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Abstract. We refer to d(G) as the minimal cardinality of a generating set of a finite
group G, and say that G is d-generated if d(G) ≤ d. A transitive permutation group G
is called 3

2 -transitive if a point stabilizer Gα is nontrivial and its orbits distinct from {α}
are of the same size. We prove that d(G) ≤ 4 for every primitive 3

2 -transitive permutation
group G, moreover, G is 2-generated except for the very particular solvable affine groups
that we completely describe. In particular, all finite 2-transitive and 2-homogeneous groups
are 2-generated. We also show that every finite group whose abelian subgroups are cyclic is
2-generated, and so is every Frobenius complement.
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1. Introduction

Let G be a finite group. We refer to d(G) as the minimal cardinality of a generating set
of G and say that G is d-generated if d(G) ≤ d. Though, in the class of all finite groups,
the well-known sharp upper bound on d(G) is log |G| (hereinafter, all the logarithms are
binary), there are important subclasses of it where d(G) ≤ d for some constant d. For
example, modulo the classification of finite simple groups (CFSG), d(G) ≤ 2 for simple
groups [1, Theorem B] and d(G) ≤ 3 for almost simple groups [8, Theorem 1].

In the case of finite permutation groups, there are well-known bounds on the number of
generators in terms of the degree n of a group G ≤ Sym(n). It was noted in [25, Lemma 5.2]
that d(G) ≤ n/2 for an arbitrary permutation group G (except G = Sym(3) where d(G) = 2)
and this bound is clearly the best possible. If G is transitive, then there is a constant c such
that

d(G) ≤ c n√
log n

.

This was proved for nilpotent groups in [19], for solvable groups in [4], and for arbitrary
transitive groups in [24, Theorem 1]. Moreover, this bound is sharp up to a multiplicative
constant c due to [19], and the best possible c =

√
3/2 by [32].

If G is a primitive group, then the upper bound is

d(G) ≤ c log n√
log log n

for some constant c. This was established in [30, Corollary 1.6] for solvable groups, and
in [23, Theorem C] for all primitive groups. The bound is also sharp due to [9], as it was
observed in [30] right after Corollary 1.6.
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The main purpose of these short notes is to find the minimal number of generators in the
case of primitive 3

2
-transitive groups. Recall that a finite permutation group G ≤ Sym(Ω) is

called 1
2
-transitive if all its orbits are of the same size greater than 1 (the group of degree 1 is

also considered as 1
2
-transitive), and 3

2
-transitive if it is transitive and a point stabilizer Gα is

1
2
-transitive on Ω\{α}. Examples of 3

2
-transitive groups are 2-transitive groups and Frobenius

groups. Since a nontrivial normal subgroup of a transitive group must be 1
2
-transitive [33,

Theorem 10.3], normal subgroups of 2-transitive groups also provide examples of 3
2
-transitive

groups. The notion of a 3
2
-transitive group was introduced by Wielandt [33, § 10], who laid

the foundations of a theory of such groups by proving that every imprimitive 3
2
-transitive

group must be Frobenius. Passman classified solvable groups from this class [27–29]. Almost
simple 3

2
-transitive groups were described in [2], and the final step towards the classification

of 3
2
-transitive groups was done recently in [14,21].

Theorem 1.1. Let G be a primitive 3
2
-transitive permutation group of degree n. If d(G) > 2,

then G = V G0 is a solvable affine group with the zero vector stabilizer G0 ≤ GL(V ) which
is imprimitive as a linear group, and up to permutation isomorphism one of the following
holds:

(i) d(G) = 3 and G0 is the two-dimensional group of monomial matrices with determi-
nant equal to ±1 over any field of order q ≡ 1 (mod 4);

(ii) d(G) = 4, G = G2 in Table 1 of Section 4, and G0 is a four-dimensional group over
the field of order 3.

As we will see, all the exceptions from Items (i) and (ii) of Theorem 1.1 are of rank greater
than 2, so the following fact (nowhere mentioned, as far as we are aware) takes place.

Corollary 1.2. Every finite 2-transitive permutation group is 2-generated.

The 2-homogeneous but not 2-transitive groups were described in [17, Proposition 3.1].
They are subgroups of AΓL1(q), so the next assertion follows.

