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1 Introduction

For a finite group G, denote by oðGÞ the spectrum of G, i.e., the set of orders of
elements in G. This set is closed under divisibility and hence is uniquely determined
by the subset mðGÞ of elements in oðGÞ which are maximal under the divisibility re-
lation.

A group G is said to be recognizable by oðGÞ (for short, recognizable) if every finite
group H with oðHÞ ¼ oðGÞ is isomorphic to G. In other words, G is recognizable
if hðGÞ ¼ 1 where hðGÞ is the number of pairwise non-isomorphic groups H with
oðHÞ ¼ oðGÞ. It is known that hðGÞ ¼ y for every group G that has a non-trivial
soluble normal subgroup, and so the recognizability problem is interesting only for
groups with trivial soluble radical, and first of all for simple and almost simple
groups.

The goal of this paper is to resolve the recognizability problem for the groups
PGL2ðqÞ, i.e., to find hðPGL2ðqÞÞ for all q.

Theorem. Let H ¼ PGL2ðqÞ be the projective general linear group of dimension 2 over

a finite field of order q. Then hðHÞ is infinite if q is a prime or q ¼ 9. In all other cases

H is recognizable, i.e., hðGÞ ¼ 1.

It was previously known that hðPGL2ð2mÞÞ ¼ 1 for md 2 ([2], [16]),
hðPGL2ð7ÞÞ ¼ hðPGL2ð9ÞÞ ¼ y ([15]) and hðPGL2ðqÞÞ A f1;yg for prime q and for
q ¼ pn where p is a prime of the form 2a3b þ 1 ([14], [15]).

2 Preliminary results

In this section we state without proof the results needed later in the paper. The set
oðHÞ of a finite group H defines the Gruenberg–Kegel graph GKðHÞ whose vertices
are prime divisors of the order of H, and two primes p, q are adjacent if H has an
element of order pq. Denote by s ¼ sðHÞ the number of connected components in
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GKðHÞ and by pi ¼ piðHÞ the ith connected component for i ¼ 1; . . . ; s. For a
group H of even order, we assume that 2 A p1. Denote by mi ¼ miðHÞ (resp. by
oi ¼ oiðHÞ) the set of all n A mðHÞ (resp. all n A oðHÞ) such that every prime divisor
of n lies in pi.

Lemma 1 (Gruenberg–Kegel Theorem; see [17]). If G is a finite group with discon-

nected graph GKðGÞ then one of the following holds:

(a) sðGÞ ¼ 2 and G is a Frobenius group;

(b) sðGÞ ¼ 2, G is a 2-Frobenius group, i.e., G ¼ ABC where A;ABpG, BpBC,
and AB, BC are Frobenius groups;

(c) there exists a non-abelian simple group P such that PcG ¼ G=NcAut ðPÞ for
some nilpotent normal p1ðGÞ-subgroup N of G and G=P is a p1ðGÞ-group. More-

over, GKðPÞ is disconnected, sðPÞd sðGÞ and for every i with 2c ic sðGÞ there
exists j with 2c jc sðPÞ such that oiðGÞ ¼ ojðPÞ.

Lemma 2. Let P be a finite simple group with disconnected graph GKðPÞ. Then

jmiðPÞj ¼ 1 for 2c ic sðPÞ; write miðPÞ ¼ fnig for i > 1. Then P, p1ðPÞ, ni for

2c ic sðPÞ are as in Tables 1 (a)–(c).

Tables 1 (a)–(c) are taken from [6]. They combine results and remove misprints
from [7] and [17]. In Tables 1 (a)–(c), p denotes an odd prime.

Lemma 3 (Zsigmondy [19]). Let p be a prime and s be a natural number, sd 2. Then
one of the following holds:

(a) there exists a prime q such that q divides ps � 1 and q does not divide pt � 1 for all

natural numbers t < s;

(b) s ¼ 6 and p ¼ 2;

(c) s ¼ 2 and p ¼ 2 t � 1 for some t.

A prime q satisfying condition (a) of Lemma 3 is said to be a primitive prime di-
visor of ps � 1.

Lemma 4 (cf. [11, Lemma 1]). Let G be a finite group and N a normal subgroup

such that G=N is a Frobenius group with kernel F and a cyclic complement C. If

ðjF j; jNjÞ ¼ 1 and F is not contained in NCGðNÞ=N, then pjCj A oðGÞ for some prime

divisor p of jNj.

Lemma 5 (Mazurov [11]). Let G be a finite group having a non-trivial soluble normal

subgroup. Then hðGÞ ¼ y.

Lemma 6. Let L ¼ L2ðpÞ where p is a prime, p > 3.
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(a) (Burkhardt [4]). L has an irreducible module V over C of degree p� 1 such that all

elements of order p in L act on V fixed-point-freely and an element of order

ðpþ 1Þ=2 has a fixed point in V.

