≤ (p2 + p+ 1)/3 + p = (p2 + 4p+ 1)/3 < p2 − p+ 1 ≤ m. Thus, sp ∈ ω(S) \ ω(L).
If p ≡ 7 (mod 12) then p ≥ 7 and every prime divisor r of k3 = (p2 + p + 1)/3 is not adjacent to 2

in GK(L). Then r is coprime to |K| · |G/S| and r ∈ ω(S). This is impossible unless r = k3 is a prime
and m − 3 ≤ k3 ≤ m. Since p ≥ 7, we derive that m > 2p, and so a Sylow p-subgroup of S includes an
elementary abelian subgroup of order p2. Thus, by Lemma 1.4, each prime divisor of |K| other than p
is adjacent to p in GK(G). Each prime divisor of k6 = p

2 − p + 1 is not adjacent to p in GK(L), and
so k6 = p

2 − p+ 1 ∈ ω(S). Since k6 > k3 + 3 ≥ m, k6 must be a composite number. Therefore, there is
a prime divisor s of k6 at most

√
p2 − p+ 1. We have s+p ≤√p2 − p+ 1+p < 2p < m; a contradiction.

If p ≡ 5 (mod 12) then every prime divisor r of k6 = (p2 − p+ 1)/3 is not adjacent to 2 in GK(L).
Thus, r is coprime to |K| · |G/S| and r ∈ ω(S). This is impossible unless r = k6 is a prime and
m − 3 ≤ k6 ≤ m. Suppose that p �= 5, and hence p ≥ 17. Then m > 2p, and so a Sylow p-subgroup of
S includes an elementary abelian subgroup of order p2. Therefore, by Lemma 1.4, each prime divisor of
|K| other than p is adjacent to p in GK(G). Each prime divisor of k3 = p2 + p+ 1 is not adjacent to p
in GK(L); hence, k3 = p

2 + p + 1 ∈ ω(S). Since k3 > k6 + 3 ≥ m; therefore, k3 must be a composite
number. Consequently, there is a prime divisor s of k3 that does not exceed

√
p2 + p+ 1. We have

s + p ≤ √p2 + p+ 1 + p < 2p + 1 < m; a contradiction. Finally, let p = 5. Then 7 ≤ m ≤ 10. Thus,
31 = k3 does not divide the order of AutS. Therefore, 31 ∈ ω(K). However, S includes an elementary
abelian group of order 32. So, 31 · 3 ∈ ω(G) \ ω(L) by Lemma 1.4.
Case L = Dn(q) or L =

2Dn(q), where n ≥ 4.
By [30, Proposition 0.5], if the p-period of L is pl then (pl−1 + 3)/2 ≤ n < (pl + 3)/2. In particular,

n ≥ (pl−1 + 3)/2 > (pl−1 + 1)/2. This implies that the Lie rank of a group of type Dn or 2Dn is at least
the rank of a group of type Bn or Cn provided that p-periods of these groups are equal.
Suppose that n ≥ 12. Denote by i the largest prime in the interval (n/2, n). Since for n ≥ 12 there

are at least two different primes in this interval, i ≥ (n+ 5)/2. Put
ki = ki(q) =

qi − 1
(q − 1)(i, q − 1) and k2i = k2i(q) =

qi + 1

(q + 1)(i, q + 1)
.

We write j to denote the power of 2 such that j ∈ (n/2, n] with the following exception: if L = Dn(q)
and n is a power of 2 then j denotes n/2. Put

k2j = k2j(q) =
qj + 1

(2, q − 1) .
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Since the three-element setM = {i, 2i, 2j} satisfies (1) and (2), at least one of the numbers ki, k2i, k2j
is a prime not exceeding m. Thus, m ≥ min{ki, k2i, k2j}.
Since i ≥ max{(n+ 5)/2, 11} and j ≥ max{(n+ 1)/2, 8}, we derive that

min{ki, k2i, k2j} > max{q n+12 /p, q8/p}.
Reasoning by analogy to the case of groups of types Bn and Cn, we infer that l + 2 < (n+ 1)/2, and so

m ≥ q(n+1)/2/p > ql+2/p ≥ pl+1. But then pl+1 ∈ ω(G) \ ω(L); a contradiction.
Suppose that n = 10, 11. Since M = {9, 18, 16} satisfies (1) and (2), the proof is similar to that for

groups Bn(q) and Cn(q) with n = 9, 10. Indeed, all estimations remain valid, and so in all cases but q = 2,
we immediately infer that the p-period of L is strictly less than the p-period of S, which is impossible.
Let q = 2. In the prime graphs of 2D10(2),

2D11(2), and D11(2), the number 41 is not adjacent to 2.
Thus, m ≥ 41 for these groups. For D10(2) the number 73 is not adjacent to 2, and so m ≥ 73. In all
cases 29 ∈ ω(G) \ ω(L); a contradiction.
Suppose that n = 9. The set M = {7, 14, 16} satisfies (1) and (2), thus m ≥ min{k7, k9, k16} > q5/p.

If p �= 2 then p4 ∈ ω(L), and so n ≥ (p3 + 3)/2 ≥ (33 + 3)/2 = 15; a contradiction. If p = 2 and q > 2
then p8 ∈ ω(L), and so n ≥ (27 + 3)/2 > 9; a contradiction. If q = 2 then 257 is not adjacent to 2 in
GK(L). Thus, m ≥ 257. Therefore, 28 ∈ ω(L) and n ≥ (27 + 3)/2 > 9; a contradiction.
Since the prime graph of L = 2D8(q) has two connected components and n2(L) = (q

8+1)/(2, q− 1),
this case can be examined in the same manner as in the case of B8(q) and C8(q).
Suppose that n = 6, 7 for L = 2Dn(q) and n = 6, 7, 8 for L = Dn(q). Then M = {5, 10, 8} satisfies

(1) and (2). So, for q �= 2, the argument is analogous to that for Bn(q) and Cn(q) with n = 5, 6, 7. Let
q = 2. In GK(L), the number 2 is not adjacent to 31 if L = D6(2) or L =

