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Given a finite group G, denote by ω(G) the spectrum of G, i.e., the set of its element
orders. A group G is said to be recognizable by spectrum (briefly, recognizable) if
every finite group H with ω(H) = ω(G) is isomorphic to G. Since a finite group
with a non-trivial normal soluble subgroup is not recognizable [8, Corollary 4], the
recognition problem for simple and almost simple groups is of prime interest.
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At present there is a vast list of finite and almost finite groups with solved
recognition problem. The most recent version of this list is presented in [5, Table 1],
and references to some new results can be found in [10]. We mention some results
concerning the recognition of simple linear groups over fields of characteristic 2.
The following groups were proved to be recognizable: L2(2m) with m ≥ 2 (see [7])
and L3(2m) with m ≥ 1 (see [6]). All these groups have disconnected prime graphs
and a certain property of these groups, called quasi-recognizability, was proved with
applying the Gruenberg–Kegel theorem on groups with disconnected prime graphs
(see [13]). A finite non-abelian simple group S is said to be quasi-recognizable if
every finite group H with the same spectrum as S contains a unique non-abelian
composition factor and this factor is isomorphic to S.

Recent results [10] and [12] allow considering of recognition problem for groups
with connected prime graphs. In this way in a recent paper [11], the simple linear
groups Ln(2m), where n = 2 l ≥ 32, were proved to be recognizable. The cases when
n is a power of 2 and equals 4, 8, and 16 were left out of consideration since the
corresponding groups require special methods. The point is that the less rank of a
Lie type group we investigate, the more simple groups we have to consider proving
quasi-recognizability. In this paper, we establish recognizability for the case n = 16.

Theorem. The simple linear groups L = L16(2m) (m ≥ 1) are recognizable by
spectrum.

1 Preliminaries

Let G be a finite group, and ω(G) be its spectrum. The set ω(G) is ordered by the
divisibility relation and we denote by µ(G) the set of its elements that are maximal
under this relation. If p is a prime, then the p-period of G is the maximal power of
p that belongs to ω(G).

Let π(G) be the set of all prime divisors of the order of G. On the set π(G), we
define a graph with the following adjacency relation: vertices p and r in π(G) are
joined by an edge if and only if pr ∈ ω(G). This graph is called the Gruenberg–Kegel
graph or prime graph of G and denoted by GK(G) (see [13]). Guided by the given
graph conception, we say that prime divisors p and r of the order of G are adjacent
if vertices p and r are joined by an edge in GK(G). Otherwise, primes p and r are
said to be non-adjacent .

The set of vertices of a graph is called independent if vertices of this set are
pairwise non-adjacent. The cardinality of an independent set with maximal number
of vertices is usually called the independence number of the graph. Denote by t(G)
the independence number of the graph GK(G) of G. By analogy, we denote by
t(2, G) the maximal number of vertices in independent sets of GK(G) containing
the vertex 2. We call this number the 2-independence number.

The following result concerning connection between the structure of a finite
group and the properties of its prime graph is proved in [10].

Lemma 1. [10] Let G be a finite group satisfying two conditions:
(a) There exist three primes in π(G) which are pairwise non-adjacent in GK(G),

that is, t(G) ≥ 3.
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(b) There exists an odd prime in π(G) which is non-adjacent to 2 in GK(G), that
is, t(2, G) ≥ 2.

Then there exists a finite non-abelian simple group S such that S ≤ G = G/K
≤ Aut(S) for a maximal normal soluble subgroup K of G. Furthermore, t(S) ≥
t(G)− 1 and one of the following statements holds:

(1) S ' Alt7 or L2(q) for some odd q and t(S) = t(2, S) = 3.
(2) For every prime p in π(G) non-adjacent to 2 in GK(G), the Sylow p-subgroup

of G is isomorphic to the Sylow p-subgroup of S. In particular, t(2, S) ≥
t(2, G).

To apply this result, we use the values of independence and 2-independence
numbers of finite simple groups calculated in [12].

