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1 Introduction

For a finite group G, denote by w(G) the spectrum of G, i.e., the set of orders of
elements in G. This set is closed under divisibility and hence is uniquely determined
by the subset u(G) of elements in w(G) which are maximal under the divisibility re-
lation.

A group G is said to be recognizable by w(G) (for short, recognizable) if every finite
group H with w(H) = w(G) is isomorphic to G. In other words, G is recognizable
if h(G) =1 where h(G) is the number of pairwise non-isomorphic groups H with
o(H) = o(G). It is known that #(G) = oo for every group G that has a non-trivial
soluble normal subgroup, and so the recognizability problem is interesting only for
groups with trivial soluble radical, and first of all for simple and almost simple
groups.

The goal of this paper is to resolve the recognizability problem for the groups
PGL1(g), i.e., to find #/(PGL,(g)) for all ¢.

Theorem. Let H = PGL,(q) be the projective general linear group of dimension 2 over
a finite field of order q. Then h(H) is infinite if q is a prime or ¢ = 9. In all other cases
H is recognizable, i.e., h(G) = 1.

It was previously known that A(PGL,(2™))=1 for m=2 (2], [16]),
h(PGL,(7)) = h(PGL,(9)) = oo ([15]) and h(PGL»(g)) € {1, oo} for prime g and for
g = p" where p is a prime of the form 293”4 1 ([14], [15]).

2 Preliminary results

In this section we state without proof the results needed later in the paper. The set
w(H) of a finite group H defines the Gruenberg—Kegel graph GK(H) whose vertices
are prime divisors of the order of H, and two primes p, ¢ are adjacent if H has an
element of order pg. Denote by s = s(H) the number of connected components in
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GK(H) and by n; = n;(H) the ith connected component for i =1,...,s. For a
group H of even order, we assume that 2 € 7;. Denote by w; = y;(H) (resp. by
w; = w;(H)) the set of all n € u(H) (resp. all n € w(H)) such that every prime divisor
of n lies in «;.

Lemma 1 (Gruenberg—Kegel Theorem; see [17]). If G is a finite group with discon-
nected graph GK(G) then one of the following holds:

(a) s(G) =2 and G is a Frobenius group;

(b) s(G) =2, G is a 2-Frobenius group, i.e., G = ABC where A,AB<1G, B<1BC,
and AB, BC are Frobenius groups;

(c) there exists a non-abelian simple group P such that P < G = G/N < Aut(P) for
some nilpotent normal n(G)-subgroup N of G and G/P is a m(G)-group. More-
over, GK(P) is disconnected, s(P) = s(G) and for every i with 2 < i < s(G) there
exists j with 2 < j < s(P) such that w;(G) = w;(P).

Lemma 2. Let P be a finite simple group with disconnected graph GK(P). Then
|t (P)| =1 for 2 <i<s(P); write yu;(P) ={n;} for i >1. Then P, m\(P), n; for
2 < i < s(P) are as in Tables 1 (a)—(c).

Tables 1 (a)—(c) are taken from [6]. They combine results and remove misprints
from [7] and [17]. In Tables 1 (a)—(c), p denotes an odd prime.

Lemma 3 (Zsigmondy [19]). Let p be a prime and s be a natural number, s = 2. Then
one of the following holds:

(@) there exists a prime q such that q divides p* — 1 and q does not divide p' — 1 for all
natural numbers t < s;

(b) s=6and p=2;
(c) s=2and p=2"—1 for some t.

A prime ¢ satisfying condition (a) of Lemma 3 is said to be a primitive prime di-
visor of p* — 1.
Lemma 4 (cf. [11, Lemma 1]). Let G be a finite group and N a normal subgroup
such that G/N is a Frobenius group with kernel F and a cyclic complement C. If
(IF|,|N|) = | and F is not contained in NCg(N)/N, then p|C| € w(G) for some prime
divisor p of |N|.

Lemma 5 (Mazurov [11]). Let G be a finite group having a non-trivial soluble normal
subgroup. Then h(G) = o0.