2D6(2), to 127 if L = D7(2) or
L = D8(2), and to 43 if L =

2D7(2). This yields thatm ≥ 31. But then 19 ∈ ω(S)\ω(L); a contradiction.
Suppose that n = 5. By Lemma 2.3, we may assume that q > 2. Put

i =

{
5, if L = D5(q),

10, if L = 2D5(q),
j =

{
3, if (3, q − 1) = 1,
6 otherwise

and consider k8 = k8(q), ki = ki(q), and kj = kj(q).
The three-element set M = {8, i, j} satisfies (1) and (2). Thus, m ≥ q2 − q + 1. Since for q > 2

we have q2 − q + 1 > 2p, a Sylow p-subgroup of S includes an elementary abelian p-subgroup of order
p2. Therefore, by Lemma 1.4 each prime divisor of |K| other than p is adjacent to p in GK(G). All
prime divisors of k8 and ki are not adjacent to p in GK(L). Hence, k8 and ki are in ω(S). Thus at
least one of these numbers must be a prime between m/2 and m. Denote this number by k. Then
m ≥ k ≥ min{k8, ki}. Therefore, m > p3 if q �= 4, and m ≥ 41 if q = 4. If p > 3 then the p-period of L is
at most p2, which is an immediate contradiction. If p = 3 then the 3-period of L is 33, which again leads
to a contradiction for q > 3. Finally, if p = 2 then the 2-period of L is 24, and we derive a contradiction
for q > 4. Thus we are left with the groups D5(q) and

2D5(q), where q = 3, 4. In this case m > 27 and
so 19 ∈ ω(S) \ ω(L), which is impossible.
The prime graph of L = 2D4(q) has two connected components and n2(L) = (q

4 + 1)/2. So the
argument leading to a contradiction just repeats that for B4(q) and C4(q).
It remains to consider the case of L = D4(q). By Lemma 2.3 we may assume that q > 3. Then, by

analogy to the case of L = B3(q) or L = C3(q), the set M = {3, 6, 4} satisfies (1) and (2). The further
argument completely coincides with that for B3(q) and C3(q), including the detailed analysis of the four
cases modulo 12 for q = p > 3.

Case L = B2(q), where q > 3.

The prime graph of L has two connected components. We write k to denote n2(L) = (q
2+1)/(2, q−1).

By the Gruenberg–Kegel theorem, we deduce that k is a prime and m− 2 ≤ k ≤ m.
Suppose first that q > p. Then m ≥ (p4 + 1)/(2, p− 1) > p3 + 1. However, the p-period of L is p for

p > 3 and is p2 for p ∈ {2, 3}. Therefore, p3 ∈ ω(S) \ ω(L).
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Thus, q = p ≥ 5. In this case each prime divisor of the order of L not dividing k either equals p
or divides p − 1 or divides p + 1. In all cases it does not exceed p + 1. On the other hand, 2(p + 1) <
(p2 + 1)/2 = k and p + 1 ≥ 6. Thus, the interval (p + 1, k) contains at least one prime r. We derive
a contradiction since r ∈ ω(S) \ ω(L).
Theorem 1 is proved.

§ 4. Proof of Theorem 2
Let L be one of the groups in the statement of Theorem 2, and let q be a power of a prime p. Let G

be a finite group isospectral to L. Assume that the assertion of the theorem is false. Then by Lemma 2.1
S ≤ G = G/K ≤ AutS, where K is the soluble radical of G and S is either a sporadic group or the Tits
group. Observe that all elements of ω(S) do not exceed 119.
Suppose that L = B2(q). Then GK(L) is disconnected and by the Gruenberg–Kegel theorem, the

number u = (q2 + 1)/(2, q − 1) belongs to the spectrum of S. It follows from [3, 31] that

μ(L) =

{ { q2+1
(2,q−1) ,

q2−1
(2,q−1) , p(q + 1), p(q − 1)

}
, if p > 3,{

q2+1
(2,q−1) ,

q2−1
(2,q−1) , p(q + 1), p(q − 1), p2

}
, if p ∈ {2, 3}.

Both numbers p(q + 1)/3 and p(q − 1)/2 are less than u; if p = 2 then p2 < u; and if p = 3 then q > 3
and p2 < u. Thus,

(1) (q2 + 1)/(2, q − 1) ∈ ω(S);
(2) one of the numbers (q2 + 1)/(2, q − 1), p(q + 1), p(q + 1)/2, and p(q − 1) is the largest element

of ω(S).

The condition (q2 + 1)/(2, q − 1) ≤ 119 forces that q ≤ 13. The case-by-case check for all q ≤ 13
shows that none of sporadic group nor the Tits group satisfies (1) and (2). Therefore, n > 2.
Suppose that n ≥ 12. In much the same way as in the proof of Theorem 1 in the case of L ∈

{Dn(q), 2Dn(q)} we choose the triple {ki(q), k2i(q), k2j(q)}. By Lemma 2.2, at least two of these three
numbers belong to the spectrum of S. Trivial estimations show that for n ≥ 12 all numbers of the triple
are larger than 119, and so none of them belongs to ω(S); a contradiction.
Suppose that n = 11. By analogy to the proof of Theorem 1, we establish that two of the numbers

k9(q), k18(q), and k16(q) lie in ω(S). For q > 2, both of k9(q) and k16(q) are larger than 19, and hence
q = 2. Since k9(2) = 73 and k16(2) = 257, neither of these numbers can belong to ω(S); a contradiction.

Lemma 4.1. If 3 ≤ i ≤ 20, q is a power of a prime, ki(q) lies in the spectrum of a sporadic group
or the Tits group, and, moreover, prime divisors of ki(q) are not adjacent to 2 in the prime graph if this
group, then a triple (i, q, ki(q)) is contained in Table 1.

Table 1

i

q 3 4 5 6 8 10 12 14 18 20

2 7 5 31 1 17 11 13 43 19 41
3 13 5 7 41
4 7 17 13 41
5 31 13 7
7 19 43
8 19
9 41
11 37

Proof. Since 119 ≥ ki(q) ≥ (q2 − q + 1)/3, we infer that
q ≤ 19. Direct calculations show now that the lemma holds.
Suppose that 3 ≤ n ≤ 10. By the criterion for adjacency

to 2 and Lemma 1.3, there is at least one i in {n − 1, n, 2n −
2, 2n} such that prime divisors of ki(q) are not adjacent to 2 in
GK(L) and so ki(q) ∈ ω(S). Then it follows from Lemma 4.1
that q ≤ 11. For these values of q, π(L) does not contain the
numbers 23, 59 and 67, and so S is distinct from F1, F2, LyS,
Fi′24, Fi23, J4, M24, M23, and the Convey groups. Therefore,
S has no elements of order 37, 41, and 43. Hence, q ≤ 8.
All groups L with 3 ≤ n ≤ 10 and q ≤ 8 but those listed

in Lemma 2.3 can be checked by the following procedure.
Let L = B5(2). Then by Lemma 1.3, the numbers k5(2) = 31 and k10(2) = 11 lie in ω(S), and also

π(S) ⊆ π(L) = {2, 3, 5, 7, 11, 17, 31}. Table 1 in [28] shows that any sporadic group S does not satisfy
these conditions.
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A similar check leaves the pairs (L, S) of {(B6(2), Suz), (B6(2), F i22), (D4(5), J2)} as the only possi-
bilities. The case of L = B6(2) is not possible since 13, 17, and 31 compose a coclique in GK(L); and so
one of the numbers 17 and 31 must lie either in the spectrum of Suz or in the spectrum of Fi22, which
is false. Similarly, in the case where L = D4(5), a coclique can be composed by 7, 13, and 31. Therefore,
one of the numbers 13 and 31 must lie in the spectrum of S = J2, which is false.
Theorem 2 is proved.