Corollary 1.3. Every finite 2-homogeneous permutation group is 2-generated.

As observed above, a normal subgroup of a 2-transitive group is 3
2
-transitive, so Theo-

rem 1.1 allows to describe all situations when a normal primitive subgroup of a 2-transitive
group is not 2-generated.

Corollary 1.4. Let G be a primitive normal subgroup of a 2-transitive permutation group
T of degree n. Then either d(G) ≤ 2 or up to permutation isomorphism one of the following
holds:

(i) G = G1 from Table 1 and T is any subgroup of the group M1 from Table 2 of
Section 4, containing G and such that the index |T : G| is a multiple of 3;

(ii) G = G2 from Table 1 and T is any subgroup of the group M2 from Table 2 of
Section 4, containing G and such that the index |T : G| is a multiple of 5.

The important subclass of 3
2
-transitive groups is the class of Frobenius groups. Let G =

KH be a Frobenius group with kernel K and complement H. If G is primitive, then d(G) =
max{2, d(H)}, so it suffices to find the number of generators of H (see details in Section 2).
If H is solvable, then H is 2-generated due to Gruenberg’s result [13, Lemma 9.9] (in fact,
he proved that d(H) ≤ 2 for every group H whose abelian subgroups are cyclic, the property
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any Frobenius group enjoys). Unfortunately, we were unable to find the same assertions in
the general case, so we proved them here (see Theorem 2.4 and Corollary 2.5 below).

Concluding the introduction, let us briefly discuss the number of generators of an imprim-
itive 3

2
-transitive group G which, by aforementioned Wielandt’s result, is Frobenius. If G

is solvable, then Gruenberg proved that d(G) = dH(K) + 1, where dH(K) is the minimum
number of generators of K as H-group [13, Proposition 9.5]. We do not know if this is true
in the general case. However, finding the number dH(K) does not seem easier than d(G)
itself. From our point of view, the best way to find d(G) for a given imprimitive Frobenius
group is to reduce the problem to the case when the kernel K is an elementary abelian group
and then apply [1, Theorem C].

2. On minimal generating sets of finite groups

Our main tool from finite group theory is the following general result.

Theorem 2.1. [22] If G is a noncyclic finite group with a unique minimal normal sub-
group N , then d(G) = max{2, d(G/N)}.

The nonabelian simple groups are 2-generated, so applying Theorem 2.1 to the case when
N is a nonabelian simple group, we obtain that for an almost simple group G with socle N ,
d(G) > 2 if and only if d(G/N) > 2. Since the group G/N is isomorphic to a subgroup of
Out(N) which is known modulo CFSG for any simple group N , one can easily find all almost
simple groups G with d(G) > 2 (for each of them d(G) = 3). The next lemma summarizes
the information we need on such groups, see the corollary to [8, Theorem 1] and arguments
after it.

Lemma 2.2. Let G be an almost simple group with the socle isomorphic to simple group S.
If d(G) > 2, then one of the following holds:

(i) S is an orthogonal group of even dimension;
(ii) S is a linear group PSLn(q) of even dimension n and G is not a subgroup of PΓLn(q).

The next lemma follows from [8, Theorem 2].

Lemma 2.3. If G is a group containing a nonabelian simple group S as a normal subgroup
such that G/S is solvable, then d(G) = max{2, d(G/S)}.

Now our goal is to prove

Theorem 2.4. A finite group whose abelian subgroups are cyclic is 2-generated.

Since a Frobenius complement does not contain noncyclic abelian subgroups (see, e.g., [26,
Theorem 18.1]), the theorem has the following direct consequence.

Corollary 2.5. A finite Frobenius complement is 2-generated.

It is easily seen that every abelian subgroup of a finite group G is cyclic if and only if
Sylow p-subgroups of G are cyclic for odd p and cyclic or generalized quaternion for p = 2.
Finite groups whose all Sylow subgroups are cyclic were completely described by Zassenhaus
in [36] and are now called Z-groups.

Lemma 2.6. Let G be a Z-group. Then G is generated by elements a, b with am = bn = 1,
ab = ar, where (r − 1,m) = (m,n) = 1 and rn ≡ 1 (mod m).