Lemma 6. Let L = Ly(p) where p is a prime, p > 3.
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Table 1 (a)
Finite simple groups P with s(P) = 2
P Restrictions on P 71 (P) 1o
Ay 6<n=p, p+1, n((n—3)!) p
p+2;n,n—2not
both prime |
—1, qP—
Apfl(q) (pvq) # (3»2)7 (374) 75( Hzl‘):l (q - 1)) <q,11)([,,q,1)
A,(q) (g-1(p+1) wlg(q”! = DI (a7 1) =
2Ap,](q) n(q]_[ ( (_ ) )) (qu)(;qH)
i i +1
*4,(q) (g+D](p+1), n(g(g" = D15 (¢ — (—1)") e
(p.q) #(3,3),(5,2)
A3(2) {2,3} 5
B,(q) n=2">4 qodd (qT15 (g 2’—1)) 3(g"+1)
B,(3) (337 + DI (3% - 1)) 337 —1)
Cn(Q) n=2"2x2 n(q Hn 1( % 1)) <§qt11)
Cy(9) g=2.3 lg(a’ + DI (67 = 1) =
Dy(q) p=54=235 (g 12 (g% — 1) =
Dyiilg)  ¢=23 n(g(q” + DI (@ = 1) )
2DH(Q) n=2"x4 ﬂ(QH ( 7 1)) (2(17’:;11)
2D,(2) n=2"+4+1>5 722" + DI RY - 1) 271 4
D,(3) S5<p#2"+1 (3117 1(321 - 1)) 137 +1)
2D,(3) 9<n=2"+1#p 733"+ DIIS23% - 1) 131 +1)
Ga(q) 2<gq=¢(3), ¢ =+l n(q(q> = 1)(g°> —¢)) q* —eq+1
3Dy(q) n(q(q® — 1)) - +1
Fi(q) q odd n(q(q® = 1)(¢* = 1)) q*—q*+1
2F(2) {2,3,5} 13
5 8 12 ¢ +q+1
Eq(q) n(gq(q” = (g" = D(g= = 1)) By
*Es(q) q>2 n(q(q” +1)(¢* = 1)(¢"* = 1)) N
M, {2,3,5} 11
J {2,3,5} 7
Ru {2,3,5,7,13} 29
He {2,3,5,7} 17
McL {2,3,5,7} 11
Co, {2,3,5,7,11,13} 23
Cos {2,3,5,7,11} 23
Fis, {2,3,5,7,11} 13
HN {2,3,5,7,11} 19

(a) (Burkhardt [4]). L has an irreducible module V over C of degree p — 1 such that all
elements of order p in L act on V fixed-point-freely and an element of order
(p+1)/2 has a fixed point in V.
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Table 1 (b)
Finite simple groups P with s(P) = 3
P Restrictions on P 71 (P) n ns

Ay n>6,n=np, n((n—3)) p p—2

p— 2 are

primes
Ailq)  3<q=¢(4), wlg—e) n(q) 3(q+e)

e=+1
A1(q) q > 2, qeven {2} q—1 qg+1
245(2) {2.3,5} 7 11
p,3) p=27"+1 (3(3P DIIGY 1)) derten e
Ga(q)  q=0(3) n(q(q® = 1)) ¢ —q+1 ¢ +q+1
Galg)  q=3"">3 n(q(g> - 1)) g—V3q¢+1  q+3q+1
Fi(q)  qeven (q(q* = 1)(¢° = 1)) q*+1 ¢t =’ +1
Falg)  q=2""">2 n(q(g’ + (g - 1)) =NV 25+

g—vV2¢+1  q++2¢+1
E+(2) {2,3,5,7,11,13,17,19,31,43} 73 127
E;(3) {2,3,5,7,11,13,19,37, 757 1093
41,61,73,547}

My, {2,3} 5 11
Mo {2,3,5,7} 11 23
Mo {2,3,5,7} 1 23
J {2,3,5} 17 19
HiS {2,3,5} 7 11
Suz {2,3,5,7} 11 13
Co, {2,3,5,7} 11 23
Fin {2,3,5,7,11,13} 17 23
F {2,3,5,7,13} 19 31
F {2,3,5,7,11,13,17,19,23} 31 47

(b) (Burichenko [3]). Let W be a reduction of V modulo 2. If (p —1)/2 is odd then
there exists a non-split extension E of W by L.

Lemma 7 (Moghaddamfar and Shi [15]). Let G be a finite group such that

w(G) = wW(PGL(2, p")) = {p" — 1, p,p" + 1},

where p is an odd prime and n = 2.
(1) If (p,n) # (3,2), then case (c) of Lemma 1 applies. Moreover, P is not isomor-
phic to any of the following simple groups:

(a) alternating groups on n =5 letters,

(b) sporadic simple groups,

(c) La(p*) where k # n, or

(d) Ly(2p™ + 1), m = 1, where 2p™ + 1 is a prime.