§ 5. Proof of Theorem 3
Let L be one of the groups in the statement of Theorem 3, q = pα, and let G be a finite group

isospectral to L. By Lemma 2.1 and the hypothesis, S ≤ G/K ≤ Aut(S), where S is a simple nonabelian
group isomorphic to a group of Lie type over a field of characteristic p. Since the assertion of the theorem
holds for the groups L in Lemmas 2.3 and 2.4, below these groups are not considered. The proof uses
the adjacency criteria in prime graphs from [22, 23], Tables 4–7 of [22], and Tables 2–4 of [23].

Lemma 5.1. Suppose that S �� A1(p). Then each number r of π(L) not adjacent to p in GK(L) is
coprime to |K| · |G/S|; in particular, t(p, S) ≥ t(p, L).
Proof. Let L be one of the groups Bn(q) and Cn(q) with n even. Then r fails to be adjacent not

only to p, but to 2 in GK(L) either, and the claim of the lemma follows from (3) of Lemma 1.3.
Suppose now that L is distinct from Bn(q) and Cn(q) with n even. Then GK(G) has a coclique

of size 3 and form {r, s, p}. It is not hard to check that both r and s are larger than 3. Assume that
r �∈ π(S). Then either r ∈ π(G/S) or r ∈ π(K). Furthermore, it follows from (2) of Lemma 1.3 that
s, p �∈ π(K) ∪ π(G/S).
Let r ∈ π(G/S). Since r �∈ π(S) and r > 3, G contains a field automorphism of S of order r. In

every group of Lie type, the centralizer of a field automorphism contains an element of order p. Thus,
rp ∈ ω(G); a contradiction.
Let r ∈ π(K). As in the previous case rp ∈ ω(G), which yields a contradiction. Let R be a Sylow

r-subgroup of K and N = NG(R). Then by the Frattini argument N/(N ∩ K) � G/K � S and so
without loss of generality, we may assume that R is normal in G and a Sylow p-subgroup P of G acts
on R by conjugation. Since p �∈ π(K)∪π(G/S), the group P is isomorphic to a Sylow p-subgroup of S. By
hypothesis, S is other than A1(p), and so its Sylow p-subgroup includes an elementary abelian subgroup
of order p2. For A1(p

β) with β > 1, this a subgroup of an elementary abelian Sylow p-subgroup; for
other Chevalley groups, this subgroup is generated by a root element associated with the highest root
of the root system together with any other nonidentity root element associated with a positive root.
For twisted groups, this subgroup can be easily constructed on using [32, Proposition 13.6.3]. Thus, an
abelian noncyclic group acts on R. By Lemma 1.4, G has an element of order pr. The proof is complete.

Lemma 5.2. If S is isomorphic to a group of type A1, then either L = B2(q) with q > 3 and
S � A1(q2), or L ∈ {B3(q), C3(q), D4(q)} and S � A1(q3).
Proof. Let S � A1(pβ). Then t(GK(S) \ {p}) = 2, and hence t(GK(L) \ {p}) ≤ 3. Therefore,

L ∈ {B2(q), B3(q), C3(q), D4(q)}.
If L = B2(q) then GK(L) is disconnected. By the Gruenberg–Kegel theorem (q

2 + 1)/(2, p − 1) =
(pβ ± 1)/(2, p− 1), and so pβ = q2. Thus in this case S � A1(q2).
Suppose that L ∈ {B3(q), C3(q), D4(q)}. By Lemma 2.3, we may assume that q > 3. Thus, r6 =

r6α(p) and r3 = r3α(p) are well-defined and {p, r3, r6} is a coclique in GK(L).
Let β > 1. By Lemma 5.1 r6 lies in π(S). Therefore, r6 divides p

2β − 1, and so 6α divides 2β. If
2β > 6α then r2β(q) ∈ π(S) \ π(L). Thus, 2β = 6α and S � A1(q3).
Let β = 1. By Lemma 1.3, at least one of the numbers r6 and r3 lies in π(S) and therefore divides

p2 − 1; this contradicts the definition of primitive divisor. The lemma is proved.
Lemma 5.3. Let S be a group over a field of order pβ .
(1) If ri(p

β) ∈ π(S) then iβ ≤ 2nα for L �= Dn(q) and iβ ≤ 2(n− 1)α for L = Dn(q).
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(2) If (iβ, p) �= (6, 2) and kiβ(p) ∈ ω(S) then iβ divides 2jα, where j ∈ {1, . . . , n} for L �= Dn(q) and
j ∈ {1, . . . , n− 1} for L = Dn(q).
Proof. (1) Assume that L �= Dn(q) and iβ > 2nα. Then iβ > 6 for p = 2, and so there exists

r = riβ(p). By hypothesis, ri(p
β) divides the order of S. Hence, ki(p

β) divides the order of S. Therefore, r
divides the order of S. Thus, r ∈ π(L), and the required assertion follows from the definition of primitive
divisor. The case where L = Dn(q) can be handled in a similar way.
(2) If iβ ≤ 2 then the assertion holds. If iβ > 2 then kiβ(p) �= 1, and the claim follows from the

definition of primitive divisor. The lemma is proved.