Table 1 (a)
Finite simple groups P with sðPÞ ¼ 2

P Restrictions on P p1ðPÞ n2

An 6 < n ¼ p, pþ 1,
pþ 2; n, n� 2 not
both prime

pððn� 3Þ!Þ p

Ap�1ðqÞ ðp; qÞ0 ð3; 2Þ; ð3; 4Þ pðq
Qp�1

i¼1 ðqi � 1ÞÞ q p�1

ðq�1Þð p; q�1Þ

ApðqÞ ðq� 1Þ j ðpþ 1Þ pðqðqpþ1 � 1Þ
Qp�1

i¼1 ðqi � 1ÞÞ q p�1

q�1
2Ap�1ðqÞ pðq

Qp�1
i¼1 ðqi � ð�1Þ iÞÞ q pþ1

ðqþ1Þð p; qþ1Þ
2ApðqÞ ðqþ 1Þ j ðpþ 1Þ,

ðp; qÞ0 ð3; 3Þ; ð5; 2Þ
pðqðqpþ1 � 1Þ

Qp�1
i¼1 ðqi � ð�1Þ iÞÞ q pþ1

qþ1

2A3ð2Þ f2; 3g 5
BnðqÞ n ¼ 2m d 4, q odd pðq

Qn�1
i¼1 ðq2i � 1ÞÞ 1

2 ðqn þ 1Þ
Bpð3Þ pð3ð3p þ 1Þ

Qp�1
i¼1 ð32i � 1ÞÞ 1

2 ð3p � 1Þ
CnðqÞ n ¼ 2m d 2 pðq

Qn�1
i¼1 ðq2i � 1ÞÞ qnþ1

ð2; q�1Þ

CpðqÞ q ¼ 2; 3 pðqðqp þ 1Þ
Qp�1

i¼1 ðq2i � 1ÞÞ q p�1

ð2; q�1Þ

DpðqÞ pd 5, q ¼ 2; 3; 5 pðq
Qp�1

i¼1 ðq2i � 1ÞÞ q p�1
q�1

Dpþ1ðqÞ q ¼ 2; 3 pðqðqp þ 1Þ
Qp�1

i¼1 ðq2i � 1ÞÞ q p�1

ð2; q�1Þ
2DnðqÞ n ¼ 2m d 4 pðq

Qn�1
i¼1 ðq2i � 1ÞÞ qnþ1

ð2; qþ1Þ
2Dnð2Þ n ¼ 2m þ 1d 5 pð2ð2n þ 1Þ

Qn�2
i¼1 ð22i � 1ÞÞ 2n�1 þ 1

2Dpð3Þ 5c p0 2m þ 1 pð3
Qp�1

i¼1 ð32i � 1ÞÞ 1
4 ð3p þ 1Þ

2Dnð3Þ 9c n ¼ 2m þ 10 p pð3ð3n þ 1Þ
Qn�2

i¼1 ð32i � 1ÞÞ 1
2 ð3n�1 þ 1Þ

G2ðqÞ 2 < q1 eð3Þ, e ¼G1 pðqðq2 � 1Þðq3 � eÞÞ q2 � eqþ 1
3D4ðqÞ pðqðq6 � 1ÞÞ q4 � q2 þ 1
F4ðqÞ q odd pðqðq6 � 1Þðq8 � 1ÞÞ q4 � q2 þ 1
2F4ð2Þ0 f2; 3; 5g 13
E6ðqÞ pðqðq5 � 1Þðq8 � 1Þðq12 � 1ÞÞ q6þq3þ1

ð3; q�1Þ
2E6ðqÞ q > 2 pðqðq5 þ 1Þðq8 � 1Þðq12 � 1ÞÞ q6�q3þ1

ð3; qþ1Þ
M12 f2; 3; 5g 11
J2 f2; 3; 5g 7
Ru f2; 3; 5; 7; 13g 29
He f2; 3; 5; 7g 17
McL f2; 3; 5; 7g 11
Co1 f2; 3; 5; 7; 11; 13g 23
Co3 f2; 3; 5; 7; 11g 23
Fi22 f2; 3; 5; 7; 11g 13
HN f2; 3; 5; 7; 11g 19
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(b) (Burichenko [3]). Let W be a reduction of V modulo 2. If ðp� 1Þ=2 is odd then

there exists a non-split extension E of W by L.

Lemma 7 (Moghaddamfar and Shi [15]). Let G be a finite group such that

mðGÞ ¼ mðPGLð2; pnÞÞ ¼ fpn � 1; p; pn þ 1g;

where p is an odd prime and nd 2.
(1) If ðp; nÞ0 ð3; 2Þ, then case (c) of Lemma 1 applies. Moreover, P is not isomor-

phic to any of the following simple groups:

(a) alternating groups on nd 5 letters,

(b) sporadic simple groups,

(c) L2ðpkÞ where k0 n, or

(d) L2ð2pm G 1Þ, md 1, where 2pm G 1 is a prime.

Table 1 (b)
Finite simple groups P with sðPÞ ¼ 3

P Restrictions on P p1ðPÞ n2 n3

An n > 6, n ¼ p,
p� 2 are
primes

pððn� 3Þ!Þ p p� 2

A1ðqÞ 3 < q1 eð4Þ,
e ¼G1

pðq� eÞ pðqÞ 1
2 ðqþ eÞ

A1ðqÞ q > 2, q even f2g q� 1 qþ 1
2A5ð2Þ f2; 3; 5g 7 11
2Dpð3Þ p ¼ 2m þ 1 pð3ð3p�1 � 1Þ

Qp�2
i¼1 ð32i � 1ÞÞ 1

2 ð3p�1 þ 1Þ 1
4 ð3p þ 1Þ

G2ðqÞ q1 0ð3Þ pðqðq2 � 1ÞÞ q2 � qþ 1 q2 þ qþ 1
2G2ðqÞ q ¼ 32mþ1 > 3 pðqðq2 � 1ÞÞ q�

ffiffiffiffiffi
3q

p
þ 1 qþ

ffiffiffiffiffi
3q

p
þ 1

F4ðqÞ q even pðqðq4 � 1Þðq6 � 1ÞÞ q4 þ 1 q4 � q2 þ 1
2F4ðqÞ q ¼ 22mþ1 > 2 pðqðq3 þ 1Þðq4 � 1ÞÞ q2 �

ffiffiffiffiffiffiffiffi
2q3

p
þ

q�
ffiffiffiffiffi
2q

p
þ 1

q2 þ
ffiffiffiffiffiffiffiffi
2q3

p
þ

qþ
ffiffiffiffiffi
2q

p
þ 1

E7ð2Þ f2; 3; 5; 7; 11; 13; 17; 19; 31; 43g 73 127
E7ð3Þ f2; 3; 5; 7; 11; 13; 19; 37;