(AutoPDF V7 26/5/06 08:18) WDG (170x240mm) Tmath J-1383 JGT, : PMU: W(R) 15/05/2006 HC1: WSL(A) 25/05/2006 pp. 1-15 1383_43 (p. 4)



Recognition of groups PGL»(g) by their spectrum 5

Table 1 (c)
Finite simple groups P with s(P) > 3
s(P) P Restrictions 71 (P) ny n3 ng ns ng
on P
4 A,(4) {2} 3 5 7
Bylg) g=22"1 {2} g-1 g—V2+1 q+v+1
>2
2E6(2) {2,3,57,11y 13 17 | 19
541 1
Es(g) q=2.3(5) ”("(‘fl: 1)1) oy et g+ 1
x (g1t —
x (g 1)
x ("~ 1)
% (¢ — 1))
M (2,3} 5 7 11
Ji {2,3,5} 7 11 19
O'N {2,3,5,7} 11 19 31
LyS {2,3,5,7,11} 31 37 67
Fij, {2,3,5,7,11,13} 17 23 29
F {2,3,5,7,11,13, 41 59 71
17,19,23,29,
31,47} .
5 FEs(q) =0,1,4(5) n(q(q®—1) "=’ +1 ¢"+q’+1 8 _ g4 4ol
8 q l]— » q% 10 1) l]2*([+1 q2+q+1 q q q2+1
x\q
x (¢ -1)
(¢ = 1)
x (¢"° = 1))
6 Ju {2,3,5,7,11} 23 29 31 37 43

)=(3,2), then there exists a soluble group G such that
#(G) = u(PGL(2,3%)).

3 Proof of the main results

Let ¢ = p™ with p a prime and H = PGL,(g). Then u(H) = {p,q— 1,q+ 1}.

Lemma 8. Suppose that ¢ = p > 3. Then there exists an extension E of the L,(p)-
module W from Lemma 6 by L = L(p) with w(E) = w(H).

Proof. By Lemma 6 we have 2p ¢ w(E) for every extension E of W by L and, since L
contains a Frobenius subgroup of order p(p —1)/2, we have (p — 1) e w(E). If
(p+1)/2 is odd, then p+ 1 € w(E) by Lemma 6, and since W is an elementary
abelian 2-group and u(L) = {p, (p — 1)/2, (p + 1)/2}, we conclude that u(E) = u(H)
for every such E, in particular, for the natural semidirect product of W and L. Sup-
pose that (p + 1)/2 is even. Then (p — 1)/2 is odd and, by Lemma 6, there exists a
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non-split extension £ of W by L. We only have to prove that E has an element of
order p + 1. Suppose that this is false and choose Wt in E/W of order (p + 1)/2. Let
u = t(P+*1)/4 Then u is an involution and hence there exists an element ¢ € E such that
Wuu® has order (p + 1)/2 in E/W. By assumption, uu® is of order (p + 1)/2, which
implies that U = <u,u®) intersects W trivially. Since WU/W has a Sylow 2-
subgroup S/W of E/W, S splits over W and hence E splits over W, and this is a
contradiction. [

By [2] and [16], h(H) = 1 if p = 2. By Lemma 5 and Lemma 8, /(H) = w if g is a
prime. By [14], h(H) is infinite if ¢ = 9. Therefore it remains to prove that #(H) = 1
ifm>1, gisodd and ¢ > 9.

From here on we assume the following hypothesis:

G is a finite group with u(G) = u(PGL2(q)) = {p,q+ 1,q — 1}, where p is an odd
prime, ¢ = p" > 9 and m > 1.

By Lemma 7, case (c) of Lemma 1 applies, i.e., there exists a non-abelian simple
group P such that P < G = G/N < Aut(P) for some nilpotent normal 7;(G)-
subgroup N of G and G/P is a m;(G)-group. Moreover, GK(P) is disconnected,
s(P) = s(G), and for every i with 2 < i < s(G), there exists j with 2 < j < s(P) such
that w;(G) = w;(P). Furthermore, by [14], P cannot be isomorphic to an alternating
group or a sporadic group. Thus P is isomorphic to one of the groups of Lie type in
Table 1. We shall prove that P =~ L,(q) by examining in turn every possibility for P.

Let ¢ = +1 be such that ¢ — ¢ is divisible by 4. Consider the graph I'(G) with vertex
set V" consisting of elements of w(G) which are distinct from 1 and are either odd or
divisible by 4. Two vertices @ and b are adjacent in I'(G) (and we write a ~ b) if
lem(a,b) € w(G). It is obvious that I'(G) has exactly three connected components:
{p}, o= ={ae V|adivides ¢ — ¢} and o™ = {a € V| a divides ¢ + ¢}. Each of these
components is a complete graph, and so ~ is an equivalence relation. Notice that
lem(w™) = g —¢, lem(w™) = (¢ +¢)/2. If ¢ — ¢ is a power of 2, then either ¢ is a
Mersenne or Fermat prime, or ¢ = 9. In each case, we obtain a case that we have
considered before. Thus we may assume that o~ contains an odd number.