We use the following number-theoretic notation. If n is a natural number, then
π(n) is the set of prime divisors of n. If p ∈ π(n), then n|p is the maximal p-power
that divides n. By [x] we denote the integer part of x. If q is a natural number, r is
an odd prime and (q, r) = 1, then by e(r, q) we denote the smallest natural number
m such that qm ≡ 1 (mod r). Given an odd q, put e(2, q) = 1 if q ≡ 1 (mod 4) and
put e(2, q) = 2 if q ≡ −1 (mod 4).

The following number-theoretic result is of fundamental importance for investi-
gations on the structure of prime graphs of finite simple groups of Lie type.

Lemma 2. [14] Let q be a natural number greater than 1. Then for every natural
number l, there exists a prime r such that e(r, q) = l, except for the following cases:

(1) l = 6 and q = 2;
(2) l = 2 and q = 2m − 1 for some natural number m.

The prime r with e(r, q) = l is called a primitive prime divisor of q l − 1. If q is
fixed, we denote by rl any primitive prime divisor of q l − 1 (obviously, q l − 1 can
have more than one primitive prime divisor).

Lemma 3. [4, Lemma 1] Let G be a finite group, K ¢G, and G/K be a Frobenius
group with kernel F and a cyclic complement C. If (|F |, |K|) = 1 and F does not
lie in KCG(K)/K, then r · |C| ∈ ω(G) for some prime divisor r of |K|.
Lemma 4. Let q be a power of a prime p and let r2n−2 be a primitive prime
divisor of q2n−2 − 1. The group 2Dn(q), where (n, q) 6= (4, 2), contains a Frobenius
subgroup whose kernel is an elementary abelian p-group and complement is cyclic
of order r2n−2.

Proof. By [3, Part 8, A], there is a parabolic subgroup in 2Dn(q) whose Levi radical
U is an elementary abelian p-group and whose Levi subgroup contains 2Dn−1(q).
The group 2Dn−1(q) contains an element x of order r2n−2. Since pr2n−2 6∈ ω(2Dn(q))
(see [12, Proposition 3.1]), the element x acts on U regularly. Thus, U · 〈x〉 is a
desired Frobenius group. 2

Lemma 5. [11, Proposition 1] Let L = Ln(q), where n = 2m ≥ 4 and q = 2k ≥ 2.
Let G be a finite group and K be its non-trivial normal soluble subgroup satisfying
L ≤ G/K ≤ Aut(L). Then ω(G) 6⊆ ω(L).
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Lemma 6. [11, Proposition 2] Let L = Ln(q), where n ≥ 10, q = 2k ≥ 2, and
(q − 1, n) = 1. Suppose that L < G ≤ Aut(L). Then ω(G) 6⊆ ω(L).

2 Proof of the Theorem

Let L = L16(2m) = A15(2m), where m ≥ 1. By [12, §8], we have t(L) = 8 and
t(2, L) = 3. Furthermore, by [9, Proposition 0.5], the 2-period of L is equal to 16.

Let G be a finite group with ω(G) = ω(L) and K be the maximal normal soluble
subgroup of G. By Lemma 1, there is a finite non-abelian simple group S such that
S ≤ G = G/K ≤ Aut(S), moreover, t(S) ≥ t(G) − 1 and either t(S) = t(2, S) = 3
or t(2, S) ≥ t(2, G). Since t(G) = t(L) ≥ 8 and t(2, G) = t(2, L) = 3, the group
S must satisfy t(S) ≥ 7 and t(2, S) ≥ 3. By using [12, §8], we make a table of all
the finite non-abelian simple groups satisfying these conditions. For every group
S, the table shows the 2-independence number and some independent set ρ(2, S)
of GK(S) with maximal number of vertices among those containing the vertex 2.
Furthermore, for every classical group of Lie type, the table gives the independence
number as a function of Lie rank; and for sporadic groups and exceptional groups
of Lie type, this number is given explicitly.

The proof of quasi-recognizability relies on an case by case analysis of all possi-
bilities for S from this table. The cases of alternating groups and classical groups
over fields of characteristic 2 have been considered in [11]; all of them except for
the case S ' L lead to a contradiction. We examine only the rest cases. Through
this paragraph rl denotes a prime such that e(rl, 2m) = l.