Proof. See, e.g., [26, Lemma 12.11]. �
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Gruenberg proved [13, Lemma 9.9] that a finite solvable group G is 2-generated if all
odd Sylow subgroups of G are cyclic and its Sylow 2-subgroups are cyclic or dihedral or
generalized quaternion. In the next lemma, we prove an even more general fact.

Lemma 2.7. Let G be a solvable group whose odd Sylow subgroups are cyclic, and a Sylow
2-subgroup includes a cyclic subgroup of index at most 2. Then G is 2-generated.

Proof. We follow the line of the proof of [13, Lemma 9.9]. In view of this proof (and using the
same notation), we may assume that a minimal normal subgroup A of G is an elementary
abelian group of order 4, a Sylow 2-subgroup T of G includes A as a proper subgroup
and splits over it. The cases when T is cyclic, quaternion or dihedral were considered
in [13, Lemma 9.9]. Therefore, according to well-known Burnside’s classification (see, e.g.,
[35, Lemma 6.1.1] or [12, Theorem 5.4.4]), we may suppose that T is either abelian of
type C2n−1 × C2, or the group M2n , or semidihedral group S2n (see, e.g., [12, Section 5.4]
for definitions and elementary properties of these groups). However, in contrast to our
assumptions, the latter group does not contain a normal elementary abelian group of order
4, while the former two groups do not split over such a normal subgroup. �

A finite nonsolvable group whose abelian subgroups are cyclic were described by Suzuki [31,
Theorem E]. This allows us to prove easily the following lemma, thus completing the proof
of Theorem 2.4.

Lemma 2.8. A finite nonsolvable group whose abelian subgroups are cyclic is 2-generated.

Proof. Let G be a finite nonsolvable group. Then, according to [31, Theorem E], the abelian
subgroups of G are cyclic if and only if G includes a subgroup G0 of index not exceeding 2,
which is the direct product of the group L = SL(2, p), p > 3 a prime, and a Z-group Z of
order coprime to the order of L.

Take Z = 〈a, b〉 as in Lemma 2.6 and observe that L is generated by elements

u =

(
1 1
0 1

)
and v =

(
0 1
−1 0

)
of orders p and 4 respectively.

Since |L| and |Z| are coprime, the group G0 is generated by elements au and bv. Therefore,
if G = G0 we are done.

Let |G : G0| = 2. By [31, Theorem E], G is generated by G0 and an element t such that
t normalizes Z and L, t2 = −e ∈ L, where e is the identity matrix, and t acts on elements
a, b, u, v as follows:

at = a−1, bt = b, ut =

(
1 0
−ω 1

)
, and vt =

(
0 ω−1

−ω 0

)
,

where ω generates the underlying field of order p. It is clear that L = 〈u, ut〉. Thus,
G = 〈au, bt〉, as required. �

We conclude this section by finding the minimal number of generators for the group
of two-dimensional monomial matrices with determinant equal to ±1 over a field having
odd order. These groups appeared in Passman’s classification of solvable 1

2
-transitive linear

groups [27–29]. They are obviously intransitive on the set of nonzero vectors and imprimitive
as linear groups (see, e.g., [28]).



GENERATING SETS FOR PRIMITIVE 3
2
-TRANSITIVE GROUPS 5

Lemma 2.9. Let q = pm, p an odd prime. Set G = S0(q) to be the subgroup of GL2(q)
consisting of the matrices(

α 0
0 ±α−1

)
and

(
0 α
±α−1 0

)
, α ∈ F∗

q.

Then d(G) = 2 for q ≡ 3 (mod 4), and d(G) = 3 for q ≡ 1 (mod 4).

Proof. It is clear that G is generated by the elements

u =

(
0 1
1 0

)
, v =

(
1 0
0 −1

)
, and w =

(
ω 0
0 ω−1

)
, where 〈ω〉 = F∗

q.

Thus, d(G) ≤ 3. Put K = 〈w2〉 and G = G/K. Let also u, v, w be images of u, v, w in G.
Since [u,w] ∈ K, we see that u and w commute.