It is obvious that N is equal to the Fitting subgroup F(G), and hence
N = 0,(G) x O(G). Let f be the unique element in x(O(G)), and f; the unique
element in u(0>(G)).

For ve {+,—} denote by L
v =+ and U,(r) (resp. SU,(7))

4

v
n
1

(r) (resp. SL,()) the group L,(r) (resp. SL,(r)) if
fv=—.

Lemma 9. P % L) (r) for n > 4.

Proof. Suppose false. Let P~ L)(r) where r =" and ¢ is a prime. Then P con-
tains cyclic tori Ts,...,Tp2,Ty_1,T, of orders r2—1,... rm2—(H1)"7?
=t = D)"Y/ (n,r = 1), (" — (v1)")/(r — v1)(n,r — v1) respectively, a torus T,
which is the direct product of two cyclic groups of order r — v1, and also a subgroup
isomorphic to the direct product of a group of order ¢ and SL;(r).

Suppose first that 7 is odd. Since P has an elementary abelian subgroup of order >
we have t ~ f if f # 1. On the other hand, ¢ ~ s for s =4 or s equal to any odd
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prime divisor of (r> — 1) = (r — 1)(r + 1), and hence, for any odd prime divisor of
|T3|, for i <n—2. Since |Out(P)| divides 2(r* — 1)u we have ¢ ~ s for every odd
prime divisor s of G/P, which implies that

{p.(g+0)/2) ={("" = 1))/ (r,r = v1), (" = 1))/ (r = VD) (m,r =D} (1)

We shall prove that (1) is also true for 1 = 2.

If n =4 then, by Lemma 2 we have P = L4(2) =~ Ag, which is excluded, or
P = Uy(2) = S4(3). In this case, 4 ~3 and 3 ~ f ~ 5if f # 1, so that I'(G) cannot
have three connected components.

Thus we may assume that n>5. Then P has a subgroup isomorphic to
L (r) x SLy(r), so that 4 ~ r?> — 1. Since P has a subgroup isomorphic to the direct
product of two groups of order » + 1 # 1, we conclude that »+1 ~ f if f # 1. On
the other hand, |Out(P)| divides 2(r> — 1)u, so that 4 ~ s for every odd divisor s of
G/ P, and (1) holds in all cases.

It is easy to see that p < (¢ +¢)/2. If |T,,—1| < |T,| then p = |T,_;| and hence n
is even. On the other hand, p is a connected component in GK(P), so that r — vl
divides n, by Lemma 2. Therefore p = ("' — (v1)"~")/(r — v1) and for every n > 4
we have

Pr=0"" = D) 2/ (r=v1)2 > T4+ 2(" = 1)/(r—v1)2 > g,

which contradicts our assumption. So |T,| = p < (¢ +¢)/2 = |T,—1]|. This is possible
only for v = —. Furthermore, n must be a prime and so » > 5. But in this case it is
easy to calculate that p?> > ¢, which is again impossible. []

Lemma 10. P % L(r).

Proof. Suppose false. Let r = ¢* where ¢ is a prime. Then, by [1], [13] and [18], w(P)
consists of all divisors of the members of the set

{r—vl,t(r—v1)/(3,r—v1),(r* = 1)/3,r —v1),(r* +vr+1)/(3,r — v1)}

if r is odd and of the set
{r—vl,t(r—v1)/(3,r=v1),(r* = 1)/(3,r = v1), (P +vr+1)/(3,r — v1),4}

if r is even.

Consider first some particular cases using the information from [7].

If P=L;3(2) then u(P) ={3,4,7}, |Out(P)| =2 and p =7. Since P contains a
Frobenius group of order 21 we have 3 ~ f if f # 1, so that w™ consists only of
powers of 2, which is impossible.

If P = L3(3) then u(P) = {3,8,13}. Since 3 ~ f'if f # 1 and |Out(P)| =4, ¢ —¢
is a power of 2, which is excluded.

If P=L5(4) then u(P) = {3,4,5,7} and |Out(P)| = 12. If £ # 1 then, as P con-
tains 2% : 45, we have 3 ~ f ~ 5 and w™ consists only of powers of 2, which is im-
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possible. Thus p*" — 1 is a {2,3,5,7}-number which is not divisible by 25. This is
impossible by Lemma 3.