Let S = Aε
n−1(q) with odd q. Then n|2 = (q − ε1)|2 > 2 and t(S) = n/2. Since

t(S) ≥ t(G) − 1 and t(G) = 8, we have n′/2 ≥ 7, whence n ≥ 14. Therefore, S
contains a cyclic subgroup of order q8 − 1. In view of

(q8 − 1)|2 = (q − 1)|2(q + 1)|2(q2 + 1)|2(q4 + 1)|2 ≥ 4 · 23 = 32,

we have 32 ∈ ω(S); a contradiction.
Let S = Dε

n(q) with odd q. Then q − ε1 ≡ 4 (mod 8), n′ ≡ 1 (mod 2) and
t(S) ≤ [(3n + 4)/4]. Since t(S) ≥ t(G) − 1 and t(G) = 8, we have (3n + 3)/4 ≥ 7,
which implies n ≥ 8. Actually, n ≥ 9 since n′ is odd. Suppose that S 6= 2D9(q).
Then S contains the universal covering of A8(q) and thus S contains an element
of order q8 − 1. By repeating the above argumentation, we have 32 ∈ ω(S); a
contradiction.

Let S = 2D9(q), where q = pk and p is odd. Since ρ(2, L) = {2, r15, r16},
it follows from Lemma 1 that r15 and r16 divide |S|, and they are not adjacent
to 2 in GK(S). Therefore, by [12, Proposition 6.7] and Table 1 below, we have
{e(r15, q), e(r16, q)} = {16, 18}. Let r′16 ∈ {r15, r16} and e(r′16, q) = 16.

Denote by r a primitive prime divisor r14 of q14− 1. Suppose that r divides |S|.
Since the primes r, r15, r16 are pairwise non-adjacent in GK(L), they are pairwise
non-adjacent in GK(S) as well. Hence, e(r, q) 6∈ {16, 18}. As one can verify using
[1, Proposition 10], the last condition implies that 4r ∈ ω(S). On the other hand,
it follows from [1, Proposition 7] that 4r 6∈ ω(L). Since ω(S) ⊆ ω(L), we have a
contradiction. Thus, r does not divide |S|.
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Table 1. Simple groups S with t(S) ≥ 7 and t(2, S) ≥ 3

S Conditions t(2, S) ρ(2, S) \ {2} t(S)

J4 6 {23, 29, 31, 37, 43} 7

F1 none 5 {29, 41, 59, 71} 11

F2 3 {31, 47} 8

Altn n, n− 2 are prime 3 {n, n− 2}
n ≥ 47 n− 1, n− 3 are prime 3 {n− 1, n− 3}
An−1(q)

n ≥ 13

2 < (q − 1)|2 = n|2
q even

3

3

{rn−1, rn}
{rn−1, rn}

[
n+1

2

]

2An−1(q)

n ≥ 13

2 < (q + 1)|2 = n|2
q even, n ≡ 0 (mod 4)

n ≡ 1 (mod 4)

n ≡ 2 (mod 4)

n ≡ 3 (mod 4)

3

3

3

3

3

{r2n−2, rn}
{r2n−2, rn}
{rn−1, r2n}
{r2n−2, rn/2}
{r(n−1)/2, r2n}

[
n+1

2

]

Bn(q), n ≥ 8 q even 3 {rn, r2n}
[

3n+5
4

]

Dn(q)

n ≥ 9

q ≡ 5 (mod 8), n ≡ 1 (mod 2)

q even, n ≡ 0 (mod 2)

n ≡ 1 (mod 2)

3

3

3

{rn, r2n−2}
{rn−1, r2n−2}
{rn, r2n−2}

[
3n+1

4

]

2Dn(q)

n ≥ 8

q ≡ 3 (mod 8), n ≡ 1 (mod 2)

q even, n ≡ 0 (mod 2)

n ≡ 1 (mod 2)

3

4

3

{r2n−2, r2n}
{rn−1, r2n−2, r2n}
{r2n−2, r2n}

[
3n+4

4

]

q ≡ 1 (mod 4) 3 {r14, r18}
E7(q) q ≡ 3 (mod 4) 3 {r7, r9} 8

q even 5 {r7, r9, r14, r18}
E8(q) none 5 {r15, r20, r24, r30} 11

Suppose first that r ∈ π(G/S) and α is the element in G\S of the corresponding
order. We may assume that α is a product of a diagonal automorphism δ and a field
automorphism ϕ. The group of diagonal automorphisms of S is cyclic of order 4.
If ϕ = 1, then |α| divides 4, but r is odd. Thus, ϕ 6= 1. The element ϕ normalizes
the subgroup of diagonal automorphisms. Since this subgroup is cyclic, we have
δ