41; 61; 73; 547g
757 1093

M11 f2; 3g 5 11
M23 f2; 3; 5; 7g 11 23
M24 f2; 3; 5; 7g 11 23
J3 f2; 3; 5g 17 19
HiS f2; 3; 5g 7 11
Suz f2; 3; 5; 7g 11 13
Co2 f2; 3; 5; 7g 11 23
Fi23 f2; 3; 5; 7; 11; 13g 17 23
F3 f2; 3; 5; 7; 13g 19 31
F2 f2; 3; 5; 7; 11; 13; 17; 19; 23g 31 47
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(2) If ðp; nÞ ¼ ð3; 2Þ, then there exists a soluble group G such that

mðGÞ ¼ mðPGLð2; 32ÞÞ.

3 Proof of the main results

Let q ¼ pm with p a prime and H ¼ PGL2ðqÞ. Then mðHÞ ¼ fp; q� 1; qþ 1g.

Lemma 8. Suppose that q ¼ p > 3. Then there exists an extension E of the L2ðpÞ-
module W from Lemma 6 by L ¼ L2ðpÞ with oðEÞ ¼ oðHÞ.

Proof. By Lemma 6 we have 2p B oðEÞ for every extension E of W by L and, since L
contains a Frobenius subgroup of order pðp� 1Þ=2, we have ðp� 1Þ A oðEÞ. If
ðpþ 1Þ=2 is odd, then pþ 1 A oðEÞ by Lemma 6, and since W is an elementary
abelian 2-group and mðLÞ ¼ fp; ðp� 1Þ=2; ðpþ 1Þ=2g, we conclude that mðEÞ ¼ mðHÞ
for every such E, in particular, for the natural semidirect product of W and L. Sup-
pose that ðpþ 1Þ=2 is even. Then ðp� 1Þ=2 is odd and, by Lemma 6, there exists a

Table 1 (c)
Finite simple groups P with sðPÞ > 3

sðPÞ P Restrictions
on P

p1ðPÞ n2 n3 n4 n5 n6

4 A2ð4Þ f2g 3 5 7
2B2ðqÞ q ¼ 22mþ1

> 2
f2g q� 1 q�

ffiffiffiffiffi
2q

p
þ 1 qþ

ffiffiffiffiffi
2q

p
þ 1

2E6ð2Þ f2; 3; 5; 7; 11g 13 17 19
E8ðqÞ q1 2; 3ð5Þ pðqðq8 � 1Þ

� ðq14 � 1Þ
� ðq12 � 1Þ
� ðq18 � 1Þ
� ðq20 � 1ÞÞ

q10�q5þ1

q2�qþ1

q10þq5þ1

q2þqþ1
q8 � q4 þ 1

M22 f2; 3g 5 7 11
J1 f2; 3; 5g 7 11 19
O 0N f2; 3; 5; 7g 11 19 31
LyS f2; 3; 5; 7; 11g 31 37 67
Fi 024 f2; 3; 5; 7; 11; 13g 17 23 29
F1 f2; 3; 5; 7; 11; 13;

17; 19; 23; 29;
31; 47g

41 59 71

5 E8ðqÞ q1 0; 1; 4ð5Þ pðqðq8 � 1Þ
� ðq10 � 1Þ
� ðq12 � 1Þ
� ðq14 � 1Þ
� ðq18 � 1ÞÞ

q10�q5þ1

q2�qþ1

q10þq5þ1

q2þqþ1
q8 � q4 þ 1

q10þ1

q2þ1

6 J4 f2; 3; 5; 7; 11g 23 29 31 37 43

Recognition of groups PGL2ðqÞ by their spectrum 5

(AutoPDF V7 26/5/06 08:18) WDG (170�240mm) Tmath J-1383 JGT, : PMU: W(R) 15/05/2006 HC1: WSL(A) 25/05/2006 pp. 1–15 1383_43 (p. 5)



non-split extension E of W by L. We only have to prove that E has an element of
order pþ 1. Suppose that this is false and choose Wt in E=W of order ðpþ 1Þ=2. Let
u ¼ tðpþ1Þ=4. Then u is an involution and hence there exists an element e A E such that
Wuue has order ðpþ 1Þ=2 in E=W . By assumption, uue is of order ðpþ 1Þ=2, which
implies that U ¼ hu; uei intersects W trivially. Since WU=W has a Sylow 2-
subgroup S=W of E=W , S splits over W and hence E splits over W , and this is a
contradiction. r

By [2] and [16], hðHÞ ¼ 1 if p ¼ 2. By Lemma 5 and Lemma 8, hðHÞ ¼ y if q is a
prime. By [14], hðHÞ is infinite if q ¼ 9. Therefore it remains to prove that hðHÞ ¼ 1
if m > 1, q is odd and q > 9.
From here on we assume the following hypothesis:

G is a finite group with mðGÞ ¼ mðPGL2ðqÞÞ ¼ fp; qþ 1; q� 1g, where p is an odd

prime, q ¼ pm > 9 and m > 1.