Let P = L3(7). Then pu(P) = {6, 14,16, 19}, so that p = 19 and g — 1 is divisible by
18, and hence 18 € w(G). If |G/P| is divisible by 3 then G has an element of order
19 - 3, which is impossible, and so 3 divides f. Since a Sylow 7-subgroup of P is non-
cyclic, 7 ~ f. Furthermore, P contains a Frobenius subgroup of order 49 - 4, so that
4 ~ f ~3 by Lemma 4, and the equality |Out(P)| = 6 implies that 4 ~ s for every
odd prime s # 19 dividing G, which is impossible.

Let P = U;(3). Then u(P) = {7,8,12}, |Out(P)| =2 and p = 7. If f is a power of
3 then w~ does not contain an odd prime: otherwise, as P contains a Frobenius sub-
group of order 32 - 4 we have 4 ~ f ~ 3 by Lemma 4, and o™ is empty, and this is a
contradiction.

Let P=Us(5). Then wu(P)=1{6,7,8,10}, wu(Us(5).3) ={21,24,30},
u(Us3(5).2) = {7,8,12,20}. Thus p = 7 and hence |G/P| < 2. If f # 1 then, as Sylow
3-subgroups and 5-subgroups of P are non-cyclic, one of the sets o™, @~ does not
contain an odd prime, which is impossible. So f = 1 and hence G = P, since other-
wise 5~4~3 and o' is empty. By Lemma 3 we have m < 4. If m =2 then
¢+ 1 =50 and G has an element of order 25; if m = 3 then ¢ — 1 € w(G) is divisible
by 57. If m = 4 then ¢ — 1 is divisible by 25. All of these cases are impossible.

Suppose that r is odd, 3 #r # 7 for v=+ and 3 #r # 5 for v = —. Then there
exists a divisor s of (r — v1)/(r — v1,3) = 3 which is an odd prime or 4. Then

r?—1
t~S~S(V—V173)~m~4.

Since a Sylow r-subgroup of P is non-cyclic,  ~ f if f # 1. On the other hand, if
|G/ P| is divisible by an odd prime a # 3 then G contains a field automorphism of P
of order a and hence a ~ ¢. Thus w* is empty, which is impossible.

Suppose that r is even. If s= (r—vl)/(r—v1,3) =1 then, since Us(2) is
soluble, v=+ and r is equal to 2 or 4. Both cases are excluded and so
s= (r—vl)/(r—vl1,3) # 1. Then, as in the previous paragraph,

rr—1
~r—vl~—-" ~3
Sy (r—vl1,3)
and hence s ~ v for every prime divisor v of |O(G)| or |G/P|. If s ~ 4 then w* is
empty. If s + 4 then w™ consists only of powers of 2. Every case is impossible. []

Lemma 11. P % L,(r), where r = t* and t is a prime distinct from p.

Proof. Suppose false. Then GK(P) has at least two connected components, one of
which is {p}.

Suppose that r =2. If f # 1 then, as P contains a Frobenius subgroup of order
r(r—1), by Lemma 4 we have r — 1 ~ f. It follows that p =r—+ 1, so that u is a
power of 2. In particular, G/P is a 2-group. If G/P # 1 then, for a subgroup V of
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order p in G, the quotient Ng(V")/V is a 2-group of order divisible by 4. By Lemma 4
we have 4 ~ f ~r— 1 and w™ is empty, a contradiction.

Let G=P. Since p—1=rew(G), either 4 w(N), and one can obtain a
contradiction as in the previous paragraph, or r < 8 which implies that r =4,
1(P) ={2,3,5}, and one of the connected components of I'(G) does not contain an
odd prime. Hence f = 1.

Now, suppose that G/P contains an odd prime s. Then r = (2")° where £ is a
natural number and G contains a field automorphism of P of order s. Since r + 1 is
not a prime, p =r— 1 and hence 2 = 1. Thus |G/P|=s and s ~3 ~ r+ 1. Since
N # 1 and G contains a Frobenius subgroup of order p - 2s, by Lemma 4 we have
s ~ 4. It follows that w™ is empty, and this is a contradiction.

Thus G/P is a 2-group and hence one of the sets w*,w~ does not contain an odd
prime. This is impossible, and ¢ is odd.

Since p # t, we have p = (r + 1)/2 where 1 = +1. First we prove that

2t < q+e, (2)
r—A<g+e (3)

Suppose that 2t > g+¢. Then 4p — 24 =2r =22t = g+ ¢ = p" + ¢ where m > 2.
Since p is an odd prime, this inequality is possible only for p = 3, m = 2, but this case
is excluded by assumption.