In what follows, S is a group over a field of order pβ. By Lemma 5.2, we may assume that S is not
of type A1.
We let e(p, S) and e(p, S)′ to stand for

{e(r, pβ) | r ∈ π(S) \ {p}, pr �∈ ω(S)}
and

{e(r, pβ) | r ∈ π(S) \ {2, 3, p}, pr �∈ ω(S)}
respectively. Observe that for all S but the groups of types A2 and

2A2, the sets e(p, S) and e(p, S)
′

coincide. By (1) of Lemma 5.3 eβ ≤ 2nα for every e of e(p, S).
Suppose that L is one of the groups Bn(q) and Cn(q), where n is even. The set of primes that are

not adjacent to p in GK(L) coincides with the set of primes that are not adjacent to 2 in GK(L) and
equal to the set of primes dividing k2n(q). Among these divisors, choose a number r2n to satisfy not only
the condition e(r2n, p

α) = 2n but also a stronger condition e(r2n, p) = 2nα. In other words, r2n is of
the form r2nα(p). Since L �= B3(2), this number exists. By Lemma 5.1 r2n lies in π(S). Furthermore,
r2n > 3. Thus if e = e(r2n, p

β) then e ∈ e(p, S)′. By the definition of primitive divisor, eβ is divisible by
2nα. On the other hand, eβ ≤ 2nα by (1) of Lemma 5.3. Therefore, we obtain the equation eβ = 2nα,
where e is the maximal element in e(p, S)′.
Suppose that L is one of the groups Bn(q) and Cn(q), where n is odd. Then t(p, L) = 3. Since L �∈

{B3(2), B3(4)}, there exist primitive prime divisors r2n = r2nα(p) and rn = rnα(p). Both these numbers
are not adjacent to p in GK(L) and, therefore, divide the order S by Lemma 5.1. Put e2 = e(r2n, p

β)
and e1 = e(rn, p

β). Then e2, e1 ∈ e(p, S)′, and if S is not a Ree or Suzuki group then e2 �= e1. By
the definition of primitive divisor, e2β is divisible by 2nα. On the other hand, e2β ≤ 2nα. Therefore,
e2β = 2nα. By exactly the same reason, e1β is divisible by nα and e1β ≤ 2nα, and so e1β ∈ {nα, 2nα}.
Thus we derive the equation 2nα = e2β, where e2 is the maximal element in e(p, S)

′, and the condition
nα ∈ {e1β, e1β/2}, where e1 is some element of e(p, S)′. If S is other than Ree and Suzuki groups then
the condition turns into the equation nα = e1β and, in particular, e2/e1 = 2.
Suppose that L = Dn(q), where n is even. Since L �∈ {D4(2), D4(4)}, there exist primitive prime

divisors r2(n−1) = r2(n−1)α(p) and rn−1 = r(n−1)α(p). Repeating the previous argument and putting
e2 = e(r2(n−1), pβ), e1 = e(rn−1, pβ), we infer that e2, e1 ∈ e(p, S)′ and e2β = 2(n− 1)α. Furthermore, if
S is other than Ree and Suzuki groups then e1β = (n− 1)α and, in particular, e2/e1 = 2.
Suppose that L = Dn(q), where n is odd. Then there exist primitive prime divisors r2(n−1) =

r2(n−1)α(p) and rn = rnα(p). Putting e2 = e(r2(n−1), pβ) and e1 = e(rn, pβ), we infer that e2, e1 ∈ e(p, S)′
and e2β = 2(n − 1)α. Furthermore, e1β is divisible by nα and is at most 2(n − 1)α. Thus, e1β = nα
and, in particular, e2/e1 = 2(n− 1)/n < 2.
Suppose that L = 2Dn(q), where n is odd. Then there exist primitive prime divisors r2n = r2nα(p)

and r2(n−1) = r2(n−1)α(p). Putting e2 = e(r2n, pβ) and e1 = e(r2(n−1), pβ), we deduce that e2, e1 ∈ e(p, S)′
and e2β = 2nα. Furthermore, e1β is divisible by 2(n−1)α and is at most 2nα. Therefore, e1β = 2(n−1)α
and, in particular, e2/e1 = n/(n− 1) < 2.
Finally, suppose that L = 2Dn(q), where n is even. Then t(p, L) = 4. By Lemma 5.1 t(p, S) ≥ 4.

Therefore, S is isomorphic either to one of the groups 2Dm(p
β) with m even, E8(p

β), E7(p
β), E6(p

β) or
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to one of the Ree and Suzuki groups. Since L �∈ {2D4(2), 2D4(4)}, there exist divisors r2n = r2nα(p),
r2(n−1) = r2(n−1)α(p), and rn = r(n−1)α(p). Put e2 = e(r2n, pβ), e1 = e(r2(n−1), pβ) and e0 = e(rn, pβ).
Then {e2, e1, e0} ⊆ e(p, S)′ with e2β = 2nα and e1β = 2(n−1)α and, in particular, e2/e1 = n/(n−1) < 2.
The following proof consists in consecutively considering all simple groups of Lie type as S. If there

are (a) and (b) then (a) concerns the case where L = Bn(q) or L = Cn(q) with n even, and (b) concerns
the remaining cases.
1. Let S � Am−1(pβ), where m ≥ 3. Then e(p, S) = {m,m − 1} for m �= 3 and m ∈ e(p, S)′ ⊆

{m,m− 1} for m = 3.
(a) Recall that e is the maximal element in e(p, S)′ and eβ = 2nα. Thus, e = m and mβ = 2nα. In

particular, (m− 1)β > 2.
Assume that m > n. Then β < 2α and so 2(n − 1)α < (m − 1)β < 2nα. Therefore, (m − 1)β

divides none of the numbers 2iα, where i ∈ {1, 2, . . . , n}. On the other hand, S includes a cyclic torus of
order (p(m−1)β − 1)/(m, pβ − 1) (for example, see [33, Theorem 2.1]), and hence k(m−1)β(p) ∈ ω(S). This
contradicts (2) of Lemma 5.3 provided that ((m−1)β, p) is not equal to (6, 2). Let ((m−1)β, p) = (6, 2).
Since mβ = 2nα, it follows that m = 4, β = 2 and n = 2, α = 2. Thus, S � A3(4) and L = B2(4). In
this case 7 ∈ ω(S) \ ω(L), which is impossible.
Let m ≤ n. Then n ≥ 4 and since L �= B4(2), GK(L) includes a coclique of size 4 that contains

neither p nor 2 nor 3 [23, Table 3]. In other words, t(GK(L) \ {p, 2, 3}) ≥ 4. By (2) of Lemma 1.3
we have t(GK(S) \ {p, 2, 3}) ≥ 3, and by [23, Table 2] this yields m ≥ 5. Thus, n ≥ m ≥ 5. Then
t(L)− 1 ≥ (3n+ 2)/4− 1 > (m+ 1)/2 ≥ t(S), which is impossible.
(b) Recall that e2, e1 ∈ e(p, S)′ and e2 > e1. Thus, e2/e1 = m/(m − 1). If e2/e1 = 2 then m = 2;

a contradiction. If e2/e1 = 2(n − 1)/n, where n ≥ 5 is odd, then m = 2(n − 1)/(n − 2), and so n = 3;
a contradiction.
Let e2/e1 = n/(n − 1), where n ≥ 5 is odd. Then m = n and β = 2α. Therefore, L = 2Dn(q) and