By Lemma 7, case (c) of Lemma 1 applies, i.e., there exists a non-abelian simple
group P such that PcG ¼ G=NcAutðPÞ for some nilpotent normal p1ðGÞ-
subgroup N of G and G=P is a p1ðGÞ-group. Moreover, GKðPÞ is disconnected,
sðPÞd sðGÞ, and for every i with 2c ic sðGÞ, there exists j with 2c jc sðPÞ such
that oiðGÞ ¼ ojðPÞ. Furthermore, by [14], P cannot be isomorphic to an alternating
group or a sporadic group. Thus P is isomorphic to one of the groups of Lie type in
Table 1. We shall prove that PGL2ðqÞ by examining in turn every possibility for P.
Let e ¼G1 be such that q� e is divisible by 4. Consider the graph GðGÞ with vertex

set V consisting of elements of oðGÞ which are distinct from 1 and are either odd or
divisible by 4. Two vertices a and b are adjacent in GðGÞ (and we write a@ b) if
lcmða; bÞ A oðGÞ. It is obvious that GðGÞ has exactly three connected components:
fpg, o� ¼ fa A V j a divides q� eg and oþ ¼ fa A V j a divides qþ eg. Each of these
components is a complete graph, and so @ is an equivalence relation. Notice that
lcmðo�Þ ¼ q� e, lcmðoþÞ ¼ ðqþ eÞ=2. If q� e is a power of 2, then either q is a
Mersenne or Fermat prime, or q ¼ 9. In each case, we obtain a case that we have
considered before. Thus we may assume that o� contains an odd number.
It is obvious that N is equal to the Fitting subgroup FðGÞ, and hence

N ¼ O2ðGÞ �OðGÞ. Let f be the unique element in mðOðGÞÞ, and f2 the unique
element in mðO2ðGÞÞ.
For n A fþ;�g denote by Ln

nðrÞ (resp. SLn
nðrÞ) the group LnðrÞ (resp. SLnðrÞ) if

n ¼ þ and UnðrÞ (resp. SUnðrÞ) if n ¼ �.

Lemma 9. PZLn
nðrÞ for nd 4.

Proof. Suppose false. Let PGLn
nðrÞ where r ¼ tu and t is a prime. Then P con-

tains cyclic tori T2; . . . ;Tn�2;Tn�1;Tn of orders r2 � 1; . . . ; rn�2 � ðn1Þn�2,
ðrn�1 � ðn1Þn�1Þ=ðn; r� n1Þ, ðrn � ðn1ÞnÞ=ðr� n1Þðn; r� n1Þ respectively, a torus T1

which is the direct product of two cyclic groups of order r� n1, and also a subgroup
isomorphic to the direct product of a group of order t and SL2ðrÞ.
Suppose first that t is odd. Since P has an elementary abelian subgroup of order t2

we have t@ f if f 0 1. On the other hand, t@ s for s ¼ 4 or s equal to any odd
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prime divisor of ðr2 � 1Þ ¼ ðr� 1Þðrþ 1Þ, and hence, for any odd prime divisor of
jTij, for ic n� 2. Since jOutðPÞj divides 2ðr2 � 1Þu we have t@ s for every odd
prime divisor s of G=P, which implies that

fp; ðqþ eÞ=2g ¼ fðrn�1 � ðn1Þn�1Þ=ðn; r� n1Þ; ðrn � ðn1ÞnÞ=ðr� n1Þðn; r� n1Þg: ð1Þ

We shall prove that (1) is also true for t ¼ 2.
If n ¼ 4 then, by Lemma 2 we have PGL4ð2ÞGA8, which is excluded, or

PGU4ð2ÞGS4ð3Þ. In this case, 4@ 3 and 3@ f @ 5 if f 0 1, so that GðGÞ cannot
have three connected components.

Thus we may assume that nd 5. Then P has a subgroup isomorphic to
L2ðrÞ � SLn

3ðrÞ, so that 4@ r2 � 1. Since P has a subgroup isomorphic to the direct
product of two groups of order rþ 10 1, we conclude that rþ 1@ f if f 0 1. On
the other hand, jOutðPÞj divides 2ðr2 � 1Þu, so that 4@ s for every odd divisor s of
G=P, and (1) holds in all cases.

It is easy to see that p < ðqþ eÞ=2. If jTn�1j < jTnj then p ¼ jTn�1j and hence n

is even. On the other hand, p is a connected component in GKðPÞ, so that r� n1
divides n, by Lemma 2. Therefore p ¼ ðrn�1 � ðn1Þn�1Þ=ðr� n1Þ and for every nd 4
we have

p2 ¼ ðrn�1 � ðn1Þn�1Þ2=ðr� n1Þ2 > 1þ 2ðrn � 1Þ=ðr� n1Þ2 > q;

which contradicts our assumption. So jTnj ¼ p < ðqþ eÞ=2 ¼ jTn�1j. This is possible
only for n ¼ �. Furthermore, n must be a prime and so nd 5. But in this case it is
easy to calculate that p2 > q, which is again impossible. r

Lemma 10. PZLn
3ðrÞ.

Proof. Suppose false. Let r ¼ tu where t is a prime. Then, by [1], [13] and [18], oðPÞ
consists of all divisors of the members of the set

fr� n1; tðr� n1Þ=ð3; r� n1Þ; ðr2 � 1Þ=ð3; r� n1Þ; ðr2 þ nrþ 1Þ=ð3; r� n1Þg

if r is odd and of the set

fr� n1; tðr� n1Þ=ð3; r� n1Þ; ðr2 � 1Þ=ð3; r� n1Þ; ðr2 þ nrþ 1Þ=ð3; r� n1Þ; 4g

if r is even.
Consider first some particular cases using the information from [7].
If P ¼ L3ð2Þ then mðPÞ ¼ f3; 4; 7g, jOutðPÞj ¼ 2 and p ¼ 7. Since P contains a

Frobenius group of order 21 we have 3@ f if f 0 1, so that o� consists only of
powers of 2, which is impossible.