Suppose that r — 1 > ¢ +e¢. Then 2p — 21 > q+¢&= p™ +¢, and one obtains a
contradiction as before. Thus (2) and (3) are proved.

Let A = 1. Then r = ¢*" where u > 0. In particular, |G/P| is a power of 2. If P # G
then, for a subgroup R of order p in G, the normalizer of R in G is a Frobenius group
whose complement contains an element of order 4. By Lemma 4, either f ~ 4 or
f = 1. If additionally ¢ ~ 4, then (r —1)/2 + 4 and hence (r — 1)/2 = g + ¢, which
contradicts (3). Thus ¢ + 4 and hence either f = 1 or ¢ + f, so that 2t = g + ¢, which
is impossible by (2). It follows that P = G.

If f ~ 4 or f =1 then one obtains a contradiction as in the previous paragraph. If
44 f#1 then O,(G) is an elementary 2-group and hence either 2t =g+ ¢, or
(r—1)/2=qg—¢ orr—1=¢g— e All cases are impossible by (2) and (3).

Let A = —1. Then either r = ¢, or t = 3 and r = 3* where s is an odd prime.

Suppose that |G/P| is divisible by an odd prime s. Then r = 3* and for a subgroup
R of order p in G, the normalizer of R in G is a Frobenius group whose complement
contains an element of order 2|G/P|. By Lemma 4, either f ~ s, or f = 1. On the
other hand, 3 = 7 ~ s, so that if 3 ~ 4 then (r + 1)/2 = ¢ + ¢ which contradicts (3). It
follows that s ~ 3 # 4. In particular, |G/P| = s.

If f # 1 then, since a Sylow 3-subgroup of P is non-cyclic, 3 ~ f and hence 0,(G)
is an elementary abelian 2-group. It follows that (r+1)/2=g+c¢orr+1=gq+e¢,
which is impossible by (3). Thus f = 1 and hence 2ts = ¢ + &. Since p = (3 —1)/2,
one obtains 6s = ((3* — 1)/2)" + ¢, which is impossible for an odd prime s and
mz=2.

It follows that |G/P|<2. If t~4 and either f=1 or 4~ f then
(r+1)/2 = g+ ¢, which is impossible. If t ~4 and 4 + f # 1 then O2(G) is ele-
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mentary abelian and G cannot contain an element of order 4¢, and we have a
contradiction. If f + 4 and /" = 1 then 2¢ = g + ¢, which is impossible. Thus 7 # 4 and
f#1. If t~f then f +4, so that O,(G) is elementary abelian and hence
(r+1)/2=qg+¢ or r+1=gq+e which is impossible by (3). If ¢+# f then
2t = q + ¢, which contradicts (2). [

Lemma 12. If P =~ L,(r), where r = p“, then G =~ H.

Proof. It is proved in [15] that if = p then m = u and so P = L,(g). So we only need
to prove that N = 1 and G = PGL;(q). By Lemma 1, p does not divide |N|. Since P
contains an elementary abelian p-subgroup of order p?, for any prime divisor s of |N|
we have s ~ p, and we have a contradiction. Thus N =1 and G = G.

If there exists an odd divisor s of |G/P| then G/ P contains a field automorphism of
order 5. If s # p then s ~ p, a contradiction. If s = p then p ~ 4, which is impossible.
Thus |G/P| is a power of 2. Furthermore, since u(PSL,(q)) # u(H), the quotient
G/ P is non-trivial. If G/P contains a field automorphism then 2p € w(G), a contra-
diction. So G/P is subgroup of order 2. Let ¢ generate G/P. If ¢ is a diagonal-field
automorphism then one can check that w(G) does not contain ¢ + 1 so that ¢ is a
diagonal automorphism and G = H. []

Lemma 13. P % S5,(r), 05,(r), O2y+1(r).

Proof. Suppose first that P =~ S,,(r). Then n > 2 and, for i=1,2,...,n— 1, P con-
tains a subgroup P; isomorphic to a central product of Sp,;(r) and Sp,,_»;(r). Let
r = t" where ¢ is a prime. If 7 is odd then, since

ISpy ()| = r2(r* = 1)(r* = 1)...(r* = 1)/(2,r —1) and Sp,(r) = SLy(r),

we have 4 ~t~ f if f# 1 and also t ~+r* —1 for i =1,2,...,n — 1. Moreover,
t ~ s for every odd prime divisor s of G/P. So p and w* consist of divisors of cyclic
tori of orders (r" —1)/2 and (#" 4 1)/2. If n is even then (r" —1)/2 ~ 4 and I'(G)
has at most two connected components, which contradicts the assumption. If 7 is odd
then either (#" 4+ 1)/2 ~ r+ 1 which is again impossible, or r+ 1 = 4. In this last
case, p = (3" —1)/2, p™ + &= (3" 4+ 1)/2 which is impossible since m > 2.