ϕ
= δ

l
, where δ is the image of δ in G/S and l is a natural number. As |δ| divides

4, the number l must equal 1, i.e., ϕ centralizes δ and |α| = |δ| · |ϕ|. Thus, δ = 1.
The centralizer C of α in S contains the group 2D9(q0), where q0 = pk/r. Since
2D9(q0) contains an element of order 4, the group G contains an element of order
4r; a contradiction.

Now suppose that r ∈ π(K). Let G̃ = G/Or′(K) and K̃ = K/Or′(K). Then
R = Or(K̃) 6= 1. Suppose that K̃ = R. The group S acts faithfully on K̃. Other-
wise, in view of its simplicity, S centralizes K̃, therefore G contains an element of
order r′16 · r. By Lemma 4(1), the group S contains a Frobenius group F whose
kernel is an elementary abelian p′-group and complement is a cyclic group of order
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r′16. By applying Lemma 3 to the preimage of F in G̃, we obtain r′16 · r ∈ ω(G);
a contradiction. Let K̃ 6= R. There is a prime t such that T = Ot(K̃/R) is non-
trivial. Since Or′(K̃) = 1, the group T acts faithfully on R. Then T acts faithfully
on R̂ = R/Φ(R) as well, where Φ(R) is the Frattini subgroup of R. Denote by Ĝ

the factor group G̃/Φ(R). By [11, Lemma 4(3)], at least one of the primes r16 and
r15 is non-adjacent to t in ω(G). Denote this prime by s. Let x be an element of
order s in Ĝ/R̂. Then H = T 〈x〉 is a Frobenius subgroup in Ĝ/R̂. The preimage of
H in Ĝ satisfies conditions of Lemma 3, hence G contains an element of order r · s;
a contradiction.

Let S = E7(q), where q = pk is odd. Recall that r15 and r16 divide |S|, and
they are not adjacent to 2 in GK(S). Therefore, by [12, Proposition 6.7] and Table
1, we have that the set {e(r15, q), e(r16, q)} coincides with {14, 18} if q ≡ 1 (mod
4), or {7, 9} if q ≡ 3 (mod 4).

Suppose that q ≡ 1 (mod 4). Let t ∈ π(S) and x be an element of order t in S. If
e(t, q) = 14, then x lies in the unique (up to conjugation) maximal torus of maximal
period n14 = (q7 + 1)/2; if e(t, q) = 18, then x lies in the unique maximal torus of
maximal period n18 = (q6 − q3 + 1)(q + 1)/2(3, q + 1) (see [2]). The numbers n14

and n18 have a common prime divisor. Denote this divisor by s. Then s is adjacent
in GK(S) to every prime divisor of n14 and to every prime divisor of n18. Hence,
both numbers r15 and r16 are adjacent to s in GK(S). However, by [11, Lemma
4], there is no number in π(L) adjacent to both primes r15 and r16 in GK(L); a
contradiction.

Suppose that q ≡ 3 (mod 4). Let t ∈ π(S) and x be an element of order t in
S. If e(t, q) = 7, then x lies in the unique (up to conjugation) maximal torus of
maximal period n7 = (q7 − 1)/2; if e(t, q) = 9, then x lies in the unique maximal
torus of maximal period n9 = (q6 + q3 +1)(q−1)/2(3, q−1) (see [2]). The numbers
n7 and n9 have a common prime divisor except when q = 3. Hence, if q > 3, then
we proceed as in the previous paragraph.

Let S = E7(3). The unique primitive prime divisors of 37 − 1 and 39 − 1 are
1093 and 757, respectively. Therefore, for any primitive prime divisors r15 and r16,
the set {r15, r16} must coincide with {1093, 757}. Since e(757, 2) = 756, either 15m
or 16m is divisible by 756. Hence, m ≥ 189. The set π(L) contains a prime r with
e(r, 2) = 16m. Since e(r, 2) ≤ r − 1, we have r > 16m ≥ 3024. On the other hand,
r ∈ {1093, 757}; a contradiction.