If P ¼ L3ð3Þ then mðPÞ ¼ f3; 8; 13g. Since 3@ f if f 0 1 and jOutðPÞj ¼ 4, q� e

is a power of 2, which is excluded.
If P ¼ L3ð4Þ then mðPÞ ¼ f3; 4; 5; 7g and jOutðPÞj ¼ 12. If f 0 1 then, as P con-

tains 24 : A5, we have 3@ f @ 5 and o� consists only of powers of 2, which is im-
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possible. Thus p2m � 1 is a f2; 3; 5; 7g-number which is not divisible by 25. This is
impossible by Lemma 3.
Let P ¼ L3ð7Þ. Then mðPÞ ¼ f6; 14; 16; 19g, so that p ¼ 19 and q� 1 is divisible by

18, and hence 18 A oðGÞ. If jG=Pj is divisible by 3 then G has an element of order
19 � 3, which is impossible, and so 3 divides f . Since a Sylow 7-subgroup of P is non-
cyclic, 7@ f . Furthermore, P contains a Frobenius subgroup of order 49 � 4, so that
4@ f @ 3 by Lemma 4, and the equality jOutðPÞj ¼ 6 implies that 4@ s for every
odd prime s0 19 dividing G, which is impossible.
Let P ¼ U3ð3Þ. Then mðPÞ ¼ f7; 8; 12g, jOutðPÞj ¼ 2 and p ¼ 7. If f is a power of

3 then o� does not contain an odd prime: otherwise, as P contains a Frobenius sub-
group of order 32 � 4 we have 4@ f @ 3 by Lemma 4, and oþ is empty, and this is a
contradiction.
Let P ¼ U3ð5Þ. Then mðPÞ ¼ f6; 7; 8; 10g, mðU3ð5Þ:3Þ ¼ f21; 24; 30g,

mðU3ð5Þ:2Þ ¼ f7; 8; 12; 20g. Thus p ¼ 7 and hence jG=Pjc 2. If f 0 1 then, as Sylow
3-subgroups and 5-subgroups of P are non-cyclic, one of the sets oþ, o� does not
contain an odd prime, which is impossible. So f ¼ 1 and hence G ¼ P, since other-
wise 5@ 4@ 3 and oþ is empty. By Lemma 3 we have mc 4. If m ¼ 2 then
qþ 1 ¼ 50 and G has an element of order 25; if m ¼ 3 then q� 1 A oðGÞ is divisible
by 57. If m ¼ 4 then q� 1 is divisible by 25. All of these cases are impossible.
Suppose that r is odd, 30 r0 7 for n ¼ þ and 30 r0 5 for n ¼ �. Then there

exists a divisor s of ðr� n1Þ=ðr� n1; 3Þd 3 which is an odd prime or 4. Then

t@ s@ sðr� n1; 3Þ@ r2 � 1

ðr� n1; 3Þ @ 4:

Since a Sylow t-subgroup of P is non-cyclic, t@ f if f 0 1. On the other hand, if
jG=Pj is divisible by an odd prime a0 3 then G contains a field automorphism of P
of order a and hence a@ t. Thus oþ is empty, which is impossible.
Suppose that r is even. If s ¼ ðr� n1Þ=ðr� n1; 3Þ ¼ 1 then, since U3ð2Þ is

soluble, n ¼ þ and r is equal to 2 or 4. Both cases are excluded and so
s ¼ ðr� n1Þ=ðr� n1; 3Þ0 1. Then, as in the previous paragraph,

s@ r� n1@
r2 � 1

ðr� n1; 3Þ @ 3

and hence s@ v for every prime divisor v of jOðGÞj or jG=Pj. If s@ 4 then oþ is
empty. If sS 4 then o� consists only of powers of 2. Every case is impossible. r

Lemma 11. PZL2ðrÞ, where r ¼ tu and t is a prime distinct from p.

Proof. Suppose false. Then GKðPÞ has at least two connected components, one of
which is fpg.
Suppose that t ¼ 2. If f 0 1 then, as P contains a Frobenius subgroup of order

rðr� 1Þ, by Lemma 4 we have r� 1@ f . It follows that p ¼ rþ 1, so that u is a
power of 2. In particular, G=P is a 2-group. If G=P0 1 then, for a subgroup V of
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order p in G, the quotient NGðVÞ=V is a 2-group of order divisible by 4. By Lemma 4
we have 4@ f @ r� 1 and oþ is empty, a contradiction.

Let G ¼ P. Since p� 1 ¼ r A oðGÞ, either 4 A oðNÞ, and one can obtain a
contradiction as in the previous paragraph, or rc 8 which implies that r ¼ 4,
mðPÞ ¼ f2; 3; 5g, and one of the connected components of GðGÞ does not contain an
odd prime. Hence f ¼ 1.

Now, suppose that G=P contains an odd prime s. Then r ¼ ð2hÞs where h is a
natural number and G contains a field automorphism of P of order s. Since rþ 1 is
not a prime, p ¼ r� 1 and hence h ¼ 1. Thus jG=Pj ¼ s and s@ 3@ rþ 1. Since
N0 1 and G contains a Frobenius subgroup of order p � 2s, by Lemma 4 we have
s@ 4. It follows that oþ is empty, and this is a contradiction.

Thus G=P is a 2-group and hence one of the sets oþ;o� does not contain an odd
prime. This is impossible, and t is odd.