Thus t = 2. If n > 3 then obviously 4 ~r> — 1 ~ f if f # 1 and hence 4 ~ s for
every odd divisor s of G which is impossible. It follows that » = 2. In this case,
r?—1~ fif f# 1 and 4 ~ s for every odd divisor s of |G/P|. Thus p =r*>+ 1. In
particular, |G/P| is a power of 2, and hence I'(G) has at most two connected com-
ponents, which is false.

If P is orthogonal group, then n >4 for O3, (r) and n > 3 for O,(r). Similar
arguments show that I'(G) has at most two connected components, which contra-
dicts the assumption. []

Thus we have to consider only cases when P is an exceptional group of Lie type.
For ve {+,—}, denote by E}(r) the group Es(r) if v=+ and 2Es(r) if v=—.
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Throughout the rest of the paper we will use information from [6], [8], [9] on the
orders of maximal tori and the orders of centralizers of semisimple elements. We
will start from the following easy observation. Since the result holds for groups
H = PGL;(p), PGL,(2") and PGL,(9), we may assume that p > 2, m > 3 if p = 3,
and m>2 if p>5. Now if p>5 then 2p < (p>—1)/2 and if p=3 then
2p < (p* —1)/2. So we may assume that the inequality

2p < (g+¢)/2 4)
is true for the group H = PGL;(q), ¢ = p™.
Lemma 14. P % E[(r), E7(r), Es(r).

Proof. Suppose false. Let r = t*, where ¢ is prime. Since 12 € w(P), we have 3 e ™. If
t is odd then 4 € w(P) and 4 ~ ¢. Furthermore, since P contains an elementary abe-
lian group of order 2, we have f ~ tand f € w~. The same is true for ¢ = 2, since P
contains a Frobenius subgroup of order 12 with a complement of order 3. Let s be a
prime divisor of |G/P| which is not 2 or 3. Then s divides u and there exists an ele-
ment g € G\ P of order s which can be represented as a product of a diagonal auto-
morphism J and a field automorphism 6 of P. If § is non-trivial then s is divisible by 3
in case P = E/(r); and s is divisible by 2 if P =~ E;(r). Both cases are impossible.
Therefore ¢ is a field automorphism of P. Hence ¢g centralizes in P a subgroup P
isomorphic to the group of the same Lie type as P over the field of order ry, where
ry = r. In particular, s ~ 4. Thus p and (g + ¢)/2 divide the orders of maximal tori
of P. Moreover, since n(G) = p (see Lemma 2), one of the numbers r;(P) with
j=2,...,5(P)is equal to p. Now we consider distinct possibilities for P in turn.

Let P =~ 2E¢(2). Then p > 13 and (g + ¢)/2 > 84. Therefore w* is empty, which is
impossible.

Let P~ E}(r), where r > 2 for v=—. Then p = (r®+ v +1)/(3,r —v1). Let s
be a prime in w'. One can check that s must be a primitive prime divisor of
r'2 — 1. Therefore s divides r* — 7>+ 1. But in P there exists a torus 7 of order
(r* =2+ D) (r*> +vr+1)/(3,r —v1). Since r > 2 when v= —, we have s~z for
some odd prime divisor z of 2 4 vr + 1. Since z € @~, ™ is empty, a contradiction.

Let P =~ E5(r). Since s(E7(r)) =1 for any r > 3, we need to consider only the
groups E7(2) and E7(3). In both cases we obtain a contradiction using the same ar-
guments as in the case P = 2E(2).

Let P =~ Eg(r). Then {p, (¢ +¢)/2} < p, where

p:{rg—r7—|—r5—r4+r3—r+1,r8—r6—|—r4—r2—|—l,

A A I L A e =

For all r and distinct numbers x, y from p we have 2x > y, which contradicts the
inequality (4). [

Lemma 15. P % G (r).
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Proof. Suppose false. Let r = ¢, where ¢ is a prime. Since G,(2)' =~ U;(3) we may
assume that r > 2. If = 2 then

:u(P) :{87 127"2—1a2(”—1),2(r—|—1),r2—r—|—l,r2+r_|_1};
and if ¢ is odd then
u(P) = {2 r(r? = 1)/2,2 =1, —r+ 1,72 +r+1}.