S � An−1(q2). In this case rn(q) ∈ π(S) \ π(L); a contradiction.
2. Let S � 2Am−1(pβ), where m ≥ 3. Then e(p, S)′ is one of the sets {2m−2,m} and {2m−2,m/2}

for even m, and one of the sets {2m,m − 1} and {2m, (m − 1)/2} for odd m �= 3. If m = 3 then
2m ∈ e(p, S)′ ⊆ {2m, (m− 1)/2}.
(a) Since e is a maximal element in e(p, S)′, it follows that 2(m − 1)β = 2nα for even m and

2mβ = 2nα for odd m.
Consider the case of m even. Let m− 1 > n. Then β < α, and so nα < mβ < (n+ 1)α. Therefore,

mβ divides none of the numbers 2iα, where i ∈ {1, 2, . . . , n}. On the other hand, kmβ(p) ∈ π(S). If
((m − 1)β, p) �= (6, 2) then this contradicts (2) of Lemma 5.3. If mβ = 6 then m = 6, β = 1, and so
n = 5. However, n is even; a contradiction.
Let m − 1 ≤ n. Since m ≥ 4, we have n ≥ 4. Thus, t(GK(L) \ {2, 3, p}) ≥ 4. Therefore,

t(GK(S) \ {2, 3, p}) ≥ 3, and so m ≥ 5. Taking it into consideration that m is even, we infer that
n ≥ m ≥ 6. Just as in the case of linear groups, these inequalities yield t(S) < t(L)− 1; a contradiction.
We now handle the case where m is odd. Let m > n. Then β < α and thus we have

(n− 1)α < (m− 1)β < nα, 2(n− 1)α < 2(m− 1)β < 2nα, 2nα ≤ 4(n− 1)α < 4(m− 1)β.
On the other hand, k(m−1)β ∈ ω(S), and sincemβ = nα is even, β is even as well, and so (m−1)β �= 6. By
(2) of Lemma 5.3, some multiple of (m− 1)β is equal to 2iα where i ∈ {1, . . . , n}. The above inequalities
imply that the only possibility for this multiple is 3(m−1)β, and it is equal to 2nα since it is larger than
2(n− 1)α. Therefore, 2nα = 3(m− 1)β > 3(n− 1)α. So n = 2, m = 3, and β = 3α/2. Thus, L = B2(q)
and S � 2A2(q2/3). The prime graphs of B2(q) and 2A2(q2/3) both have two connected components, and
by Gruenberg–Kegel theorem

q2 + 1

(2, q − 1) = n2(B2(q)) = n2(
2A2(q

2/3)) =
q2 + 1

(q2/3 + 1)(3, q2/3 + 1)
;

a contradiction.
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Let m ≤ n. Then n ≥ 4 and t(GK(L) \ {2, 3, p}) ≥ 4, therefore, t(GK(S) \ {2, 3, p}) ≥ 3, and so
m ≥ 5 and n ≥ 6. Then t(L)− 1 > t(S); a contradiction.
(b) Recall that e2, e1 ∈ e(p, S)′ and e2/e1 ≤ 2. Since 2(m − 1)/m < 2 and each of the numbers

2m/(m − 1), 4(m − 1)/m, 4m/(m − 1) are larger than 2, e2/e1 = 2(m − 1)/m and m is even. If
e2/e1 = 2(n−1)/n where n is odd then m = n contrary to the evenness of m. If e2/e1 = n/(n−1) where
n ≥ 4 is odd then m = 2(n− 1)/(n− 2), and so n = 3; a contradiction.
3. Let S � Bm(pβ) or S � Cm(pβ). If m is even then e(p, S) = {2m}. If m is odd then e(p, S) =

{2m,m}.
(a) We have e = 2m and mβ = nα. This equation will be handled in (b).
(b) Since t(p, S) ≥ t(p, L) > 2, the number m is odd and e(p, S) = {2m,m}. Therefore, e2/e1 = 2,

and so either L = Dn(q), where n is even, or L ∈ {Bn(q), Cn(q)}, where n is odd.
Suppose that L = Dn(q), where n is even. Then mβ = (n− 1)α. Observe that k2(m−1)β(p) ∈ ω(S),

and also, since m is odd, 2(m− 1)β �= 6.
Let m > n− 1. Then β < α, and so

nα ≤ 2(n− 2)α < 2(m− 1)β < 2(n− 1)α,
contrary to (2) of Lemma 5.3. Therefore, m ≤ n− 1. Furthermore, it follows from

(3m+ 5)/4 ≥ t(S) ≥ t(L)− 1 ≥ (3n− 2)/4− 1
thatm ≥ n−3. Thus, m ∈ {n−1, n−2, n−3}. Moreover, since n is even andm is odd, m ∈ {n−1, n−3}.
Let m = n− 3. Then n ≥ 6 and (n− 3)β = (n− 1)α. Denote β/(n− 1) = α/(n− 3) by γ. By (2) of

Lemma 5.3, the number 2(m−1)β = 2(n−4)(n−1)γ must divide 2iα = 2i(n−3)γ for some 1 ≤ i ≤ n−1.
This is impossible unless i = n− 1. Thus, n− 4 divides n− 3, which is false for n ≥ 6.
If m = n− 1 then β = α and S ∈ {Bn−1(q), Cn−1(q)}, as stated in (4) of the theorem we prove.
Suppose that L ∈ {Bn(q), Cn(q)}, where n is odd. Then mβ = nα. Thus in the case of L ∈