Since p0 t, we have p ¼ ðrþ lÞ=2 where l ¼G1. First we prove that

2t < qþ e; ð2Þ

r� l < qþ e: ð3Þ

Suppose that 2td qþ e. Then 4p� 2l ¼ 2rd 2td qþ e ¼ pm þ e where md 2.
Since p is an odd prime, this inequality is possible only for p ¼ 3, m ¼ 2, but this case
is excluded by assumption.

Suppose that r� ld qþ e. Then 2p� 2ld qþ e ¼ pm þ e, and one obtains a
contradiction as before. Thus (2) and (3) are proved.

Let l ¼ 1. Then r ¼ t2
u

where ud 0. In particular, jG=Pj is a power of 2. If P0G

then, for a subgroup R of order p in G, the normalizer of R in G is a Frobenius group
whose complement contains an element of order 4. By Lemma 4, either f @ 4 or
f ¼ 1. If additionally t@ 4, then ðr� 1Þ=2S 4 and hence ðr� 1Þ=2 ¼ qþ e, which
contradicts (3). Thus tS 4 and hence either f ¼ 1 or tS f , so that 2t ¼ qþ e, which
is impossible by (2). It follows that P ¼ G.

If f @ 4 or f ¼ 1 then one obtains a contradiction as in the previous paragraph. If
4S f 0 1 then O2ðGÞ is an elementary 2-group and hence either 2t ¼ qþ e, or
ðr� 1Þ=2 ¼ q� e, or r� 1 ¼ q� e. All cases are impossible by (2) and (3).

Let l ¼ �1. Then either r ¼ t, or t ¼ 3 and r ¼ 3s where s is an odd prime.
Suppose that jG=Pj is divisible by an odd prime s. Then r ¼ 3s and for a subgroup

R of order p in G, the normalizer of R in G is a Frobenius group whose complement
contains an element of order 2jG=Pj. By Lemma 4, either f @ s, or f ¼ 1. On the
other hand, 3 ¼ t@ s, so that if 3@ 4 then ðrþ 1Þ=2 ¼ qþ e which contradicts (3). It
follows that s@ 3S 4. In particular, jG=Pj ¼ s.

If f 0 1 then, since a Sylow 3-subgroup of P is non-cyclic, 3@ f and hence O2ðGÞ
is an elementary abelian 2-group. It follows that ðrþ 1Þ=2 ¼ qþ e or rþ 1 ¼ qþ e,
which is impossible by (3). Thus f ¼ 1 and hence 2ts ¼ qþ e. Since p ¼ ð3s � 1Þ=2,
one obtains 6s ¼ ðð3s � 1Þ=2Þm þ e, which is impossible for an odd prime s and
md 2.

It follows that jG=Pjc 2. If t@ 4 and either f ¼ 1 or 4@ f then
ðrþ 1Þ=2 ¼ qþ e, which is impossible. If t@ 4 and 4S f 0 1 then O2ðGÞ is ele-
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mentary abelian and G cannot contain an element of order 4t, and we have a
contradiction. If tS 4 and f ¼ 1 then 2t ¼ qþ e, which is impossible. Thus tS 4 and
f 0 1. If t@ f then f S 4, so that O2ðGÞ is elementary abelian and hence
ðrþ 1Þ=2 ¼ qþ e or rþ 1 ¼ qþ e, which is impossible by (3). If t0 f then
2t ¼ qþ e, which contradicts (2). r

Lemma 12. If PGL2ðrÞ, where r ¼ pu, then GGH.

Proof. It is proved in [15] that if t ¼ p then m ¼ u and so PGL2ðqÞ. So we only need
to prove that N ¼ 1 and G ¼ PGL2ðqÞ. By Lemma 1, p does not divide jNj. Since P
contains an elementary abelian p-subgroup of order p2, for any prime divisor s of jNj
we have s@ p, and we have a contradiction. Thus N ¼ 1 and G ¼ G.
If there exists an odd divisor s of jG=Pj then G=P contains a field automorphism of

order s. If s0 p then s@ p, a contradiction. If s ¼ p then p@ 4, which is impossible.
Thus jG=Pj is a power of 2. Furthermore, since mðPSL2ðqÞÞ0 mðHÞ, the quotient
G=P is non-trivial. If G=P contains a field automorphism then 2p A oðGÞ, a contra-
diction. So G=P is subgroup of order 2. Let j generate G=P. If j is a diagonal-field
automorphism then one can check that oðGÞ does not contain qþ 1 so that j is a
diagonal automorphism and GGH. r

Lemma 13. PZS2nðrÞ, Oe
2nðrÞ, O2nþ1ðrÞ.

Proof. Suppose first that PGS2nðrÞ. Then nd 2 and, for i ¼ 1; 2; . . . ; n� 1, P con-
tains a subgroup Pi isomorphic to a central product of Sp2iðrÞ and Sp2n�2iðrÞ. Let
r ¼ tu where t is a prime. If t is odd then, since

jSp2iðrÞj ¼ ri2ðr2 � 1Þðr4 � 1Þ . . . ðr2i � 1Þ=ð2; r� 1Þ and Sp2ðrÞ ¼ SL2ðrÞ;

we have 4@ t@ f if f 0 1 and also t@ r2i � 1 for i ¼ 1; 2; . . . ; n� 1. Moreover,
t@ s for every odd prime divisor s of G=P. So p and oþ consist of divisors of cyclic
tori of orders ðrn � 1Þ=2 and ðrn þ 1Þ=2. If n is even then ðrn � 1Þ=2@ 4 and GðGÞ
has at most two connected components, which contradicts the assumption. If n is odd
then either ðrn þ 1Þ=2@ rþ 1 which is again impossible, or rþ 1 ¼ 4. In this last
case, p ¼ ð3n � 1Þ=2, pm þ e ¼ ð3n þ 1Þ=2 which is impossible since md 2.
Thus t ¼ 2. If nd 3 then obviously 4@ r2 � 1@ f if f 0 1 and hence 4@ s for

every odd divisor s of G which is impossible. It follows that n ¼ 2. In this case,
r2 � 1@ f if f 0 1 and 4@ s for every odd divisor s of jG=Pj. Thus p ¼ r2 þ 1. In
particular, jG=Pj is a power of 2, and hence GðGÞ has at most two connected com-
ponents, which is false.
If P is orthogonal group, then nd 4 for Oe