If q ≡ 1 (mod 4), then [u, v] = −e ∈ K, where e is the identity matrix. It follows that
G = 〈u, v, w〉 is an elementary abelian 2-group of order 8, so 3 ≥ d(G) ≥ d(G) = 3 proving
that d(G) = 3.

Suppose that q ≡ 3 (mod 4). Then−e 6∈ K, and G is a dihedral group of order 8 generated
by u and v. In this case, (vw)(q−1)/2 = −v and (−v)u = v, so G = 〈u, vw〉 is 2-generated. �

3. Primitive 3
2
-transitive permutation groups: General case

As it was originally proved by Burnside [5, § 154, Theorem XIII], the socle S of a finite
2-transitive group G is either a regular elementary abelian p-group, or a nonregular non-
abelian simple group. In the former case, the group G is said to be affine (a point stabilizer
G0 of G acts on the socle as a linear group, that is G0 is isomorphic to a subgroup of GLm(p)),
while in the latter case we refer to G as almost simple, because S ≤ G ≤ Aut(S) for some
nonabelian simple group S. It turns out that Burnside’s result can be generalized to the
case of the primitive 3

2
-transitive groups.

Lemma 3.1. [2, Theorem 1.1] A primitive 3
2
-transitive group is either affine or almost

simple.

The desired inequality d(G) ≤ 2 in the case of almost simple groups is a direct con-
sequence of Lemma 2.2 and the known description of almost simple 3

2
-transitive groups,

see [6, Section 5] or [7, Table 7.4] for 2-transitive groups and [2, Theorem 1.2] otherwise.

Thus, we may suppose thatG is affine. ThenG is permutation isomorphic to the semidirect
product of a faithful Fp-module V of dimension m, where n = pm is the degree of G, and the
stabilizerG0 of the zero vector in V . SinceG is primitive, G0 acts irreducibly on V , so V is the
unique minimal normal subgroup of G and Theorem 2.1 implies that d(G) = max{2, d(G0)}.
Thus it suffices to bound d(G0). For convenience, we rename G0 by G in this case, so further
G is a subgroup of GL(V ) ' GLm(p). Since the initial permutation group is assumed to be
3
2
-transitive, the point stabilizer G is 1

2
-transitive on the set V ∗ of nonzero elements of V .

The classification of the 1
2
-transitive linear groups was completed in [21, Corollary 2] and

gives us the following.

Lemma 3.2. If G ≤ GL(V ) = GLm(p) is a 1
2
-transitive group on V ∗, then one of the

following holds:

(i) G is transitive on V ∗;
(ii) G is a Frobenius complement acting semiregularly on V ∗;
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(iii) G = S0(pm/2) with p odd and m even;
(iv) G ≤ ΓL1(pm);
(v) SL2(5) E G ≤ GL2(pm/2), where pm/2 = 11, 19, 29;

(vi) SL2(5) E G ≤ ΓL2(pm/2), where pm/2 = 169;
(vii) G ≤ GL2(p) is solvable and p = 3, 5, 7, 11, 17;
(viii) G ≤ GL4(3).

In Case (i) of Lemma 3.2, the classification of the finite linear groups acting transitively on
the set of nonzero vectors is due to C. Hering [15] (see also [20, Appendix 1] and [16, Ch. XII,
Remark 7.5]) and for our purposes can be summarized as follows.

Lemma 3.3. If G ≤ GL(V ) = GLm(p) is transitive on V ∗, then one of the following holds:

(i) SLa(q) E G ≤ ΓLa(q) with qa = pm;
(ii) Sp2a(q) E G ≤ ΓL2a(q) with q2a = pm;

(iii) G2(q) E G ≤ ΓL6(q) with q = 2m > 2;
(iv) G ≤ ΓL1(pm);
(v) SL2(5) E G ≤ GL2(pm/2), where pm/2 = 11, 19, 29, or 59;

(vi) Alt(6) ' G ≤ GL4(2), Alt(7) ' G ≤ GL4(2), SL2(13) ' G ≤ GL6(3), SU3(3) '
G ≤ GL6(2);

(vii) G ≤ GL2(p) is solvable and p = 3, 5, 7, 11, 23;
(viii) G ≤ GL4(3).

The purpose of this section is to reduce the proof of Theorem 1.1 and Corollaries 1.2–1.4
to direct computations in the small groups described in Items (vii) and (viii) of Lemmas 3.2
and 3.3.