{Bn(q), Cn(q)}, the equality mβ = nα holds for all n. However, if n is odd then m is odd as well. We
now consider even and odd n together assuming for a while that (2(m− 1)β, p) �= (6, 2).
Let m > n. Then β < α and so

nα ≤ 2(n− 1)α < 2(m− 1)β < 2nα.
Therefore, 2(m − 1)β divides none of the numbers 2iα, where i ∈ {1, 2, . . . , n}. On the other hand,
k2(m−1)β(p) ∈ ω(S); a contradiction. Thus, m ≤ n. It follows from (3m + 5)/4 ≥ t(S) ≥ t(L) − 1 ≥
(3n+ 2)/4− 1 that m ≥ n− 2. Thus, m ∈ {n, n− 1, n− 2}.
Let m = n−1. Then n ≥ 3 and (n−1)β = nα. Denote β/n = α/(n−1) by γ. By (2) of Lemma 5.3,

the number 2(m − 1)β = 2(n − 2)nγ must divide 2iα = 2i(n − 1)γ for some i ∈ {1, 2, . . . , n}. This is
impossible unless i = n. Therefore, n − 2 divides n − 1, and so n = 3. Then m is odd, but m = 2;
a contradiction.
Let m = n − 2. Then n ≥ 4 and (n − 2)β = nα. Repeating the previous argument with the index

2(m − 1)β, we infer that n = 4, m = 2 and β = 2α. Thus, L ∈ {B4(q), C4(q)} and S � B2(q2). Then
t(S) = 2, while the independence number for L when q > 2 is equal to 4; a contradiction.
If m = n then α = β and S ∈ {Bn(q), Cn(q)}, as stated in (3) of the theorem we prove.
It remains to consider the case where (2(m − 1)β, p) = (6, 2). In this case either m = 2 and β = 3,

or m = 4 and β = 1. Therefore, n is even. Now the equation mβ = nα implies that either S � L, as
required, or S � B4(2) and L = B2(4). The latter situation is impossible since 7 ∈ ω(B4(2)) \ ω(B2(4)).
4. Let S � Dm(pβ). Then e(p, S) = {2m − 2,m − 1} for even m and e(p, S) = {2m − 2,m} for

odd m.
(a) We have e = 2m− 2, and hence (m− 1)β = nα. This equation will be handled in (b).
(b) Let m be odd. Then e2/e1 = 2(m − 1)/m < 2, and so either e2/e1 = n/(n − 1) or e2/e1 =

2(n− 1)/n. In the first case m = 2(n− 1)/(n− 2) < 4, which is impossible; in the second case L � Dn(q)
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and m = n, β = α, and thus S � L, as required. Therefore, we may assume that m is even and e2/e1 = 2,
and hence either L = Dn(q), where n is even, or L ∈ {Bn(q), Cn(q)}, where n is odd.
Suppose that L = Dn(q), where n is even. Then (m − 1)β = (n − 1)α. Observe that k2(m−2)β(p) ∈

ω(S), and since m is even, 2(m− 2)β �= 6.
Let m > n. Then β < α and

nα ≤ 2(n− 2)α < 2(m− 2)β < 2(n− 1)α,
contrary to (2) of Lemma 5.3. Thus, m ≤ n. On the other hand, it follows from

(3m+ 1)/4 ≥ t(S) ≥ t(L)− 1 ≥ (3n− 2)/4− 1
thatm ≥ n−2. Therefore,m ∈ {n, n−1, n−2}. Furthermore, since both n andm are even,m ∈ {n, n−2}.
Let m = n− 2. Then n ≥ 6 and (n− 3)β = (n− 1)α. Denote β/(n− 1) = α/(n− 3) by γ. By (2) of

Lemma 5.3, the number 2(m−2)β = 2(n−4)(n−1)γ must divide 2iα = 2i(n−3)γ for some 1 ≤ i ≤ n−1.
This is impossible unless i = n− 1. Therefore, n− 4 divides n− 3, which is false for n ≥ 6.
If m = n then β = α, and hence S � L, as required.
Suppose that L ∈ {Bn(q), Cn(q)}, where n is odd. Then (m − 1)β = nα. Thus in the case where

L ∈ {Bn(q), Cn(q)}, the equality (m− 1)β = nα holds for all n but if n is odd then m is even. Now we
consider even and odd n together assuming for a while that (2(m− 2)β, p) �= (6, 2).
Let m− 1 > n. Then β < α and hence

nα ≤ 2(n− 1)α < 2(m− 2)β < 2nα,
contrary to (2) of Lemma 5.3. Therefore, m− 1 ≤ n. Furthermore, it follows from

(3m+ 1)/4 ≥ t(S) ≥ t(L)− 1 ≥ (3n+ 2)/4− 1
that m ≥ n− 1. Thus, m ∈ {n+ 1, n, n− 1}.
Let m = n. Then n ≥ 4 and (n − 1)β = nα. Denote β/n = α/(n − 1) by γ. By (2) of Lemma 5.3,

the number 2(m− 2)β = 2(n− 2)nγ must divide 2iα = 2i(n− 1)γ for some 1 ≤ i ≤ n. This is impossible
unless i = n. Therefore, n− 2 divides n− 1, and hence n = 3, but n ≥ 4; a contradiction.
Let m = n− 1. Then n ≥ 5 and (n− 2)β = nα. Repeating the argument with the index 2(m− 2)β,

we deduce that n = 4 and m = 3; a contradiction.
Let m = n + 1. Then α = β, and thus S � Dn+1(q). If n = 3 then S � D4(q) and L ∈

{B3(q), C3(q)}, as stated in (2) of the theorem we prove. For n > 3, we show that π(S) � π(L) yielding
a contradiction. If n is even then rn+1(q) ∈ π(S) \ π(L). Let n ≥ 5 be odd and S �� D8(2). Then
S has an element of order rn+3(q)rn−1(q). On the other hand, η(n + 3) + η(n − 1) = n + 1 > n and
1 < η(n + 3)/η(n − 1) = (n + 3)/(n − 1) ≤ 2, hence by the adjacency criterion [23, Proposition 2.4], it
follows that rn+3(q)rn−1(q) �∈ ω(L). If S � D8(2) then L � B7(2) and 99 ∈ ω(S) \ ω(L) (see [33]).
It remains to consider the case where (2(m − 2)β, p) = (6, 2). In this case m = 5, β = 1, and

S � D5(2). It follows from (m − 1)β = nα that L ∈ {B2(4), B4(2)}. Since 31 ∈ π(S) \ π(L), this is
a contradiction.