2nðrÞ and nd 3 for O2nþ1ðrÞ. Similar
arguments show that GðGÞ has at most two connected components, which contra-
dicts the assumption. r

Thus we have to consider only cases when P is an exceptional group of Lie type.
For n A fþ;�g, denote by E n

6 ðrÞ the group E6ðrÞ if n ¼ þ and 2E6ðrÞ if n ¼ �.
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Throughout the rest of the paper we will use information from [6], [8], [9] on the
orders of maximal tori and the orders of centralizers of semisimple elements. We
will start from the following easy observation. Since the result holds for groups
H ¼ PGL2ðpÞ, PGL2ð2mÞ and PGL2ð9Þ, we may assume that p > 2, md 3 if p ¼ 3,
and md 2 if pd 5. Now if pd 5 then 2pc ðp2 � 1Þ=2 and if p ¼ 3 then
2pc ðp3 � 1Þ=2. So we may assume that the inequality

2p < ðqþ eÞ=2 ð4Þ

is true for the group H ¼ PGL2ðqÞ, q ¼ pm.

Lemma 14. PZE n
6 ðrÞ, E7ðrÞ, E8ðrÞ.

Proof. Suppose false. Let r ¼ tu, where t is prime. Since 12 A oðPÞ, we have 3 A o�. If
t is odd then 4t A oðPÞ and 4@ t. Furthermore, since P contains an elementary abe-
lian group of order t2, we have f @ t and f A o�. The same is true for t ¼ 2, since P
contains a Frobenius subgroup of order 12 with a complement of order 3. Let s be a
prime divisor of jG=Pj which is not 2 or 3. Then s divides u and there exists an ele-
ment g A GnP of order s which can be represented as a product of a diagonal auto-
morphism d and a field automorphism y of P. If d is non-trivial then s is divisible by 3
in case PGE n

6 ðrÞ; and s is divisible by 2 if PGE7ðrÞ. Both cases are impossible.
Therefore g is a field automorphism of P. Hence g centralizes in P a subgroup P0

isomorphic to the group of the same Lie type as P over the field of order r0, where
rs0 ¼ r. In particular, s@ 4. Thus p and ðqþ eÞ=2 divide the orders of maximal tori
of P. Moreover, since n2ðGÞ ¼ p (see Lemma 2), one of the numbers njðPÞ with
j ¼ 2; . . . ; sðPÞ is equal to p. Now we consider distinct possibilities for P in turn.
Let PG 2E6ð2Þ. Then pd 13 and ðqþ eÞ=2d 84. Therefore oþ is empty, which is

impossible.
Let PGE n

6 ðrÞ, where r > 2 for n ¼ �. Then p ¼ ðr6 þ nr3 þ 1Þ=ð3; r� n1Þ. Let s
be a prime in oþ. One can check that s must be a primitive prime divisor of
r12 � 1. Therefore s divides r4 � r2 þ 1. But in P there exists a torus T of order
ðr4 � r2 þ 1Þðr2 þ nrþ 1Þ=ð3; r� n1Þ. Since r > 2 when n ¼ �, we have s@ z for
some odd prime divisor z of r2 þ nrþ 1. Since z A o�, oþ is empty, a contradiction.

Let PGE7ðrÞ. Since sðE7ðrÞÞ ¼ 1 for any r > 3, we need to consider only the
groups E7ð2Þ and E7ð3Þ. In both cases we obtain a contradiction using the same ar-
guments as in the case P ¼ 2E6ð2Þ.

Let PGE8ðrÞ. Then fp; ðqþ eÞ=2gJ r, where

r ¼ fr8 � r7 þ r5 � r4 þ r3 � rþ 1; r8 � r6 þ r4 � r2 þ 1;

r8 � r4 þ 1; r8 þ r7 � r5 � r4 � r3 þ rþ 1g:

For all r and distinct numbers x, y from r we have 2x > y, which contradicts the
inequality (4). r

Lemma 15. PZG2ðrÞ.
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Proof. Suppose false. Let r ¼ tu, where t is a prime. Since G2ð2Þ0 GU3ð3Þ we may
assume that r > 2. If t ¼ 2 then

mðPÞ ¼ f8; 12; r2 � 1; 2ðr� 1Þ; 2ðrþ 1Þ; r2 � rþ 1; r2 þ rþ 1g;

and if t is odd then

mðPÞ ¼ fr2; rðr2 � 1Þ=2; r2 � 1; r2 � rþ 1; r2 þ rþ 1g:

It easy to check that for any r we have 3, 4, ðr2 � 1Þ A o�. If t is odd then t also lies in
o�. Since P contains a Frobenius subgroup of order r2ðr2 � 1Þ with a cyclic com-
plement of order r2 � 1 (see [5, Lemma 1.4]), for non-trivial f we have f @ r2 � 1.
Using the same argument as in the previous lemma we conclude that every odd di-
visor s of jG=Pj lies in o�. Thus fp; ðqþ eÞ=2g ¼ fr2 � rþ 1; r2 þ rþ 1g. If t0 3
then either r2 � rþ 1 or r2 þ rþ 1 is divisible by 3, and this is a contradiction. So
t ¼ 3, p ¼ r2 � rþ 1, ðqþ eÞ=2 ¼ r2 þ rþ 1. Using the inequality (4) we obtain that
r2 � 3rþ 1 < 0 which is impossible for r > 2. r

Lemma 16. PZ 3D4ðrÞ, F4ðrÞ.