If G is Frobenius as in Item (ii) of Lemma 3.2, then we are done by Corollary 2.5.

Since every subgroup of a metacyclic group is 2-generated and ΓL1(pm) is metacyclic,
d(G) ≤ 2 for G in Item (iv) of both Lemmas 3.2 and 3.3.

If G is from Item (v) of Lemmas 3.2 and 3.3, then G ≤ ZR, where R = SL2(5) and
Z = F∗

q, q = pm/2, is the multiplicative group of the underlying field (see Remark 2 after
Theorem 1 in [21]). The generating set {u, v} of R can be chosen so that u is of odd order
coprime to |Z|. If a is a generator of Z, then the elements au and v generate G, as required.

In Item (vi) of Lemma 3.2, G is an extension by a field automorphism t of order 2 of the
group K = G∩GL2(169) ≤ Z0R, where R = SL2(5) and Z0 is a subgroup of order 28 in the
multiplicative group F∗

169 (see Remark 3 after Theorem 1 in [21]). Since the group SL2(13)
does not include a subgroup isomorphic to R (see, e.g., [3, Table 8.2]), the element t does not
centralize R. Hence it acts as the outer (diagonal) automorphism on R. Taking u ∈ R as in
the proof of Lemma 2.8, we have R = 〈u, ut〉. If a is a generator of Z0, then (|a|, |u|) = 1.
Thus, G = 〈au, t〉, as required.

In Item (vi) of Lemma 3.3, G = [G,G] and G/Z(G) is nonabelian simple, so we are done.

If G is from Item (i) of Lemma 3.3, then we apply Lemma 2.2.

Let R = Sp2a(q) be as in Item (ii) of Lemma 3.3. Applying [18, Corollary 2.10.4], we see
that for the normalizer N = NGL(V )(R), the quotient N/R is cyclic. Since N = NΓL(V )(R)∩
GL(V ), it follows that G/R lies in a metacyclic group. Note that the center Z(G) = Z(R)
is either trivial or the unique minimal normal subgroup of G. By Theorem 2.1, d(G) =
d(G/Z(G)). Now Lemma 2.3 yields d(G) = d(G/S) = 2, as required.
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If R = G2(q) is from Item (iii) of Lemma 3.3, then G is a subgroup of an extension of
K = ZR by the group T of field automorphisms, where Z = F∗

q. Indeed, R is a maximal
subgroup of Sp6(q) and the normalizer NAut(Sp6(q))(R) = RT , see [3, Table 8.29]. Thus, G/R
is a subgroup of a metacyclic group and we apply Lemma 2.3 once again.

Minimal generating sets for the group S0(q), where q is an odd prime power, from Item (iii)
of the Lemma 3.2 are given in Lemma 2.9, so the conclusion of Theorem 1.1 follows for these
groups. Let us prove that if G = V G0, where G0 = S0(q), is a normal subgroup of a 2-
transitive group T , then T is an affine group and the zero vector stabilizer in T is from
Items (vii) and (viii) of Lemma 3.3. Indeed, V being a Hall subgroup of G is characteristic
in it. Hence V is a normal regular subgroup of T , so T is affine. Therefore, the zero vector
stabilizer T0 in T is among the groups described in Lemma 3.3. Checking the items of
Lemma 3.3 one by one, we see that T0 must be one of the groups from Items (vii) and (viii),
as required.

Thus, if a primitive 3
2
-transitive permutation group G is not 2-generated, then either G is

described in Item (i) of Theorem 1.1, or G is one of the groups from Items (vii) and (viii)
of Lemmas 3.2 and 3.3. The latter is also true for any primitive normal subgroup G of a
2-transitive group T .