5. Let S � 2Dm(pβ). Then e(p, S) = {2m, 2m − 2,m − 1} for even m and e(p, S) = {2m, 2m − 2}
for odd m.
(a) We have e = 2m and mβ = nα. Repeating the corresponding argument of 3(b), we infer that

either L ∈ {Bn(q), Cn(q)}, as stated in (3) of the theorem, or L = B2(4) and S � 2D4(2). In the latter
case 7 ∈ ω(S) \ ω(L), which is impossible.
(b) Since e2 is the maximal element of e(p, S), it follows that e2 = 2m. Furthermore, e2/e1 �= 2m/(m−

1) since e2/e1 ≤ 2. Thus, e2/e1 = m/(m− 1) < 2. If e2/e1 = 2(n− 1)/n then m = 2(n− 1)/(n− 2) < 3,
which is false. If e2/e1 = n/(n− 1) then L = 2Dn(q), m = n, β = α and S � L, as required.
6. Let S � E8(pβ). Then e(p, S) = {30, 24, 20, 15}. Also it follows from (3n − 2)/4 ≤ t(L) ≤

t(S) + 1 = 13 that n ≤ 18.
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(a) Since e = 30, it follow that 15β = nα. This equation will be handled in (b).

(b) Let e2/e1 = 30/24 = 5/4. Then e2/e1 = n/(n − 1) and 30β = 2nα, and hence n = 5 and
3β = α. This yields S � E8(q1/3) and L = 2D5(q). In this case r5α(p) ∈ ω(S) \ ω(L); a contradiction.
If e2/e1 = 30/20 then the equation e2/e1 = n/n − 1 has no solutions larger than 3, and the equation
e2/e1 = 2(n− 1)/n has no odd solutions larger than 3, however in these cases n ≥ 4. Thus, e1 = 15 and
e2/e1 = 2.

Suppose that L ∈ {Bn(q), Cn(q)}, where n is odd. Then 15β = nα. Therefore, this equation holds
independently of the parity of n. It yields 24β = 8nα/5 and 20β = 4nα/3. By (2) of Lemma 5.3, there
are i, j ∈ {1, . . . , n} such that 8nα/5 | 2iα and 4nα/3 | 2jα, hence n is divisible by both 5 and 3. Thus,
n = 15 and β = α.

Suppose that L = Dn(q), where n is even. Then 15β = (n − 1)α. By analogy to the previous case
we infer that n− 1 is divisible by both 5 and 3. Therefore, n = 16 and β = α.
Thus, L ∈ {B15(q), C15(q), D16(q)} and S � E8(q). By Lemma 2.2, at least one of the numbers

r13(q) and r26(q) must belong to ω(S), which is false.

7. Let S � E7(pβ). Then e(p, S) = {18, 14, 9, 7}. Also it follows from (3n − 2)/4 ≤ t(L) ≤
t(S) + 1 = 9 that n ≤ 12. In (a), we infer that e = 18 and 9β = nα. In (b), it is easy to check that
e2/e1 �∈ {18/14, 18/7}, and hence e1 = 9 and e2/e1 = 2.
Suppose that L ∈ {Bn(q), Cn(q)}. Then 9β = nα. Thus, 14β = 14nα/9. Therefore, there is

i ∈ {1, . . . , n} such that 14nα/9 | 2iα. Since i must be divisible by 7 and n ≤ 12, it follows that i = 7.
Then n = 9 and β = α.

Suppose that L = Dn(q), where n is even. Then 9β = (n − 1)α. Just as in the previous case, we
deduce that n− 1 = 9 and β = α.
Thus, L ∈ {B9(q), C9(q), D10(q)} and S � E7(q). Then r = r16(q) ∈ π(L) \ π(S). Observe that

r ≥ 17 and r is adjacent in GK(G) to neither of the numbers r5(q), r9(q) and r18(q).
Let r ∈ π(G/S). Then G contains a field automorphism of S of order r. The centralizer of this

automorphism in S has an element of order q50 − 1, where q = qr0. Since r and 5 are coprime, if s = r5(q0)
then e(s, q) = 5. Thus, rs ∈ ω(G) \ ω(L); a contradiction.
Let r ∈ π(K). The numbers r, r9(q), and r18(q) compose a coclique in GK(G), and so r9(q), r18(q) ∈

π(S) \ π(K). Furthermore, the neighborhoods of r9(q) and r18(q) in GK(G) disjoint. In S, there is
a subgroup isomorphic to a group of type A6(q). Therefore, there is a subgroup isomorphic to GL6(q).
Thus, S includes a Frobenius subgroup with kernel of order q5 and cyclic complement of order q5 − 1.
By [29, Lemma 3] we have r(q5 − 1) ∈ ω(G) \ ω(L); a contradiction.
8. Let S be isomorphic to one of the groups E6(p

β), F4(p
β), and 3D4(p

β). Then

{12} ⊆ e(p, S) ⊆ {12, 9, 8}.

It follows from (3n− 2)/4 ≤ t(L) ≤ t(S) + 1 ≤ 6 that n ≤ 8.
(a) Since e = 12, we have 6β = nα. Then 9β = 3nα/2 and 8β = 4nα/3. There are i, j ∈ {1, . . . n}

such that 3nα/2 | 2iα and 4nα/3 | 2jα. Therefore, n is divisible by both 4 and 3; a contradiction.
(b) It is not hard to check that e2/e1 �= 12/8. Thus, e2/e1 = 12/9. Then e2/e1 = n/(n − 1) and

6β = nα, and so n = 4 and β = 2α/3. This means that S � E6(q2/3) and L = 2D4(q). In this case
r5β(p) ∈ π(S) \ π(L); a contradiction.
9. Let S � 2E6(pβ). Then e(p, S) = {18, 12, 8}. As in the previous case, n ≤ 8.
(a) Since e = 18, we have 9β = nα. Then 12β = 4nα/3 and 8β = 8nα/9. There are i, j ∈ {1, . . . , n}

such that 4nα/3 | 2iα and 8nα/9 | 2jα, which is impossible for n ≤ 8.
(b) It is not hard to check that e2/e1 cannot lie in {18/12, 18/8}.
10. Let S � G2(pβ). Then e(p, S) = {6, 3}. Therefore, e = 6 and e2/e1 = 2. It follows from

(3n− 2)/4 ≤ t(L) ≤ t(S) + 1 = 4 that n ≤ 6.
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Suppose that L ∈ {Bn(q), Cn(q)}. Then 3β = nα. If n = 2, 4, then the graph GK(L) is disconnected.
By the Gruenberg–Kegel theorem, we derive the equation

(qn + 1)/(2, q − 1) = p2β ± pβ + 1,

and so either 2nα = 2β(2β ± 1) or qn = 2p2β ± 2pβ +1; both these equalities are impossible. If n ≥ 5 and
(n, q) �= (5, 2) then t(GK(L)) ≥ 5, contrary to the fact that t(GK(S)) = 3. If (n, q) = (5, 2) then nα
is not divisible by 3, contrary to the equation 3β = nα. If n = 3 then β = α and S � G2(q), as stated
in (2) of the theorem we prove.
Suppose that L = Dn(q), where n is even. Then 3β = (n− 1)α. If n = 4 then S � G2(q), as stated

in (2).
Let n = 6. Then β = 5α/3. In particular, α ≥ 3. By Lemma 2.2, at least on the numbers

k8(q) = (q
4+1)/(2, q− 1) and k3(q) = (q2+ q+1)/(3, q− 1) must lie in ω(S), but none of these numbers

divides |S|p′ = (q10 − 1)(q10/3 − 1); a contradiction.
It remains to consider the case where S is a simple Ree or Suzuki group. In these groups, in contrast

to the previous ones, the numbers r not adjacent to each other nor to p in GK(S) can have the same
indices e(r, pβ), and so e2 and e1 can be equal.