Proof. Suppose false. Let r ¼ tu, where t is prime. Since G2ðrÞ < 3D4ðrÞ < F4ðrÞ, we
can argue as in the proof of the previous lemma that o� contains 3, 4, r2 � 1, s,
where s is an odd divisor of jNj. Furthermore, if t is odd then t A o�. Let s be an odd
prime divisor of jG=Pj. We may represent an element of order s in GnP as a field
automorphism. Since 3 A o� we may assume that s0 3. Now the argument as in
Lemma 14 shows that s A o�. Moreover, using information on the orders of tori in P

we obtain the following:
If PG 3D4ðrÞ then only divisors of r4 � r2 þ 1 do not lie in o�. Therefore GðGÞ has

only two components, a contradiction.
If PGF4ðrÞ then all divisors of jGj except divisors of r4 � r2 þ 1 and r4 þ 1 lie in

o�. Therefore p ¼ r4 � r2 þ 1; and if r is even then ðqþ eÞ=2 ¼ r4 þ 1, while if r is
odd then qþ e ¼ r4 þ 1. In each case this contradicts the inequality (4). r

Lemma 17. PZ 2F4ðrÞ.

Proof. Suppose false. First assume that P is a Tits group, that is, PG 2F4ð2Þ0. Then
A ¼ AutðPÞG 2F4ð2Þ and mðPÞ ¼ f10; 12; 13; 16g, mðAÞ ¼ f12; 13; 16; 20g. Obviously
3; 4 A o�. Furthermore, since P contains a Frobenius subgroup of order 52 � 12
with a cyclic complement of order 12, each odd prime s0 5 dividing jNj lies in
o�. Since sðGÞ ¼ 2, we have p ¼ 13. If G ¼ A then oþ is empty. If G ¼ P then
ðqþ eÞ=2 ¼ 5 < 13 ¼ p. In both cases we obtain a contradiction.
Thus we may assume that r ¼ 2u, where u > 1 and u is odd. Arguments like those

in the previous lemmas yield that
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p ¼ r2 �
ffiffiffiffiffiffiffi
2r3

p
þ r�

ffiffiffiffiffi
2r

p
þ 1 and ðqþ eÞ=2 ¼ r2 þ

ffiffiffiffiffiffiffi
2r3

p
þ rþ

ffiffiffiffiffi
2r

p
þ 1:

Let 3pd ðqþ eÞ=2. Then m ¼ 2 and p ¼ 3 or p ¼ 5. Since the case q ¼ 32 was
studied earlier, we now have q ¼ 52 and

13 ¼ ðqþ eÞ=2 ¼ r2 þ
ffiffiffiffiffiffiffi
2r3

p
þ rþ

ffiffiffiffiffi
2r

p
þ 1:

This is impossible for every r > 2. Thus 3p < ðqþ eÞ=2, and so

3p� ðqþ eÞ=2 ¼ 2r2 � 4
ffiffiffiffiffiffiffi
2r3

p
þ 2r� 4

ffiffiffiffiffi
2r

p
þ 1 < 0:

However this also is impossible for every r > 2. r

Lemma 18. PZ SzðrÞ.

Proof. Suppose false. The group 2Bð2Þ is a Frobenius group with kernel of order 5
and a cyclic complement of order 4; it is not simple. Thus SzðrÞG 2BðrÞ, where
r ¼ 2u, u > 1 and u is odd. We have

mðPÞ ¼ f4; r� 1; r�
ffiffiffiffiffi
2r

p
þ 1; rþ

ffiffiffiffiffi
2r

p
þ 1g and jOutðPÞj ¼ u:

Since each outer automorphism of P is a field automorphism, it centralizes 2Bð2Þ, and
so u@ 4. On the other hand, since P contains a subgroup isomorphic to 2Bð2Þ, any
odd prime divisor of jNj not equal to 5 lies in o�. Since 5 divides the order of SzðrÞ
for every r we have

fp; ðqþ eÞ=2gH fr� 1; r�
ffiffiffiffiffi
2r

p
þ 1; rþ

ffiffiffiffiffi
2r

p
þ 1g:

Now the inequality (4) is possible if and only if r ¼ 8, p ¼ r�
ffiffiffiffiffi
2r

p
þ 1 ¼ 5 and

ðqþ eÞ=2 ¼ rþ
ffiffiffiffiffi
2r

p
þ 1 ¼ 13. But 7 A oðSzð8ÞÞnoðL2ð25ÞÞ, and we have a contra-

diction. r

Lemma 19. PZ 2G2ðrÞ.

Proof. Suppose false. The group 2G3ð3Þ is not simple, and 2G3ð3Þ0 GL2ð8Þ, which has
been discussed. Thus r ¼ 3u, where u > 1 and u is odd. As in Lemma 18 we argue
that p ¼ r�

ffiffiffiffiffi
3r

p
þ 1 and ðqþ eÞ=2 ¼ rþ

ffiffiffiffiffi
3r

p
þ 1. For every r this contradicts to the

inequality (4). This completes the proof of the lemma and the theorem. r
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