It easy to check that for any r we have 3, 4, (r> — 1) e w™. If ¢ is odd then ¢ also lies in
o~ . Since P contains a Frobenius subgroup of order r?(r? — 1) with a cyclic com-
plement of order > — 1 (see [5, Lemma 1.4]), for non-trivial f we have f ~ r> — 1.
Using the same argument as in the previous lemma we conclude that every odd di-
visor s of |G/P| lies in ™. Thus {p,(g+¢)/2} ={r* —r+ 11> +r+1}. If 1 #3
then either r> — r+ 1 or r> +r+ 1 is divisible by 3, and this is a contradiction. So
t=3,p=r>—r+1,(q+¢)/2=r>+r+ 1. Using the inequality (4) we obtain that
r? — 3r + 1 < 0 which is impossible for r > 2. []

Lemma 16. P % 3Dy(r), F4(r).

Proof. Suppose false. Let r = t“, where ¢ is prime. Since G5(r) < 3D4(r) < F4(r), we
can argue as in the proof of the previous lemma that @~ contains 3, 4, r> — 1, s,
where s is an odd divisor of |N|. Furthermore, if ¢ is odd then f € w™. Let s be an odd
prime divisor of |G/P|. We may represent an element of order s in G\P as a field
automorphism. Since 3 € w~ we may assume that s # 3. Now the argument as in
Lemma 14 shows that s € ™. Moreover, using information on the orders of tori in P
we obtain the following:

If P = 3D,(r) then only divisors of r* — 7> + 1 do not lie in ™. Therefore I'(G) has
only two components, a contradiction.

If P = Fy(r) then all divisors of |G| except divisors of r* — 72 + 1 and r* + 1 lie in
™. Therefore p = r* — r> + 1; and if r is even then (¢ +¢)/2 = r* + 1, while if r is
odd then ¢ + & = r* 4 1. In each case this contradicts the inequality (4). []

Lemma 17. P % 2F4(r).

Proof. Suppose false. First assume that P is a Tits group, that is, P = 2F4(2). Then
A = Aut(P) = 2F4(2) and u(P) = {10,12,13,16}, u(A) = {12,13,16,20}. Obviously
3,4 € . Furthermore, since P contains a Frobenius subgroup of order 5212
with a cyclic complement of order 12, each odd prime s # 5 dividing |N| lies in
™. Since s(G) =2, we have p=13. If G = A then w" is empty. If G = P then
(¢+¢€)/2 =5 < 13 = p. In both cases we obtain a contradiction.

Thus we may assume that r = 2%, where u > 1 and u is odd. Arguments like those
in the previous lemmas yield that
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p=r>—V234r—V2r+1 and (q+e)/2=r'+V2r +r+V2r+1.

Let 3p > (¢+¢)/2. Then m=2 and p=3 or p=>5. Since the case g =32 was
studied earlier, we now have ¢ = 52 and

1B3=(q+e)/2=r+V2r3+r+V2r+1.
This is impossible for every r > 2. Thus 3p < (¢ +¢)/2, and so
3p—(g+e)/2=27—4V2r3 +2r —4v2r + 1 < 0.
However this also is impossible for every r > 2. []
Lemma 18. P 2 Sz(r).

Proof. Suppose false. The group 2B(2) is a Frobenius group with kernel of order 5
and a cyclic complement of order 4; it is not simple. Thus Sz(r) = 2B(r), where
r=2% u>1and uis odd. We have

w(P)={4r—1,r —V2r+1,r+v2r+1} and |Out(P)| = u

Since each outer automorphism of P is a field automorphism, it centralizes 2B(2), and
so u ~ 4. On the other hand, since P contains a subgroup isomorphic to >B(2), any
odd prime divisor of |N| not equal to 5 lies in w~. Since 5 divides the order of Sz(r)
for every r we have

(p.(g+8)/2y = {r—1,r=V2r+ 1,r+V2r + 1}.

Now the inequality (4) is possible if and only if r=8, p=r—+2r+1=5 and
(q+¢)/2=r+v2r+1=13. But 7€ »(Sz(8))\w(L»(25)), and we have a contra-
diction. []

Lemma 19. P % %G (r).

Proof. Suppose false. The group 2G5 (3) is not simple, and >G3(3)’ = L,(8), which has
been discussed. Thus r = 3%, where u > 1 and u is odd. As in Lemma 18 we argue
that p =r —v/3r+ 1 and (¢ +¢)/2 = r + V/3r + 1. For every r this contradicts to the
inequality (4). This completes the proof of the lemma and the theorem. []
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