Let S = E8(q), where q is odd. Since S contains a torus of order q8−1, we have
32 ∈ ω(S); a contradiction.

Let S be E7(2k) or E8(2k). Choose primitive prime divisors r16 and r15 of
q16 − 1 and q15 − 1 such that e(r16, 2) = 16k and e(r15, 2) = 15k, respectively. By
Lemma 1, the primes r16 and r15 divide the order of S. Put e16 = e(r16, 2k) and
e15 = e(r15, 2k). Suppose that e16k > 16m. Then a prime r with e(r, 2) = e16k
divides the order of S and does not divide the order of L. So r ∈ ω(S) \ ω(G),
which is impossible. Thus, e16k = 16m. Suppose that e15k > 15m. Then e15k ≥
30m > 16m and the similar argumentation leads us to a contradiction. Thus, e15k =
15m. Therefore, e16/e15 = 16/15. On the other hand, since r16 and r15 are non-
adjacent to 2 in GK(S), by [12, Proposition 3.2], we have that e16 and e15 belong
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to {7, 9, 14, 18} in the case of E7(2k), and to {15, 20, 24, 30} in the case of E8(2k);
an easy contradiction.

Let S be a sporadic group. Choose r16 and r15 as above. By Lemma 1, the
primes r16 and r15 divide the order of S and are non-adjacent to 2 in GK(S). All
primes non-adjacent to 2 in GK(S) belong to the set ρ(2, S) from Table 1. Therefore,
16k, 15k ∈ e(S) = {e(l, 2) | l ∈ ρ(2, S)}. Since e(S) is equal to {5, 11, 14, 28, 36}
if S = J4, to {20, 28, 35, 58} if S = F1, and to {5, 23} if S = F2, we have a
contradiction.

Thus, S ' L and quasi-recognizability is proved. Applying Lemma 5 and Lemma
6, we complete the proof of the theorem. 2

References

[1] R.W. Carter, Centralizers of semisimple elements in the finite classical group, Proc.
London Math. Soc. (Ser. 3) 42 (1) (1981) 1–41.

[2] D. Deriziotis, The centralizers of semisimple elements of the Chevalley groups E7 and
E8, Tokyo J. Math. 6 (1) (1983) 191–216.

[3] M.A. Grechkoseeva, On minimal permutation representations of classical simple
groups, Sib. Math. J. 44 (3) (2003) 443–462.

[4] V.D. Mazurov, Characterization of finite groups by sets of element orders, Algebra
and Logic 36 (1) (1997) 23–32.

[5] V.D. Mazurov, Characterization of groups by arithmetic properties, Algebra Colloq.
11 (1) (2004) 129–140.

[6] V.D. Mazurov, M.C. Xu, H.P. Cao, Recognition of finite simple groups L3(2
m) and

U3(2
m) by their element orders, Algebra and Logic 39 (5) (2000) 324–334.

[7] Wujie Shi, A characterization property of J1 and PSL2(2
n), Adv. Math. (China) 16

(1987) 397–401 (in Chinese).
[8] Wujie Shi, A characterization of the sporadic simple groups by their element orders,

Algebra Colloq. 1 (2) (1994) 159–166.
[9] D.M. Testerman, A1-type overgroups of elements of order p in semisimple algebraic

groups and the associated finite groups, J. Algebra 177 (1995) 34–76.
[10] A.V. Vasil’ev, On connection between the structure of finite group and properties of

its prime graph, Sib. Math. J. 46 (3) (2005) 396–404.
[11] A.V. Vasil’ev, M.A. Grechkoseeva, On recognition by spectrum of finite simple linear

groups over fields of characteristic 2, Sib. Math. J. 46 (4) (2005) 593–600.
[12] A.V. Vasil’ev, E.P. Vdovin, An adjacency criterion for two vertices of the prime graph

of a finite simple group, Algebra and Logic 44 (6) (2005) 682–725.
[13] J.S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981) 487–

513.
[14] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892) 265–284.