11. Let S � 2F4(2
β), where β ≥ 3 is odd. Then e(2, S) = {12, 6}. Thus, e = e2 = 12 and

e2/e1 ∈ {2, 1}.
Suppose that L = Dn(q), where n is odd. Then e2/e1 = 2(n − 1)/n; this is a contradiction since

1 < 2(n− 1)/n < 2 for n ≥ 4. In a similar manner, we prove that L �= 2Dn(q).
Suppose that L = Bn(q). Then 6β = nα. It follows from t(L) ≤ t(S) + 1 ≤ 6 that n ≤ 7.
Let n ∈ {2, 4}. Then the graph GK(L) is disconnected and, from the Gruenberg–Kegel theorem we

infer that

2nα + 1 = n2(L) = 2
2β ± 2(3β+1)/2 + 2β ± 2(β+1)/2 + 1.

Hence, 26β = 2(β+1)/2(2(3β−1)/2 ± 2β + 2(β−1)/2 ± 1); a contradiction.
If n = 3 then β = α/2 and, in particular, α is even. Thus, S � 2F4(q

1/2) and L = B3(q). By
Lemma 2.2, at least one of the numbers k2(q) = q

2 + 1 and k3(q) = (q
2 + q + 1)/3 must lie in ω(S).

However, none of these numbers divides |S|2′ = (q3 + 1)(q2 − 1)(q3/2 + 1)(q1/2 − 1); a contradiction.
Let n ∈ {5, 6, 7}. By Lemma 2.2, at least one of the numbers r(n−1)α(2) and r2(n−1)α(2) must lie in

ω(S). However, it is not hard to check that this is false.
Suppose that L = Dn(q), where n is even. Then 6β = (n−1)α. It follows from t(L) ≤ t(S)+1 ≤ 6 that

n ≤ 8. The case of L = D4(q) is analogous to that of L = B3(q), and the case where L ∈ {D6(q), D8(q)}
is analogous to that of L ∈ {B5(q), B7(q)}.
12. Let S � 2B2(2

β), where β ≥ 3 is odd. Then e(2, S) = {4, 1}. Therefore, e = e2 = 4 and
e2/e1 ∈ {4, 1}. As in the previous case, we show that L �= Dn(q), where n is odd, and L �= 2Dn(q).
Suppose that L = Bn(q). Then 2β = nα. It follows from t(L) ≤ t(S)+1 ≤ 5 that n ≤ 6. If n ∈ {5, 6}

then t(GK(L) \ {2}) = 5; however, t(GK(S) \ {2}) = 3; a contradiction.
Let n ∈ {2, 4}. Then GK(L) is disconnected and by the Gruenberg–Kegel theorem we derive one of

the equalities

2nα + 1 = 2β − 1, 2nα + 1 = 2β ± 2(β+1)/2 + 1.
The first equality is clearly impossible; the latter yields 22β = 2(β+1)/2(2(β−1)/2±1), which is false either.
Let n = 3. Then β = 3α/2, and in particular α is even. Thus, S � 2B2(q3/2) and L = B3(q). By

Lemma 2.2, at least one of the numbers k4(q) = q
2+1 and k3(q) = (q

2+ q+1)/3 must lie in ω(S). Since

q > 4 by Lemmas 2.3 and 2.4, none of these numbers divides |S|2′ = (q3 + 1)(q3/2 − 1); a contradiction.
Suppose that L = Dn(q), where n is even. Then 2β = (n− 1)α. It follows from t(L) ≤ t(S) + 1 ≤ 5

that n ≤ 6. The case of L = D4(q) is similar to that of L = B3(q).
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Let n = 6. Then β = 5α/2. Thus, S � 2B2(q5/2) and L = B3(q). By Lemma 2.2, at least one of the
numbers k8(q) = q

4 + 1 and k5(q) = (q
5 − 1)/(q − 1) must lie in ω(S). However, none of them divides

|S|2′ = (q5 + 1)(q5/2 − 1); a contradiction.
13. Let S � 2G2(3

β), where β ≥ 3 is odd. Then e(3, S) = {6, 2, 1}. Therefore, e = e2 = 6 and
e2/e1 ∈ {6, 3, 2, 1}. As in the previous cases, we show that L �= Dn(q), where n is odd, and L �= 2Dn(q).
Suppose that L ∈ {Bn(q), Cn(q)}. Then 3β = nα. It follows from t(L) ≤ t(S) + 1 ≤ 6 that n ≤ 7. If

n = 7 then t(GK(L) \ {3}) = 6. However, t(GK(S) \ {3}) = 4; a contradiction.
Let n ∈ {2, 4}. Then GK(L) is disconnected and by the Gruenberg–Kegel theorem we infer that

3nα + 1

2
= 3β ± 3(β+1)/2 + 1,

and hence 33β = 2 · 3β ± 2 · 3(β+1)/2 + 1; a contradiction.
Let n ∈ {3, 5, 6}. Then S � 2G2(qn/3). By Lemma 2.2, at least one of the numbers k2(n−1)(q) and

kn(q) must lie in ω(S). However, none of them divides |S|3′ = (qn + 1)(qn/3 − 1); a contradiction.
Suppose that L = Dn(q), where n is odd. Then 2β = (n−1)α. It follows from t(L) ≤ t(S)+1 ≤ 6 that

n ≤ 8. The case of L = D8(q) is similar to that of L ∈ {B7(q), C7(q)}, and the case of L ∈ {D6(q), D4(q)}
is similar to that of L ∈ {B5(q), B3(q), C5(q), C3(q)}.
Theorem 3 is proved.
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