4. Primitive 3
2
-transitive permutation groups: Exceptions

We deal with the groups from Items (vii) and (viii) of Lemmas 3.2 and 3.3 using GAP [11]
and its package IRREDSOL (see the log-file in [37]). First, we compute the set of all prim-
itive 3

2
-transitive solvable groups of degrees 32, 52, 72, 34, 112, 172, 232. Using the function

MinimalGeneratingSet(G) for solvable groups, we filter out all 2-generated groups. The re-
sulting set consists of four affine groups Gi, i = 1, . . . , 4, listed in Table 1. The table provides
the degrees n, ranks rk, sizes of minimal generating set d of G, the sizes |G0| and matrix
generators of the zero stabilizers G0, the parameters (m, p, k, l) for a quick access to the ex-
ceptional groups through the GAP function PrimitiveSolvablePermGroup(m,p,k,l). We
verified that the groups G1, G3, and G4 are permutation isomorphic to the groups (of cor-
responding degrees) described in Item (i) of Theorem 1.1. Thus, only the group G2 must
be mentioned separately (see Item (ii) of Theorem 1.1). It turns out that this group is not
2-transitive and the zero stabilizer of this group is imprimitive as a linear group too.

To complete the proof of Theorem 1.1 together with Corollaries 1.2 and 1.3, it remains
to consider nonsolvable groups of degree 34. We use the library of primitive permutation
groups (built into GAP) to obtain all primitive 3

2
-transitive nonsolvable groups of degree 34.

Next we filter out groups with small generating set size equal to 2. Mind that the function
SmallGeneratingSet(G) is apparently randomized, so another user can get another output
on this step. In any case, there are only few groups left and they are also 2-generated which
can be checked by the function Is2Gen(G).

In order to prove Corollary 1.4, we compute the normalizers of the groups from Table 1
in the corresponding symmetric groups. It turns out that only the normalizers of G1 and
G2 are 2-transitive groups. Further computations show that if G ∈ {G1, G2}, then M =
NSym(n)(G) = NAGL(V )(G), so M = V oM0 is again an affine group and M0 ≤ GL(V ) is the
stabilizer of zero vector (in fact, this was already proved for G1 in Section 3). The group
G0 has r − 1 nonzero orbits on V , where r = rk(G) (r − 1 = 3 for G = G1 and r − 1 = 5
for G = G2, see Table 1). Hence, if G E T ≤ M and T is 2-transitive, then |T : G| need to
be a multiple of r− 1. We verify that the latter condition is also sufficient, thus completing
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the proof. Indeed, our computations show that for i = 1, 2 and G = Gi, the group 〈G0, g〉
acts transitively on V ∗ for all g ∈M0 of order r − 1. We collect the results on the maximal
2-transitive groups M with non-2-generated primitive normal subgroups in Table 2 providing
their degrees, the sizes and matrix generators of the zero stabilizers M0, and the information
which of non-2-generated primitive normal subgroups from Table 1 lies inside.

Table 1. Small primitive 3
2
-transitive groups G with d(G) > 2

G n rk d |G0| a minimal generating set of G0 (m, p, k, l)

G1 52 4 3 16
(

0 4

4 0

)
,
(

2 0

0 2

)
,
(

4 0

0 1

)
(2, 5, 1, 2)

G2 34 6 4 32

0 0 2 0

0 0 0 2

2 0 0 0
0 2 0 0

 ,

0 1 0 0

2 0 0 0

0 0 0 2
0 0 1 0

 ,

2 1 0 0

1 1 0 0

0 0 2 1
0 0 1 1

 ,

2 0 0 0

0 2 0 0

0 0 1 0
0 0 0 1

 (4, 3, 1, 33)

G3 34 6 3 32

0 0 2 2
0 0 2 1

1 1 0 0

1 2 0 0

 ,

1 2 0 0
2 0 0 0

0 0 0 1

0 0 1 1

 ,

2 0 0 0
0 2 0 0

0 0 1 0

0 0 0 1

 (4, 3, 2, 6)

G4 172 10 3 64
(

0 8

15 0

)
,
(

11 0

0 3

)
,
(

16 0

0 1

)
(2, 17, 1, 15)

Table 2. Maximal 2-transitive groups M with non-2-generated primitive nor-
mal subgroups

M n |M0| a minimal generating set of M0 Gi EM

M1 52 96
(

0 2
1 0

)
,
(

3 2
1 1

)
G1

M2 34 3840

2 2 0 2
0 2 1 1

2 2 0 1

0 2 2 2

 ,

1 0 0 1
2 1 2 2

1 2 2 2

1 0 0 2

 G2
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